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Abstract

An approach sometimes used to determine the dominant period of a double-
mode pulsating star with strong beats in its light curve is to find (O-C) for
an observing season by averaging the individual values obtained from observed
times of maximum light. The long-term graph of (O-C) versus time can then
be used to determine the period and its rate of change. Methods of determining
the secondary period usually involve Fourier analysis of relatively complete sets
of photometric data.

We show that the beat-curve method, e.g., Elst (1973), Coates et al. (1979,
1982) is an alternative approach also worth considering. The offset of the beat
curve usually yields a more precise value of (O-C) for a season than a simple
average does, the phase of the beat curve leads to an estimate of the secondary
period without the need for intensive photometry, and the amplitude of the
beat curve provides information about the relative amplitudes of the modes of
oscillation of the star.

Individual Objects: AE UMa, VZ Cnc

Introduction

Because of beating between the fundamental and overtone oscillations for several
double-mode pulsating stars, their magnitudes at maximum light and the times of
maximum light differ from those they would have if the star only had one mode of
oscillation. To a good approximation the discrepancy ∆t in the time of maximum
light varies sinusoidally with respect to the phase of the beat envelope at which the
fundamental maximum falls.
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One may construct beat curves in the form

∆t = B +A sin 2π(φB + δ) (1)

where φB = EP0/Pb, Pb is the beat period and E is the cycle number since epoch.
Full details of this beat-curve analysis are given in Coates et al. (1979, 1982), but
in summary, changes in the mean level, or estimate of (O-C) for the season (B) and
phase of the sinusoidal curve δ, reflect changes in the fundamental and beat periods
of the star, from which changes in the overtone period can be derived. In addition,
as noted in Landes et al. (2007), the relative phase of the changes in B and in δ may
allow us to exclude a light-time effect in a binary as an explanation in cases where
(O-C) is changing sinusoidally.

We first compare the precision in (O-C) derived by simple averaging and by the
beat-curve approach. Then we apply the beat-curve method to published times of
maximum light for the double-mode pulsating star AE UMa, and compare the results
with those obtained by Pócs & Szeidl (2001).

Precision in (O-C) found from averaged observations and from beat-
curve fitting

In what follows we have assumed that the times of maximum light are determined with
perfect precision, because at this point we are interested only with the contribution
to the final uncertainties of the number of observations made per season. The actual
uncertainties in more realistic cases can easily be calculated if the actual precision of
the observations is known.

The RMS value of the sin term in equation 1 is A/
√

2, so that for n observations
in a season, the standard error of the mean value of B is A/

√
2n.

We used computer simulations to find the standard deviation in B obtained from
nonlinear least-squares fitting to a season’s beat curve as a function of n. To a good
approximation, we find this to be 4.8× 10−6 exp(14/

√
n) d, independent of A for A in

the range 0 to 0.0075 d (which covers the range of values found for most short-period
stars whose light curves exhibit beats).

Figure 1 shows graphs of the standard errors for the two methods above, assuming
that A is 0.0030 d in each case. Except for unrealistically small values of n, it appears
that there is a significant advantage in estimating B from beat-curve fitting.

Theory for the case of periods undergoing constant rates of change

The following summarises the methods given by Coates et al. (1982) and Landes et al.
(2007) to derive periods at epoch and their (constant) rates of change using the
beat-curve approach.

We assume that the fundamental and overtone periods are varying at constant
rates. Then (O-C) (B in equation 1) and δ will vary quadratically with time:

B = aBt
2 + bBt+ cB (2)
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Figure 1: Standard errors (d) in estimates of B: (a) from straightforward averaging
and (b) from beat-curve fitting. The amplitude A of the beat curve is taken to be
0.0030 d in each case.

