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Abstract

This paper describes a way of calibrating a thermal probe for the Quasi–Linear–
Heat–Source (QLHS) method. The heat source can be a short and thick torus,
not necessarily a long and thin wire. The source is an analog of the MUPUS–TP
probe for determining the thermal conductivity. Similar probes were also employed
for investigating terrestrial media on Earth. Two reference tests are required for
calibration. The first test is for normalizing apparent properties to the known
media properties of PTFE (Teflon). The second test is for scaling the magnitude
of the properties, in order to cover the range between PTFE and water ice. Then
measurements are interpretable in absolute property values, even when a geometry
significantly deviating from that of a thin wire is used. In general the temperature
response of a sensor to heating is similar to the function obtained with a thin
wire. The difference is mainly the value of apparent slope, observed in the log–
time domain, and the way of interpreting it. The conclusion is that the processes
measured must be referred to some known properties of two kind of media. The
comparison is founded on similarity of processes, expressed by the Fourier number
(Fo). This calibration method enables assessing the specific heat capacity from a
routine test. A reasonably good agreement of derived thermal properties has been
demonstrated by measurements in snow and soil.

1 Introduction

The Linear Heat Source (LHS) method is widely known as the so–called Hot Wire method,
and is a standard, defined by ASTM (D 5334-00, and IEEE Std 442–1981). It is related
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to a long and thin cylinder configuration as a heat source. The LHS method is well
established in theory since the work of Carslaw and Jaeger (1959).

This paper deals with the tube shaped probe used for the cometary experiment MUPUS
(Spohn et al., 2006, Seiferlin et al., 1996; Kömle et al., 2002; Marczewski et al., 2004;
Hagermann et al., 1999). The probe is a series of 16 short torus–shaped elements, which
can be simultaneously sensed and heated. Matching that configuration to the shape of a
quasi–infinite cylinder is not possible in this case. The probe was aimed for measuring
thermo–physical properties in non–homogeneous media (Seiferlin et al., 1996).

The principle of the heat impact, applied for determining thermal properties of media, is
universal. Early attempts to validate the proposed method proved relevance and feasibility
of the probe (Banaszkiewicz et al., 1997). Then, further works disclosed that a real
challenge, not only for modelling, is to find a reliable method of interpreting results.
Despite relevance and a great potential of those works, the capability of estimating thermal
properties from tests was still limited and not satisfactory. Matching a transient response
from the model to the response from a test involves so many boundary conditions and
parameters, which must be incorporated into a finite element model (FEM), that their
control in tests becomes problematic. Currently the concern is to interpret properties
exclusively from the test data. It does not aspire yet to assess final precision, but to
introduce a new point of view.

It was a particular need of MUPUS to define a method capable to assist this experiment.
The QLHS (Quasi Linear Heat Source Method) may serve this purpose. The tests in this
work are focussed on media commonly available on Earth. The test media were water
ice, snow, soil and PTFE. The interest in soil media was also motivated by available con-
frontation of measured properties to the indirect method of defining thermal properties,
developed by Usowicz et al. (2006) for agro–physical purposes. This work is an extension
of two programs. One is the cometary experiment MUPUS. The other is the spill–over
program EXTASE for Earth science purposes (Schröer, 2006). Both programs are con-
ducted by T. Spohn, WWU, Muenster. The cometary experiment is to investigate the
ground of the comet in the mission Rosetta, after landing of the Philae lander in 2014.
Recently the work has been extended by another program — Soil, Water and Energy
Exchange (SWEX), being a part of the ground calibration–validation campaign Cal–Val,
held by ESA SVRT (SMOS Validation and Retrieval Team) for the ESA Water Mission
SMOS (Soil Moisture and Ocean Salinity).

