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(Vorgelegt in der Sitzung der math.-nat. Klasse am 22. Jänner 2004
durch das w. M. Ludwig Reich)

Abstract

In this paper we describe the transversal surfaces of ruled surfaces in the pseudo-
Galilean space G1

3. There are three types of transversal surfaces. The obtained results
can be easily transferred to the Galilean space G3.
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1. Introduction

In the three-dimensional Euclidean space E3 the notion of
�-transversal surfaces was defined in the works of G. PIRONDINI

and later in the works of K. GOROWARA. H. SACHS [6] studied
�-transversal surfaces, as well as �- and �-transversal surfaces, by
means of natural invariants [4] of ruled surfaces. The same objects in
simply isotropic space I1

3 were studied by A. TAOUKTSOGLOU in [7]
for the ruled surfaces of the most general type.

The pseudo-Galilean space G1
3 is the three-dimensional real affine

space with the absolute figure f!; f ; Ig, where ! is a fixed plane, f a
line in ! and I a hyperbolic involution of the points of f . The absolute
figure in the Galilean space G3 has an elliptic involution instead of the



hyperbolic involution of points of f . The pseudo-Galilean length of
the vector x ¼ ðx; y; zÞ is given by

jxj ¼ x; x 6¼ 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jy2 � z2j

p
; x ¼ 0:

�
ð1:1Þ

The group of motions of G1
3 is a six-parameter group given (in affine

coordinates) by

�xx ¼ aþ x;

�yy ¼ bþ cxþ y ch’þ z sh’;

�zz ¼ d þ exþ y sh’þ z ch’:

It leaves invariant the pseudo-Galilean length ð1:1Þ of the vector.
The natural geometry of ruled surfaces in the pseudo-Galilean

space G1
3 is studied in [1] and of ruled surfaces in the Galilean space

G3 in [5]. In both spaces there exist three types of ruled surfaces
among which the first type is the most general one. Our aim is to
study transversal surfaces for that class of ruled surfaces.

2. a-Transversal Surfaces

A ruled surface � of type I in G1
3 is a surface parametrized by

xðx; vÞ ¼ sðxÞ þ veðxÞ;
where eðxÞ ¼ ð1; e2ðxÞ; e3ðxÞÞ is a unit generator vector and sðxÞ ¼
ðx; yðxÞ; zðxÞÞ is the striction curve s of �, which means y0e02 � z0e03 ¼
e2e

0
2 � e3e

0
3 and x is the arc length on s.

For the natural trihedron e1ðxÞ ¼ eðxÞ, e2 ¼ e0ðxÞ=�ðxÞ, e3ðxÞ ¼
ð0; e03ðxÞ; e02ðxÞÞ=�ðxÞ, where � ¼ je022 � e023 j, � ¼ ðe02e003 � e002e

0
3Þ=�2,

the Frenet’s formulas hold

e01 ¼ �ðxÞe2; e02 ¼ �ðxÞe3; e03 ¼ �ðxÞe2:

Functions � and � are the curvature and the torsion of �.
The parameter of distribution of the surface � is given by

� ¼ ðs0; e; e0Þ
e02

¼ �

�
;

where � is the striction of � [1] defined as the isotropic angle between
e1 and e3

s0ðxÞ ¼ e1ðxÞ þ �ðxÞe3ðxÞ:
The asymptotic plane � of the surface � in the point sðxÞ spanned

by e1ðxÞ and e2ðxÞ is an isotropic plane. Therefore we can define a
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vector �eeðxÞ as the vector in � that forms a constant isotropic angle
�2R with e1ðxÞ. An �-transversal surface �� is the ruled surface
whose rulings are straight lines through a striction point sðxÞ deter-
mined by �eeðxÞ. Therefore, �� can be parametrized as

�xxðx; vÞ ¼ sðxÞ þ v�eeðxÞ;
where �eeðxÞ ¼ e1ðxÞ þ �e2ðxÞ. The striction point on the ruling �eeðxÞ
on �� is determined from the condition

v0 ¼ ð~�ee�ee� ~ss0Þ � ~�ee�ee0
~�ee�ee02

;

where ~xx denotes the canonical projection of the vector x on the
yz-plane and � the pseudo-Galilean inner product which induces the
length (1.1). By means of invariants �, � and �, the previous ex-
pression can be written as

v0 ¼ �ð�þ ��Þ
j�2 � �2�2j :

Therefore, in the non-trivial case � 6¼ 0, the striction curve s of � coin-
cides with the striction curve s� of �� if and only if �þ �� ¼ 0. Since
the previous condition characterizes the striction curve as asymptotic
on � [2], we have the following analogue of the Euclidean result [6]:

Theorem 2.1. The striction curve on every �� coincides with the
striction curve s on � if and only if s is asymptotic on �.

