K fragments

S. Wycech^a, A.M. Green^b

 a Soltan Institute for Nuclear Studies, Warsaw, Poland b Helsinki Institute of Physics, University of Helsinki, Finland

The KNNN bound states recently discovered at KEK are studied. It is shown that the $\Lambda(1405)$ and $\Sigma(1385)$ resonant states coupled to the KN system may generate an attraction strong enough to form such bound states.

1 Introduction

The bound KNNN states, discovered at KEK [1], open up a new sector of strange nuclei. The state found in the K^-pnn system is bound by 195 MeV. A related K^-pnn state bound by some 20 MeV less is reported to this conference [2]. These states live fairly long and decay into a hyperon and two nucleons. Nuclear states of kaons were expected, since early studies of kaonic atoms indicated that the nuclear potential for K^- mesons is attractive, see review [3]. However, the (K,π) conversion is very rapid and such states would be difficult to detect due to large (≈ 100 MeV) widths. One way to form states of longer lifetime would be to block the main decay channels. That may happen if the K^- is bound very strongly. Such a possibility was indicated to exist in the nuclear matter situation, [4]. Akaishi and Yamazaki predicted the existence of narrow states also in light nuclei such as He, [5], and this prediction led to the experiment of Ref. [1]. In both cases the mechanism of attraction was attributed to the resonant $\Lambda(1405)$ I=0 state coupled to K^-p+K^0n .

The actual experiment [1] shows that the attraction due to the $\Lambda(1405)$ apparently plays an important role but is not strong enough to generate the binding as observed [6]. Both predictions [4] and [5] were based on a sizeable proton component in the nucleus and that is not the case in the K^-pnn system. One line of explanation is given at this conference, in terms of a contraction of the nuclear system [7]. Here, it is shown that, under fairly standard nuclear conditions another possibility exists. Two resonant states $\Lambda(1405)$ and $\Sigma(1385)$ coupled to the KN system may generate the attraction required to produce the strong binding. This happens under two basic conditions

- the $\Lambda(1405)$ and $\Sigma(1385)$ in a nuclear medium are located above the KN threshold.
- the binding of K^- is strong enough to block the main $\pi\Sigma$ and $\pi\Lambda$ decay modes.

Such conditions may be fulfilled also in heavier nuclei, but the state generated with this interaction will be similar everywhere. The meson is bound in a restricted small area in a region of the highest neutron density.

2 The origin of K^- attraction to nuclei

Let the KN, I=0 S-wave scattering amplitude be described by a simple resonance formula

$$f_o = \frac{\gamma_o^2}{E_{KN} - E_o + i\Gamma_o/2},\tag{1}$$

where E_{KN} is the energy in the KN channel and E_o is the $\Lambda(1405)$ energy. This amplitude is normalised to the scattering length at the threshold. For kaons in a nuclear medium it generates an optical potential $U_o = 2m_K V_o$ with

$$V_o(r) = \frac{4\pi}{2\mu_{KN}}\rho(r)f_o, \tag{2}$$

where μ_{KN} is the KN reduced mass and $\rho(r)$ is the nuclear density. The resonant situation produces an attractive potential when $E_{KN}-E_o<0$ and a repulsive one otherwise. One question to settle is the value of the actual energy of the resonance in the nuclear medium. Emulsion studies of K^- absorption at the nuclear surface indicate an upward shift of some 10 MeV, [11]. Nuclear matter calculations generate an upward shift of some 50-100 MeV at central densities as a result of Pauli blocking, [9], [10],[11]. This creates the $E_{KN}-E_o<0$ situation which results in an attractive potential.

The other resonance, $\Sigma(1385)$, coupled to the KN~I=1,~P wave is located far below the threshold. In atomic states $\Sigma(1385)$ seems to play little role. However, in deeply bound states it becomes the dominant factor. The scattering amplitude $f_{\Sigma}=2\mathbf{pp}'A_{\Sigma}$ is given by a resonant-like volume

$$A_{\Sigma} = \frac{\gamma_{\Sigma KN}^2}{E_{KN} - E_{\Sigma} + i\Gamma_{\Sigma}/2} , \qquad (3)$$

where \mathbf{p}, \mathbf{p}' are the relative momenta and $\gamma_{\Sigma KN}$ is a coupling constant. The $\Sigma(1385)$ width is composed of three terms $\Gamma_{\Sigma}/2 = \Sigma_i \ p_i^3 \gamma_i^2 (p_i^2)$ and the sum extends over the channels: $\pi \Sigma, \pi \Lambda, KN$. The resonance decays mostly (0.87 %) to the $\pi \Lambda$ channel and an experimental width of 36 MeV gives $\gamma_{\Sigma \pi \Lambda}^2$. The corresponding coupling to the KN channel is related by SU(3) $\gamma_{\Sigma KN}^2/\gamma_{\Sigma \pi \Lambda}^2 = 2/3$, while an experimental ratio of 0.51±0.18 has been obtained in K^- D capture [14]. Inside the nuclear medium f_{Σ} yields an optical potential

$$U_G = \stackrel{\leftarrow}{\nabla} U_{\Sigma}(E_{KN}) \stackrel{\rightarrow}{\nabla} , \tag{4}$$