δ = aδt
2 + bδt+ cδ (3)

where t is time (y) since epoch.
The parameters aB , bB , cB and aδ, bδ, cδ enable us to calculate the best estimates

of P0 and P1 at epoch, and their rates of change (assumed constant). We let α0 and
α1 be the true fundamental and overtone periods at epoch, and β0 and β1 be their
constant rates of change. Then the periods at any time t since epoch will be

P0(t) = α0 + β0t (4)

P1(t) = α1 + β1t (5)

The beat period at any time, Pb(t), can be shown, to a good approximation, to be

Pb(t) = αb + βbt (6)

where

αb =
α0α1

(α0 − α1)
, βb =

α2
0β1 − α2

1β0

(α0 − α1)2 (7)

The true periods at epoch, α0 and αb, and hence α1, are found from the gradients
of the fitted functions to B and δ, evaluated at epoch:

dB

dt
= 2aBt+ bB = bB at epoch (8)

dδ

dt
= 2aδt+ bδ = bδ at epoch (9)
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Now, for the periods P0(t) and Pb(t) at any time, we have

P0(t) = P0(ass)

»
1 +

dB/dt

365.2563

–
(10)

Pb(t) = Pb(ass)

»
1 +

dB/dt− Pb(ass)dδ/dt

365.2563

–
(11)

where P0(ass) and Pb(ass) are the assumed values at epoch.
Substituting from equations (6) and (7) into (8) and (9), then differentiating with

respect to time, we have
dP0

dt
=

2aBP0(ass)

365.2563
(12)

dPb
dt

= 2Pb(ass)

»
aB − aδPb(ass)

365.2563

–
(13)

Equations (10) and (11) yield β0 and βb, and having obtained α0 and α1 pre-
viously, we can calculate β1 using equations (5). Note that the calculated rates of
change of the periods will be in d y−1 if the periods are substituted in d, aB in d y−2

and bδ in y−2.

Beat-curve method applied to data for AE UMa

A study of the stability of the pulsation of AE UMa was published by Pócs & Szeidl (2001).
They used Fourier methods, and non-beat-curve (O-C) analysis on previously published
photometric data to conclude that the fundamental period had remained essentially
constant in the past 60 years. They found that the overtone period changes at a

constant rate of ( 1
P1

)( dP1
dt

) = −7.3× 10−8y−1.
We have used the same times of maximum light for AE UMa as those given in

Pócs & Szeidl (2001), apart from those based on visual or photographic observa-
tions. To these we have added data since published by Agerer & Hübscher (2003),
Hübscher et al. (2005) and Klingenberg et al. (2006). We constructed beat curves for
each observing season using the same elements as those given by Pócs & Szeidl (2001):
C = 2442062.5824 + 0.08601707E, Pb = 0.2936323 d. Figures 2 and 3 show the
values of (O-C) (= B) and of δ as a function of time, together with quadratic fits
made using singular value decomposition (SVD) with weighted points as described by
Press et al. (1992), and also piecewise-linear fits. The error bars in Figures 2 and 3
represent formal statistical errors.

Tables 1 and 2 give results for the quadratic fitting functions and the resulting
calculated values of the periods and their rates of change. The most recent published
results for the periods and their rates of change are by Pócs & Szeidl (2001), and
in Table 3 we compare the rates of change of the periods from our study with those
of these authors. We have quoted the most precise values of the periods given by
Pócs & Szeidl (2001): in the case of P0 the value from their (O-C) method, and in
the case of P1 from their fits to Fourier phase diagrams. Their values of the rates of
change of the periods come from fits to Fourier phase diagrams. The Fourier analysis
was of a large number of photometric data spanning the years 1974 to 1998, see
Pócs & Szeidl (2001).
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Figure 2: Data for beat-curve mean levels versus time, together with quadratic and
piecewise-linear fits.

Figure 3: Data for beat-curve phase shifts versus time, together with quadratic and
piecewise linear fits.
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Figure 4: Data for beat-curve amplitudes versus time.

Table 1: Fitting coefficients aB , bB , cB in B = aBt
2 + bBt + cB and aδ, bδ, cδ in

δ = aδt
2 + bδt+ cδ, where t is time (y) since epoch (1974.04).

aB +(4.0± 0.4)× 10−6 d y−2

bB −(1.2± 0.1)× 10−4 d y−1

cB +(3.9± 0.7)× 10−4 d

aδ +(4.0± 0.4)× 10−4 y−2

bδ −(0.018± 0.001) y−1

cδ +(1.018± 0.006)

Figure 4 shows the graph of beat-curve amplitudes versus time. In this case there
appears to be no clear trend with time, although there is perhaps a tendency for the
amplitude to increase from about the mid 1990s. If this were so, it would indicate that
the ratio m1/m0 increased from this time, where m1 is the amplitude of the overtone
signal and m0 is the amplitude of the fundamental signal. It is probably too early
to draw conclusions using the beat-curve approach about the trend in this amplitude
ratio. Pócs & Szeidl (2001) conclude that the amplitudes of the fundamental and
overtone oscillations underwent very minor changes over the period 1970 to 1998 for
which data were available. Our results for the same period, although scattered, are
consistent with this conclusion.
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Possible jumps in the periods.