2 The probe and the method

The probe is a tube with 16 sensing and heating elements, as illustrated in Figure 1. The
elements are bonded to the 1 mm thick tube wall from inside. The thermal conductivity
of the tube material (glass fiber) is roughly known as 0.5 W/m/K. The whole probe is
approximately 32 cm long. The shortest element is 9 mm and the longest is 40 mm
long. The outside diameter of the tube is 10 mm. For terrestrial applications the probe
can be placed into soft soils by pushing it manually into the ground, or in the case of
harder material by pushing it into a pre–drilled hole. For the cometary experiment the



Use of Fourier number for thermal measurements 59

probe is inserted into the ground by a complex hammering device. The probe elements
provide sensing and heating. In the sensing mode the material temperature profile and its
variation over the length of the tube is measured. In the active mode individual elements
are heated with a defined power over a defined time span. The temperature response of
the sensor contains information on the thermal properties of the surrounding medium in
a particular depth. Their proper derivation is the main topic of this paper.

Figure 1: General scheme of the MUPUS/EXTASE thermal probe and the view of sensors,
when they are not yet integrated inside the tube. The tube is depicted schematically by the
cylindrical section at the top of the probe.

The entire side area of the probe (≈ 1 dm2) is covered by thermally active elements. The
larger the area of sensors, the better temperature gradient values can be determined. The
larger the area of heaters, the better is heat dissipation. Electrically, the elements are
temperature dependent resistors (RTD), sampled when sensed or supplied with electric
power when heated. The method is derived from the LHS (Line Heat Source) or the HW
(Hot Wire) method.

We started interpreting properties in the way provided by Healy et al. (1976), disregarding
the assumptions on large length and small thickness, which are not fulfilled for the QLHS
method. The temperature rise function upon heating is given in Carslaw and Jaeger
(1959) as

ΔT =
q

4πλ
ln

�
4κt

a2C

�
(1)

where q is the heat source term, in terms of power density per unit length [W/m], κ is
the diffusivity in [m2/sec], λ is the thermal conductivity of media, a is the radius of the
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wire, t is time in linear measure [s] after start of heating, and C is the calculated from
Euler’s constant γ as C = exp(γ) = 1.7811.

This equation predicts ΔT(t) as a function of the diffusivity κ and the conductivity λ.
It describes the transient response on a steady heat stimulus switched abruptly on. ΔT
approaches a linear slope when plotted as a function of ln(t). Negative values of ΔT for
small arguments under the logarithm do not reach a physical sense. The argument under
the natural logarithm in equation (1) can be expressed in terms of the Fourier number
(Fo), which is a dimensionless number defined by the thermal properties and time as

Fo =
κt

a2
=

λt

ρbcha2
(2)

where ρb is the specific bulk density of themedium, ch is the specific heat capacity of
medium, and a2 is the geometric dimension related to the heat source.

For a truly thin wire, the Fourier number falls in the range of thousands, due to the small
radius a of the wire. If the diffusivity κ does not change much with temperature T , under
a moderate heating, Fo follows the elapsed time uniformly. Sometimes, Fo is simply
called the dimensionless time, or a universal similarity measure to compare processes in
different media. It serves comparing the processes, not media, quantitatively. The means
for comparing, are modest, however. Two thermal processes are equivalent when their
corresponding Fourier numbers are equal.

Healy employed Eq. (1) to determine the thermal conductivity λ as

λ =
q

4π

d ln(t)

d(ΔT )
(3)

where λ is the thermal conductivity in [W/m/K], q is the heat generation, in terms of
power density per unit length [W/m].

The precision of practical determining the conductivity from equation (1) depends on
the argument value 4κt/(a2C) ≥ 1. The same way obeys the equation(3), though the
argument variable 4κt/a2C is not distinguished explicitly. Both, the conductivity and the
diffusivity, are determined from the same response function.

As shown by Nagasaka et al. (1981), the diffusivity κ can be determined from the same
test data as:

κ =
a2C

4t
exp

�
d ln(t)

d(ΔT )
ΔT

�
(4)

Nagasaka provided also a simplified method of finding the diffusivity from a line heat
source measurement. The slope of the temperature rise may be expressed as

ΔT = A ln(t) + B (5)
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where A is the slope, and B is the temperature rise at ln t = 0 (i.e. 1 s after the begin of
heating, if time is measured in seconds, since ln 1 = 0). The expression for the diffusivity
equation (4) can then be written in terms of the constants A and B as

κ = 0.4453 a2 exp

�
B

A

�
(6)

With the above equations the diffusivity and the conductivity can be derived indepen-
dently from the same data set. Although Healy’s formulae are strictly valid only for the
LHS case, we try to apply them also on measurements with the MUPUS/EXTASE probe
and check a posteriori inhowfar this gives consistent results.