where $U_{\Sigma} = [2m_K 4\pi/(2\mu_{KN})]2\rho A_{\Sigma}$. It produces a dramatic effect on the kinetic energy of the meson. The dispersion law in nuclear matter becomes

$$E_K^2 - m_K^2 = p^2 [1 + U_{\Sigma}(E_{KN})] + U_o , \qquad (5)$$

102 EXA05, Vienna

where $E_K = m_K - E_B$. For energies E_{KN} close to, but less than E_{Σ} , the U_{Σ} term may dominate the kinetic energy and make negative the p^2 term in the dispersion formula (5). That happens for energy separations $|E_{KN} - E_{\Sigma}| < 140$ MeV at central nuclear densities. In the nuclear matter case it may generate a quasi-collapse which, however, is removed by the resonance denominator. An increased binding generates larger $E_{KN} - E_{\Sigma}$ and a weaker attraction. At the end a finite saturation energy is obtained. The latter depends on the position of E_{Σ} in the nuclear medium. An experiment reported at this meeting [8] indicates that it stays at its free value.

3 The K^-NNN system

In the K^-pnn situation the $\Lambda(1405)$ may be formed on the proton. Following the nuclear matter calculations we use an upward shift of some 40 MeV for the position E_o . The $\Sigma(1385)$ is formed more frequently as it involves mostly neutrons and also E_{Σ} is apparently not modified [8]. With the K^- bound by some 180 MeV the relative separation of the KN threshold and the $\Lambda(1405)$ position amounts to 190 MeV and an extrapolation of the scattering amplitudes to this region is necessary. The K-matrix parametrization of A.Martin[12] ($K_{NN}=-1.65fm,R_{NN}=0.18fm$) is used here, but it is supplemented by a separable model of Ref.[13] to obtain a smooth subthreshold extrapolation. This procedure generates the I=0 scattering amplitude of $f_0=1.4$ fm, a fairly standard result in this energy region. As the energy of KN is so low, the pionic decay channels are closed and the scattering amplitudes are real. For AMG the $K^-n, I=1$ amplitude the solution from Ref. [12] is used ($K_{NN}=1.07$ fm) which produces $f_1=0.34$ fm. These values generate the potential $V_o=-105 {\rm MeV}$ ($-130 {\rm MeV}$ for K^-ppn) for a K^- at the centre of the tritium nucleus. An additional, and in fact dominant, attraction comes from the $\Sigma(1385)$. We look for the variational solution for the kaonic energy level, $\epsilon=E_K^2-m_K^2$,

$$\epsilon = Min \int d\mathbf{r} \Psi(r) [p^2 + \stackrel{\leftarrow}{\nabla} U_{\Sigma}(E_{KN}) \stackrel{\rightarrow}{\nabla} + U_o] \Psi(r). \tag{6}$$

The results are given in the Table 1 with details of the test function Ψ being found in [15].

Table 1: The binding energies E_B , in MeV, of the K^-pnn and K^-ppn systems. The first line is based on the SU(3) value for the $KN\Sigma(1385)$ coupling. In the second line this coupling is enhanced by 20%.

$\gamma_{\Sigma KN}^2/\gamma_{\Sigma\pi\Lambda}^2$	K^-pnn	K^-ppn
2/3	164	147
1.2*2/3	187	167

In summary:

• The $\Lambda(1405)$ and $\Sigma(1385)$ states coupled to the KN system may generate the strong binding of K^- mesons, as is observed. Such states, under normal nuclear density tend to be localised close to the nuclear centres to maximize the P-wave attraction.

EXA05, Vienna 103

- This model requires obvious refinements (1) a better knowledge of the extrapolated scattering amplitudes, (2) the value of the $\gamma_{\Sigma KN}$ coupling, (3) corrections for NNN excitations.
- \bullet This model stresses the strengths of the K^-n interaction. The search for K^-nn , K^-nnn and other objects of neutron excess could be helpful. This project is financed by the European Community Human potential Program HPRN-2002-00311 EURIDICE.

References

- [1] T. Suzuki et al., Phys.Lett. B597(2004)263.
- [2] M. Iwasaki, this conference
- [3] C. J. Batty, E. Friedman and A. Gal, Phys. Rep. 287(1997)385
- [4] S. Wycech, Nucl. Phys. A450(1986)399c
- [5] Y. Akaishi and T. Yamazaki,
 - Phys.Rev.C65(2002)044005
- [6] W. Weise, this conference
- [7] Y. Akaishi, this conference[8] N. Herrmann, this conference
- [9] M. Alberg, E. Henley and L. Wilets, Ann. Phys. NY. 96(1976)43
- [10] S. Wycech, Nucl. Phys. B28(1971)541
- [11] L. R. Staronski et al., J.Phys. G13(1987)1387
- [12] A. D. Martin, Nucl. Phys. B179(1981)33
- [13] W. Krzyzanowski et al., Acta Phys.Pol.B6(1975)259
- [14] O. Braun, Nucl. Phys. B129(1977)1
- [15] S. Wycech and A.M. Green, nucl-th/0501019

104 EXA05, Vienna