Figures 2 and 3 also show possible piecewise linear fits to the data. These fits were
found by minimising χ2 for the pairs of lines for B and δ. Using the notation of
Coates et al. (1979), we let the equations of the best-fitted lines be:

pre- 1996
B = b1(year) + a1 (14)

δ = b
′
1(year) + a

′
1 (15)

post- 1996
B = b2(year) + a2 (16)

δ = b
′
2(year) + a

′
2 (17)

The true values of P0 are calculated in the usual way using the parameters b1 and
b2. Calculating the true values of Pb is slightly complicated by the fact that departures
of both P0 and Pb from their assumed values would contribute to a change in δ. A
fairly straightforward analysis leads to the expression:

Pb(true) = Pb(ass)

(
1 +

b− b
′
Pb(ass)

365.2563

)
±

(„
Pb(ass)

365.2563

«2 h
σb

2 + (Pbσb
′
)
2i) 1

2

(18)
Table 3 gives the gradients of the fitted straight lines together with the result-

ing periods pre and post-1996. The fractional changes in P0 and P1 in 1996 were
∆P0/P0 = +6× 10−7 and ∆P1/P1 = −2× 10−6.

Conclusions

The beat-curve approach has enabled us to deduce detailed and quite precise informa-
tion about the fundamental and first overtone periods of AE UMa without the necessity
for Fourier analysis of long spans of photometric data. We confirm the values found
by Pócs & Szeidl (2001) for the rates of change (assumed constant) of the periods,
which are similar in magnitude to those of other Pop. I radially pulsating delta Scuti
stars (Breger & Pamyatnykh 1998). In addition, because we have access to times
of maxima for the star post-1998, we have been able to extend the work of Pócs &
Szeidl (2001) and deduce that there were possible sudden jumps in both the periods
in approximately 1996, thus adding AE UMa to VZ Cnc (Arellano Ferro et al. 1994) as
radially pulsating delta Scuti stars which have possible sudden jumps in period.

Although the beat-curve method can reveal no information about the low-amplitude
modes in pulsating stars, for which accurate photometry and Fourier methods are
needed, it can make good use of the many accurate times of maximum light, increas-
ingly being published, to investigate and determine the fundamental and overtone
frequencies of double-mode pulsating stars.
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Table 2: Periods (in d) at epoch (1974.04), their rates of change dP/dt (in d y−1)
and (1/P )dP/dt (in y−1), assuming that the rates of change are constant.

Present study Pócs and Szeidl (2001)
P0 0.0860170421(7) 0.086017053(6)
P1 0.06652840(1) 0.06652836(4)
Pb 0.2936365(3) 0.2936356(7)

dP0/dt +(1.9± 0.2)× 10−9 +(1± 1)× 10−10

dP1/dt −(8.3± 0.9)× 10−9 −(5± 3)× 10−9

dPb/dt −(1.8± 0.2)× 10−7 −(1± 1)× 10−7

(1/P0)dP0/dt +(2.2± 0.2)× 10−8 +(1± 1)× 10−9

(1/P1)dP1/dt −(1.2± 0.1)× 10−7 −(8± 5)× 10−8

Table 3: Gradients of the fitted straight lines and the calculated constant periods pre-
and post-1996.

Pre-1996 Post-1996

b −(3.9± 0.5)× 10−5 d y−1 +(1.8± 0.2)× 10−4 d y−1

b
′ −(1.04± 0.05)× 10−2 y−1 +(5± 1)× 10−3 y−1

P0 0.086017061(1) d 0.086017112(4) d
P1 0.066528321(6) d 0.06652817(2) d
Pb 0.2936347(1) d 0.2936312(3) d
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