3 Tests

The media used in our tests were the following:

1. PTFE — tested in ambient temperature +20◦C.

2. ICE — tested at -45◦C.

3. SNOW2 — with a water content of about 36.7%, in volumetric measure.

4. SNOW1 — with a water content of 19.1%.

5. SOIL — in natural open field conditions, but the thermal conductivity of this site
was known to be about 1.9 W m−1K−1 at a level of about 10–15 cm below the
surface. The thermal properties of the soil were controlled by means of the Usowicz
model (Usowicz et al., 2006) using with input data from physical, as well as chemical
and granulometric analysis.

The test data set is given in the Appendix to this paper. All sensors were sensed for the
temperature, but only a few elements were heated. In the following, only the data for
sensor 7 are considered. The heating time was always 900 s and temperature data were
recorded every 10 s.
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Figure 2: Plots of the temperature responses showing heating intervals on sensor 7, counting
from the top of the probe (thick lines), combined for three experiments: (a) “snow1” for snow
media with wvc = 0.191 (volumetric water content); (b) “snow2” for snow media with wvc =
0.367; (c) “ice1” for solid water ice media (hexagonal ice). The media were frozen to −45◦C to
avoid melting modification under heating. Time intervals of heating were 900 s (15 min) long.
Sampling intervals were 10 s. Only one sensor in the probe was heated, namely sensor 7 (thick
lines). The plots are supplemented by a few plots for some neighbouring sensors. When only
one sensor is heated the remaining sensors respond due to the heat received from this sensor.
Each experiment was performed separately with the same setup order and plots are combined
in a common time scale.
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Figure 3: The temperature responses of sensor 7, in different media. The heating time was 900 s
with 10 s sampling interval. The upper panel is for the real time domain. The lower panel is
for the ln(time) domain. The second plot is done twice — once with a delay lag 0.45 s added to
all samples, and again with a lag 12 s.
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Figure 3 shows the response of sensor 7 in different media, both as a function of t and as a
function of ln t. From the plot one gets the impression that for a reasonably long heating
time one always gets a linear slope in the ln(t) domain, irrespective of the deviating
geometry. Of course the initial phase of the temperature increase is nonlinear and it
is affected both by the properties of the sensor and by the contact between sensor and
medium.

4 General outline of the concept

The first step is to characterize the media by properties according to the case of a thin wire,
and to normalize the properties to the known properties of the PTFE reference medium.
The second step is converting these apparent values to absolute physical measures, on the
basis of a calibration test with two different reference media, PTFE and water ice, which
are sufficiently different in their thermal properties to cover the expected range. Thus
there are three tests involved, one is the work test with the unknown medium, and two
with reference media, whose properties are known. In all phases, the same sensor element
is employed, with its entire imperfectness, and only the test data are interpreted.

First one evaluates the conductivity from Eq. (3) and the diffusivity from Eq. (4), as if
the thermal probe would be simply a wire. Since it is different, results occur also very
much differently. The purpose is to characterize that by referring the apparent properties
to the respective properties of the reference media.

5 Calibration

The purpose of calibration is to determine the scale factors Ascale and Bscale. The calibra-
tion tests are performed in the same way as the work tests. The only difference is that
media with known properties are used.

The probe measures temperature T and power density q as a function of time.The principle
of sensing is based on resistance temperature dependent of sensors (RTD). PTFE was
chosen as the first reference medium. Its thermal properties are given in Table 1. Water
ice was taken as the second calibration medium, with the property values given also in
Table 1.