In simply isotropic space I1
3 the previous situation never happens.

We can notice that the �-transversal surface �� is of type I (s� does
not lie in a pseudo-Euclidean plane and rulings are non-isotropic) if
and only if

1 þ
�

�þ ��

j�2 � �2�2j

�0
6¼ 0:

This happens always if s is asymptotic on �. Furthermore, we assume
that �2

s ¼ �ee02 ¼ j�2 � �2�2j 6¼ 0, that is, the surface � is not a surface
of the constant slope equal to �1=�. Surfaces of constant slope are
skew non-conoidal ruled surfaces that close a constant angle # with a
pseudo-Euclidean plane. They are characterized by the condition
#2 ¼ k2 ¼ const, where k ¼ �=� is the conical curvature of � [3].

The parameter of distribution of the surface �� is given by

�� ¼ ðs0;�ee;�ee0Þ
�ee02

¼ �2k þ ��

�j1 � �2k2j ;

where � is the parameter of distribution of the surface �.
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As in [6] we introduce the notion of K-surfaces as the surfaces
of the constant parameter of distribution whose striction curve is
asymptotic. The following theorem is an analogue of the theorem
which holds in E3 [6], whereas in I1

3 it holds for another class of
surfaces [7]:

Theorem 2.2. The only ruled C3-surfaces whose all �-transversal
surfaces are of constant parameter of distribution are conoidal
surfaces of constant parameter of distribution, ruled screw surfaces
and K-surfaces. The constant parameter of distribution is equal for
all �-transversal surfaces if and only if � is a conoidal surface with
constant parameter of distribution.

Proof. If we consider �� as a function of x and �, then all
�-transversal surfaces of � have constant parameter of distribution if
and only if @�ðx; �Þ=@x ¼ 0, for all �2R. Therefore we have

�4k2ð�0k þ k0�Þ þ �2ðk0�� k�0 � �0�2k2 þ 2��2kk0Þ þ �0�2 ¼ 0:

For � ¼ 0 it follows �0 ¼ 0, which implies the following conditions

k2ð�0k þ k0�Þ ¼ 0; k0�� k�0 þ 2��2kk0 ¼ 0: ð2:2Þ
Therefore, either k ¼ 0 (� is conoidal) or

�0k þ k0� ¼ 0: ð2:3Þ
The condition (2.3) substituted in the second condition of (2.2) gives
k0ð�þ ��Þ ¼ 0. If k0 ¼ 0 then together with (2.3) and � ¼ const, we
get � ¼ const, � ¼ const, � ¼ const. These invariants describe ruled
screw surfaces. Finally, the condition �þ �� ¼ 0 with � ¼ const
implies that � is a K-surface.

Obviously, �� does not depend on � if and only if k ¼ 0, which
gives the last statement of the theorem. &

The conical curvature of an �-transversal surface �� is equal to

k� ¼ ð�ee;�ee0;�ee00Þ
j�ee0j3

¼ �ð1 � �2k2Þ þ �k0

�j1 � �2k2j3=2
:

Theorem 2.3. The only ruled C3-surfaces whose all �-transversal
surfaces are surfaces of constant slope (conoidal surfaces) are
surfaces of constant slope (conoidal surfaces). The slope always
varies with �.

Proof. All �-transversal surfaces are surfaces of constant slope if and
only if @kðx; �Þ=@x ¼ 0, for all �2R. It follows immediately k0 ¼ 0.
Similarly, k� ¼ 0, for all �, if and only if k ¼ 0. &
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Surfaces � and �� are never tangent to each other along the
striction curve s of � (they intersect each other transversally). Along
s they intersect each other under the angle

ch’� ¼ j�jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�2 � �2j

p : ð2:4Þ

To see this, let us notice that the tangent plane of � along s is given
by

ðx� sðxÞ; s0ðxÞ; eðxÞÞ ¼ 0;

and of �� by

ðx� sðxÞ; s0ðxÞ;�eeðxÞÞ ¼ 0:

If we denote by X; Y; Z the coordinates of an arbitrary point of these
planes with respect to the basis fsðxÞ; eðxÞ; e2ðxÞ; e3ðxÞg, for the
tangent plane of � we get Y ¼ 0 and for the tangent plane of ��

��X � �Y � �Z ¼ 0:

Since the angle between two isotropic non-light planes AiX þ BiY þ
CiZ þ Di ¼ 0, B1 : C1 6¼ B2 : C2, B2

i � C2
i 6¼ 0, i ¼ 1; 2, is equal to

(see [1])

ch’ ¼ jB1B2 � C1C2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðB2

1 � C2
1ÞðB2

2 � C2
2Þj

p ; ð2:5Þ

statement (2.4) follows immediately. For � ¼ � the tangent plane of
�� is an isotropic light-like plane, and the angle is not defined.
Therefore, the following theorem in G1

3 differs from its analogue in
E3, whereas in I1

3 surfaces � and �� always intersect each other
orthogonally:

Theorem 2.4. Ruled C3-surfaces � and �� intersect each other
along s under the constant angle if and only if the striction of the
surface � is constant. The angle always varies with �.