Table 1: PTFE and ICE thermal properities

Properties ρb ch λ κ P cv

Media/Measure [kg/m3] [J/kg/K] [W/m/K] [cm2/sec] [J/m2/K/
√

sec] [J/cm3/K]

PTFE@+35oC 2200.00 1136.40 0.27307 0.00109 0.08263 2.50007

ICE@-40oC 920.80 1820.00 2.43035 0.01450 0.20181 1.67586
propICE/propPTFE 0.419 1.602 8.900 13.278 2.443 0.670

Examples of using calibration data are shown in Table 2, with the scale factors Ascale and
Bscale for several tests.
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Table 2: Example scaling factors

tn=180 sec ICE SNOW2 SNOW1 PTFE SOIL

Ascale 4.1517 1.1916 1.0516 2.2217 3.5921

Bscale 0.9155 0.9155 0.9155 0.9155 0.9155

Values of the apparent normalized properties are shown in Figure 4. They mean, for ex-
ample, that the PTFE conductivity value is 2.2217 times larger than the specific property.
Similarly, the diffusivity appears on the level of 0.9155 of the specific diffusivity. Com-
paring media directly by these scales, one could expect that the water ice conductivity is
only about 2 times larger than the conductivity of PTFE, what is untrue. The conclusion
is that comparing media, directly — property by property, is wrong. The scales relate
properties of the test material to PTFE properties by apparent, but not by absolute mea-
sures. The Bscale values occur independent of the media under the tests, what seems a
bit peculiar but proves independence of the diffusivity from the conductivity. The Bscale

values are equal only for the reference time tn = trefB. Figure 4 shows that all other
diffusivity values, beyond the reference time, are sensitive to the medium properties.

6 Local versus large scale slope definition

The property definition (3) involves the slope in terms of a derivative. The derivative is
naturally associated to the local time scale. The slope, determined from real test data,
containing noise components, is usually spread in magnitude. The spread is the larger
when the samples are closer. Evaluating differences on distant samples instead, determines
the slope in a way less sensitive to noise components. Below the suggested procedure for
slope determination is given. It employs a bound of transects, instead of tangents, for
investigating the slope.

To interpret the slope, a proper time window must be chosen in the interval. We start with
choosing two reference samples. The first reference is the refA sample, for determining
the slope A. The choice is not critical, so one can take the first sample after switching the
heating power on. Then a series of transects, from the refA sample to all other samples,
is generated in a simple loop. The second reference is the refB sample, for determining
B, which corresponds to ΔT at t = 1 s, see Eq. (5). B serves determining the diffusivity,
and is obtained also by a bound of transects, linking the refB sample to any other sample
in the interval. The reference samples should be reasonably distant, but the choice is not
critical. The choice is even out of importance when the slope is perfectly linear. To obtain
thermal properties for all samples, one needs to choose refB for each subsequent sample
in the interval. The procedure is simple and may be limited to two samples refA and
refB, with refB walking through the entire interval. The task may be implemented by
a simple loop.

The procedure is run over all samples. The slope A related function fA has no value at the
first sample in the time window, because there is no temperature difference when a current
and a reference sample refA are identical. The function fB, at the end window, has a
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Figure 4: Transient responses from several tests in different media, all normalized to the reference
media properties for the sample corresponding to time=180 s.
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particular constant value which is independent of the medium (!). That independence
of media is peculiar, but is justified. A corresponding difference between the current
temperature, at an arbitrary time tn, and the reference temperature, at the time tn = trefB

is equal zero, what yields exp(B/A) = 1, in Eq. (4). The value of fB(tn = trefB) is non–
zero and depends only on the choice of the time tn = trefB. All other values of fB(tn)
depend on the medium. The scale factors Ascale and Bscale are determined for the the
time tn = trefB, however. Taking the scales is equalizing the Fourier numbers. The scale
Bscale makes them equal. The scale factors, realize substituting the temperature response
by new products of fA and fB. They are not final properties, but cover the contents of
the expressions Eq. (3) and Eq. (4) and express respective property measures. The scales
are determined locally, but the slope related functions, fA, and fB, are determined over
the entire time window.

7 The slope related function fA

The slope–related function fA(tn) can be determined for all tn. It is given as

fA(tn,
1

A
) =

ln(tn) − ln(trefA)

T (tn) − T (trefA)
(7)

The function fA(tn) is calculated on the base of a current sample, at time tn, and the
reference time trefA is now assumed to be the first sample in the data series.

Taking the formula on the conductivity λ from Eq. (3), one gets the apparent value of
the property λapp(tn), respecting the heating power density q, expressed by the power
value in the test, to the power value in the test with PTFE. Power in absolute measure is
not needed at all. Then, the apparent conductivity is required to be scaled by the level
specific for PTFE, by means of Ascale. Healy scaled the slope to the absolute measure of
conductivity by the factor q/(4π). This links the result to the heating power density q,
and respective constants in Eq. (1). That was the formula Eq. (3), proved for a perfect
wire. We take the same relation as Healy, but account that the same constants are covered
by the sought scaling factor Ascale. Only the power density is introduced directly from the
test. The scale factor must be determined based on PTFE. That is done at the selected
time tn.

λapp(tn) =
qTEST (tn)

qPTFE(tn)
fA(tn) = λPTFEAscale (8)

From that we know the scale Ascale, and the apparent conductivity values for all tn. One
can do that for all tn = trefB, and determine scale factors for the entire interval.

8 The position related function fB

Similarly, we proceed with the function fB(tn), determining the position B of the slope
A and taking samples of data for all tn.
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fB(tn, exp(
B

A
)) = exp

�
(ln trefB − ln tn

T (trefB) − T (tn)

ln(trefB) − ln(t0)

�
= 1 |tn = trefB (9)

This expression is also the same as for the wire. It involves the position B and the slope
A, in the way following Nagasaka. For determining the position B, the time t0 is assumed
to be 1 sec, to get the value of ln(t0)=0. The position B is a current estimation of the
temperature increase, based on the abscissa coordinate for t0, not on the temperature
before heating. Each time, the values B and A are computed for the current sample time
tn, and the reference time of the time window trefB, for all tn. The functions fA(tn) and
fB(tn) do not represent the properties. They are an apparent record of the test history,
or two aspects of the response shape.

The same is done with the new data series fB(tn), which is scaled, or normalized by Bscale,
to obtain the apparent κapp(tn)

κapp(tn) = fB(tn) = κPTFEBscale (10)

The procedure is summarized in Figure 5.

Figure 5: Illustration of the slope A and its position B, determined from the same test data,
independently.

The example scales can be very much different from unity and only the scaling of the
conductivity varies with media. The scale for the diffusivity does not depend on power
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density, and does not depend on the medium. That is peculiar because different media
have their own specific diffusivity values. However an absolute measure of the specific
diffusivity is determined by the scaling factors κscale determined by the test data, and by
the factor 0.4453a2, covering dependence on geometry.

9 Conversion of apparent properties to absolute measures

All properties in apparent forms for all tests, are displayed in Table 3. All media are
assigned to the specific heat of PTFE.

Table 3: Apparent thermal properties, in all the test media, obtained by of normalizing thermal
properties to PTFE specific values

Properties Papp λapp κapp Foapp cvapp

Media [J/m2/K/
√

sec] [W/m/K] [cm2/sec] [−] [J/cm3/K]

ICE 0.154404 0.953592 0.003814 3.492065 2.50007

SNOW2 0.044325 0.078586 0.000314 0.287783 2.50007

SNOW1 0.039111 0.061184 0.000245 0.224056 2.50007

PTFE 0.082626 0.273074 0.001092 1 2.50007

SOIL 0.133590 0.713826 0.002855 2.614042 2.50007

The apparent value of the thermal inertia PappTEST for the work test media, was based
on the absolute inertia of PTFE, taken as in the Table 1.

PappTEST =
AscaleTEST

AscalePTFE

PPTFE (11)

The apparent value of the diffusivity κappTEST for the work test media was based on the
absolute inertia of PTFE, and on the specific heat of PTFE cv, taken as in the Table 1.