Furthermore, the asymptotic plane Z ¼ 0 in sðxÞ of a surface � and
the asymptotic plane

�2�X � ��Y þ �Z ¼ 0

in sðxÞ of a surface �� intersect each other under the angle

ch	� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1 � �2k2j

p :

From the previous expression it follows:
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Theorem 2.5. The angle between the corresponding asymptotic plane
of a ruled C3-surface � and the asymptotic plane of its �-transversal
surface �� is constant if and only if � is a surface of constant
slope. That angle is equal for all surfaces �� if and only if � is
conoidal.

Finally, we can calculate the angle between the striction curve s of
� and the asymptotic plane of the surface ��. The angle between a
non-isotropic vector x ¼ ð1; x2; x3Þ and an isotropic plane Axþ Byþ
Czþ D ¼ 0 is given by


 ¼ jAþ Bx2 þ Cx3jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jB2 � C2j

p : ð2:6Þ

Therefore, the required angle is equal to


� ¼ j�k þ �jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�2k2 � 1j

p :

As in the Euclidean space, a surface with invariants k ¼ const,
� ¼ const, is called a surface of constant slope of type B. Now we
have:

Theorem 2.6. The angle between the striction curve s of � and the
asymptotic plane of the surface �� is constant if and only if � is
either a surface of constant slope of type B, a torsal surface of
constant slope or a conoidal surface of constant striction. That angle
does not depend on � if and only if � is conoidal.

Proof. We have @
ðx; �Þ=@x ¼ 0, for all �2R if and only if

�3ðk3�0 � k2k0�Þ þ�2ðk2��0 � kk0 � �2kk0Þ ��ðk�0 þ k0�Þ � ��0 ¼ 0:

ð2:7Þ

For � ¼ 0 we can immediately conclude that � ¼ const, which
substituted in ð2:7Þ gives

k2k0� ¼ 0; kk0 þ �2kk0 ¼ 0; k0� ¼ 0:

Therefore, if � ¼ 0, then k ¼ const 6¼ 0, which characterizes the
torsal surfaces of constant slope.

If � ¼ const 6¼ 0, then either k ¼ const 6¼ 0, which means that � is
a surface of constant slope of type B, or k ¼ 0, which gives conoidal
surfaces.

The angle 
� does not depend on � if and only if k ¼ 0. &
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3. b-Transversal Surfaces

A �-transversal surface �� is a ruled surface obtained from � by
rotating a ruling e1 of � in the normal plane � about a striction point
sðxÞ for a fixed angle �. The normal plane � is spanned by the central
normal vector e2 and the central tangent vector e3, which are isotropic
vectors, and therefore it is a pseudo-Euclidean plane. Hence a ruling �ee
of �� can be described as

�ee ¼ ch�e3 þ sh �e2:

�-transversal surfaces �� are ruled surfaces of type III, having isotropic
rulings which are parallel to a pseudo-Euclidean plane. The function

�� ¼ �ee02
�ee3

¼ �ee03
�ee2

is the only invariant of ruled surfaces of type III. By using the
Frenet’s formulas for the surface � (which is of type I), we get

�� ¼ �; �2R:

Furthermore, it is easy to see the following:

Theorem 3.1. Ruled C3-surfaces � and �� intersect each other along
s under the angle �.

Proof. Since a tangent plane of �� along s is given by

� sh�X þ ch�Y � sh�Z ¼ 0

by using (2.5) we get ’ ¼ �. &

The ruled surface which has the central tangents e3 of � for the
generators is the special case of �-transversal surfaces with � ¼ 0. It
is therefore also a ruled surface of type III, its torsion is equal to the
torsion of � and by Theorem 3.1 it is tangent to � along s. Similarly,
the ruled surface of central normals e2 of � is a ruled surface of type
III, but unless we introduce complex angles, it is not a special case of
�-transversal surfaces. Its torsion is equal to the torsion of �, but the
angle as in Theorem 3.1 is not defined.