κappTEST =

�
PappTEST

cvPTFE

�2

(12)

The apparent value of the specific heat per unit volume cvappTEST for the work test media
was evaluated as

cappvTEST =
λappTEST

κappTEST

(13)

The apparent values of all properties, are now effects of normalisation to PTFE properties,
and therefore, the values cvTEST for all media, are equal exactly to cvPTFE.

The absolute value of the Fourier number FoTEST was evaluated as determined by the
ratio of κappTEST to the absolute value κPTFE,
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FoTEST = FoappPTFE

κappTEST

κappPTFE

(14)

Figures 6 and 7 show the apparent values of conductivity and diffusivity as a function
of the Fourier number and of the logarithm of time, respectively. Table 4 displays all
properties.

Table 4: Thermal properties for all the tests, in absolute measures

Properties Pabs λabs κabs Foabs cvabs

Media [J/m2/K/
√

sec] [W/m/K] [cm2/sec] [−] [J/cm3/K]

ICE 0.201815 2.430347 0.014502 13.277119 1.675856

SNOW2 0.019026 0.133519 0.004925 4.508725 0.271121

SNOW1 0.010368 0.075247 0.005268 4.822673 0.142848

PTFE 0.082626 0.273074 0.001092 1 2.50007

SOIL 0.167252 1.653808 0.009777 8.95155 1.69145

10 Results and discussion

Now, the property values are believed to be free of effects caused by unintended inconsis-
tency between properties. The tests performed in ice and PTFE (Table 4), are represented
exactly by the values from Table 2, because they were taken as references. The other me-
dia like soil and two sorts of snow, diversified by water content (19% for SNOW1, and
37% for SNOW2), are sorted well by properties. Also the Fourier numbers indicate that
the water ice media exhibit the largest diffusivity.

The last column in Table 4 (volumetric heat capacity) also discloses a realistic behavior in
all cases. Specific heat for the water ice and PTFE are exact, as expected from reference
data. The specific heat of soil is also realistic, because it is known from independent
measurements. The volumetric soil moisture was about 25% at that site. It means that
1/4th of a cubic centimeter of soil contained water. If the entire content were water, then
the specific heat would beequal to 4.18 [J/cm3/K]. The value of 1.69 [J/cm3/K], fits well
the soil moisture.
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Figure 6: Apparent thermal conductivity λ and diffusivity κ, for different media, in normalized
values versus Fo. All media were equalized to the specific properties λ and κ of PTFE, thus
they all have a common domain of Fo, proper to PTFE. The first few PTFE samples (10 s
each) are depicted by blocks, to show how they are close to the target specific value after 60 s
since the power was set on. The first sample in the test was taken for the reference refA. The
reference refB was taken for the time 180 s after the start in this plot. The temperature of
PTFE in this test was 36.4◦C. Snow and ice media were tested frozen to −45◦C. Each test was
performed independently, in different temperature conditions.
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Figure 7: Apparent thermal conductivity (top) and thermal diffusivity κ (bottom), for different
media, in de-normalized values versus log-time. The square blocks show where the normalisation
was done – in the time 180 s after the beginning of the interval. Only that values represented by
rectangle blocks are formally exact. Grey bands in the background, distinguish the range of a
respective property, taken for a reference for λ (on the left panel), and for κ (on the right panel),
supported by specific properties of PTFE and water ice. The square block for PTFE, is pointed
by a triangle, to distinguish which property was a base for evaluating all other properties. Two
triangles on the diffusivity plot (panel right) show that the reference value of the diffusivity was
shifted with the change of the refB from 180 s to 900 s, though it is the same property value
of PTFE.
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Figure 8: Apparent thermal conductivity in re–normalized values, versus Fo. The values are
plotted twice. The upper panel is in the log–scale of the conductivity, to show how clear is the
segregation of media by the property. The right panel is in a linear respective scale, to show
that good determination of an apparent property, and a random signature of noise from the
temperature response. The dense media provided the temperature rise responses with a very
narrow temperature range, what didn’t disturb determination of properties. Data for the soil
media, was mostly contaminated by noise components, due to instability of media in open field
conditions. The measured values are taken for the time 180 s, determined with the Fo=1.22.
Low Fo proves that in the time, the process is in an early phase under development. The
time even 2 or 3 times earlier, should also provide a reasonable property, if only one decides to
normalize the response then. The arrows in characteristics, indicate the direction of the time
flow from start to end.
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The soil media agree with the values predicted by the model of Usowicz moderately.
The model predicts 1.9 W/m/K, while we obtained about 1.7 W/m/K. The snow media
seem to be underestimated, at least by the diffusivity values. One can also see that all
apparent values are walking, none of them is steady, which is to a common experience
from other tests. At last, the soil media properties, shown on the Figure 8, illustrate
the sense of the method. The normalization ensured that the Fourier number for the
work and the reference media tests are equal in effect of normalization. The distinction
of a respective sample and time, while evaluating properties, is sharp. It is not fuzzy,
as it happens to defining a slope by a linear tangent, in presence of noise. When the
requirement on equal Fo, is not fulfilled, then properties diverge slowly and steadily.
When it is fulfilled, then the Fo formally picks up property values sharply. The apparent
conductivity characteristics trace a loop–like path in the coordinate system. Soon after
the start of heating, the diffusivity is highly overestimated, and the Fourier number is
also overestimated. But after a few samples, Fo comes to about unity and starts varying
steadily and uniformly. For a perfect wire, one should expect a property being nearly
a constant. Apparent property values walk, while property values in absolute measure
behave varying slowly slipping from one characteristic to another. This way, absolute
property values go across a band of apparent characteristics.

Figure 9 shows that mechanism in detail. The case of a perfectly thin wire should corre-
spond to a constant line plot, steadily representing a specific conductivity. For imperfect
probe elements, a line splits on tilted characteristics and creates a need of selecting rel-
evant values. Selecting a linear part of the temperature rise plot is an arbitrary choice,
especially not bringing effects when the entire plot is non–linear at the beginning and de-
layed due to the heat capacity of sensing elements. Then the obtained values are shifted
and walking with time. The presented procedures may be improved or corrected, but the
use of the Fourier number seems to be fundamental.
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Figure 9: Selected bound of the apparent thermal conductivity characteristics (in grey), in
absolute measure [W/m/K], for the test in soil media. Each characteristic corresponds to another
choice of the reference time trefB . Real and formally exact conductivity values, correspond only
to the current reference time trefB. Other values, are only apparent. A collective characteristic
of real values (in red), goes across a bound of apparent characteristics. Nevertheless, the real
measured values, still vary, and are spread in some tolerance band (shown in the background in
pale blue). The highly concentrated minimal values (among the blocks in yellow), indicate the
best choice of the time window, when the response shape does not deviate too much from media
properties. The other characteristic of real values (in blue), is formed of the property values
assigned to the third sample in the interval. The first point of this characteristic is denoted by
the time=20 s. These samples indicated that determination of the measured property is quite
reasonable even in 20 sec after switching the power heating on, and still improves with the larger
reference time trefB.
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11 Conclusions

The way of interpreting properties from test data, made it clear that the cylindrical shape
of a probe is not a critical condition for using the transient response method. Other shapes
can be employed too. One can proceed the same or a similar way in absence of a linear
slope in log-time measure. The sense of the method is to apply a heat impact and to
derive a more or less precise estimate of the thermal properties of the medium. The
Fourier number is a fundamental tool for that purpose. One interesting conclusion from
this work is that the heating power value in absolute measure, was needed only for the
calibration tests in reference media. For the work tests the power control was needed only
in a relative measure, with respect to the calibration test.
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Appendices

11.1 Test equipment and test sites:

Figure 10: Tests and the test sites. The PTFE specimen with two probes under tests (top left).
Two probes in snow under testing in open field conditions (bottom left). The test setup with
water ice specimen (right).