Contrary to the situation in the Euclidean and the isotropic space,
since surfaces �� are surfaces of type III, and therefore without a
striction curve, the analogous results to those for the surfaces ��

cannot be obtained.

4. c-Transversal Surfaces

Finally, let us define �-transversal surfaces. The central plane � of �
is a plane in the striction point sðxÞ spanned by the generator e1 and
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the central tangent vector e3. Because e1 is non-isotropic and e3

isotropic, the plane � is an isotropic plane. We define �ee as the vector
in � that forms a constant isotropic angle �2R with e1ðxÞ. Hence,

�ee ¼ e1 þ �e3:

A �-transversal surface �� is the ruled surface whose rulings are
straight lines through a striction point sðxÞ determined by �ee.

We assume that the vector �ee0 ¼ ð�þ ��Þe2 is not the zero-vector,
which gives the condition �þ �� 6¼ 0, i.e., � is not a surface of
constant slope equal to �1=�.

The following theorem which was considered already by
K. GOROWARA in E3 holds in I1

3 [7] as well as in G1
3:

Theorem 4.1. The striction curve s of a ruled surface � is the
striction curve of a surface ��, �2R as well. The surfaces � and ��

are tangent to each other along s.

Proof. The striction curve on �� is determined from the condition

v ¼ ð~�ee�ee� ~ss0Þ � ~�ee�ee0

j�ee0j2
:

Since s0 ¼ eþ �e3 by some calculation we get v ¼ 0. Furthermore,
tangent planes of � and �� along s are given by Y ¼ 0. &

We can notice now that �� is a surface of type I if and only if � is
of type I.

Furthermore, from the previous theorem it follows immediately
that the central normal surfaces �n and �n

� of � and �� coincide, and
therefore we have the analogue of the Euclidean result:

Theorem 4.2. Every surface � satisfies �ð�n
�Þ ¼ �ð�nÞ, kð�n

�Þ ¼
kð�nÞ, for every �2R.

The following theorem holds in the Euclidean space as well,
whereas in the simply isotropic space it holds for a different class of
surfaces:

Theorem 4.3. The only ruled C3-surfaces whose all �-transversal
surfaces are of constant parameter of distribution are ruled screw
surfaces and K-surfaces. That constant parameter of distribution
always depends on �.

Proof. The parameter of distribution �� can be written as

�� ¼
�� �

�þ ��
:
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We have @�ðx; �Þ=@x ¼ 0, for all �2R, if and only if

�2� 0 þ �ð�0� � �� 0 þ �0Þ þ �0�� ��0 ¼ 0:

It follows immediately � ¼ const, and

� 0 ¼ 0; �0� þ �0 ¼ 0: ð4:8Þ
The second condition �0 ¼ ��0� of (4.8) substituted in �0 ¼ 0 gives
�0ð�þ ��Þ ¼ 0. Therefore, either it follows � ¼ const, which with
� ¼ const and the first condition in (4.8) describes ruled screw
surfaces or �þ �� ¼ 0, which describes K-surfaces. &

Theorem 4.4. �-transversal surfaces of K-surfaces are also
K-surfaces.

Proof. If � is a K-surface, then �0 ¼ 0, �� þ 1 ¼ 0. The last condition
implies � 0 ¼ 0 and therefore, as in the proof of the previous theorem,
we can conclude that �0� ¼ 0, �2R. Furthermore, because s is
asymptotic on � and � and �� are tangent along s, then s is
asymptotic on �� as well. Therefore �� is a K-surface. &

Since the conical curvature of a �-transversal surface �� is equal to

j1=k�j ¼ j1=k þ �j for k 6¼ 0; k� ¼ 0 for k ¼ 0;

it is obvious that the following theorem holds:

Theorem 4.5. The only ruled C3-surfaces whose all �-transversal
surfaces are surfaces of constant slope (conoidal surfaces) are sur-
faces of constant slope (conoidal surfaces). The slope always varies
with �.

The angle between two isotropic non-light planes AiX þ BiY þ
CiZ þ Di ¼ 0, B1 : C1 ¼ B2 : C2, B2

i � C2
i 6¼ 0, i ¼ 1; 2, is equal to

(see [1])

’ ¼ jA2 � A1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jB2

1 � C2
1j

p ;

and therefore the angle between the asymptotic planes Z ¼ 0 of �
and �X � Z ¼ 0 of �� is equal to ��.

Finally, by using (2.6) it is easy to show that the angle between the
striction curve s of � and the asymptotic plane of �� is equal to
’� ¼ j� þ �j. Therefore:

Theorem 4.6. The angle between the striction curve s of � and the
asymptotic plane of �� is constant if and only if � is a surface of
constant striction.
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