Test data:

The test data listed below were obtained in two known media – PTFE, and ICE, and
three media unknown by thermal properties – SOIL, SNOW1 and SNOW2, all with a use
of the same MUPUS analog probe, and given for the same sensor No 7. That is believed
that these data are sufficient to determine the unknown media thermal properties, without
any additional detailed knowledge on the probe and any other knowledge on the unknown
media. That is the subject of the paper. The properties obtained that way may be charged
by some non-removable errors due to specific properties of the probe, but they should be
mutually consistent. The data is the time series of the temperature T [oC], and the heating
power q[mW/cm], for tests in particular media (PTFE, SOIL, water ICE, and snow: -
SNOW1, and SNOW2).
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Table 5 provides the sensor length series, for the TP probe, in the order from top to
bottom. This is a general information, showing possible capability of the probe for
profiling. That information is not necessary for determining thermal properties on the
base of Table 5, because the power related columns account power density per unit
length, respecting the sensor length, given below.

Table 5: The sensor length series, in the probe

no 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L[cm] 0.91 1.00 1.09 1.20 1.32 1.45 1.60 1.77 1.95 2.16 2.38 2.64 2.92 3.24 3.59 3.99

PTFE thermal properties

According to NIST (http://cryogenics.nist.gov/NewFiles/Teflon.html), thermal
properties of PTFE for the conductivity λ [W/m/K], and for the specific heat ch

[J/kg/K], are given by the following common expression:

logx=a+b(logT )1+c(logT )2+d(logT )3+e(logT )4+f(logT )5+g(logT )6+h(logT )7+i(logT )8

where

Table 6: Coefficients determining PTFE Thermal Properities

coeff. for λ for ch

a 2.738 31.8825

b -30.677 -166.5190

c 89.430 352.0190

d -136.990 -393.4420

e 124.690 259.9810

f -69.556 -104.6140

g 23.320 24.9927

h -4.3135 -3.20792

i 0.33829 0.165032

The expression is applicable in the range of temperature T 4-300K, with accuracy not
worse than 1.5%, given for the specific heat. The control values for T =300K, are
following: λ=0.2728 [W/m/K], ch=1115.3868 [J/kg/K] Bulk density of PTFE, was
taken for this paper by a measurement of the specimen. The specimen was a cylinder
180mm long, the outer diameter was 100mm, with the central hole drilled axially for the
inside diameter 10 mm. The bulk density was estimated as ρb=2200 [kg/m3].

Water Ice Thermal Properties

There are three formulas on the thermal conductivity λ [W/m/K] of water ice, for the
hexagonal kind:
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11.1.1 Water Ice Model 1

The model is given by Steiner and Kömle (Steiner et al., 1991) in the formula
λ [W/m/K]=567/T ,
where T is the temperature in [K].

Water Ice Model 2

The model is provided by
http://www.es.ucl.ac.uk/research/planetary/undergraduate/dom/ices/ices.htm

in the formula
log(λ)=M0+M1·log(T ),
where the coefficients M0 and M1 are given in the following table.

Table 7: Water Ice Thermal Properities

Ice Type Temperature range Pressure [MPa] M0 M1

Ice Ih 80-273K 20 2.7154 -0.9752

Ice Ic 150-200K 20 2.281 -0.813

Ice II 120-240K 240 2.842 -1.097

Ice III 180-250K 240 1.961 -0.822

Ice V 240-270K 530 1.56 -0.612

Ice VI 240-300K 1200 2.473 -0.928

Ice VII 275-300K 2400 2.491 -0.821

Ice VIII 240-370K 2400 4.193 -1.417

Amorphous ice 68-125K 100 -0.6496 0.2165

Water Ice Model 3

The model provided by

http://www.astrobiology.nl/projects/planetary_ices.html#refs)

is given in the formula for
λ [W/m/K]=656.3/T [K]-0.00077*T [K]
The models 1, 2, 3 do not provide bulk density and specific heat data.
These data were taken from another source, called the model 4, given below.

11.1.2 Water Ice Model 4

The engineering model for determining the conductivity, bulk density and specific heat
vs temperature, for hexagonal ice, is given by the table, provided by

http://www.engineeringtoolbox.com/ice-thermal-properties-d576.html)
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Table 8: Water ice thermal properties, engineering data

T [oC] ρb [kg/m3] λ [W/m/K] ch [kJ/kg/K]

0 916.20 2.220 2.050

-5 917.50 2.250 2.027

-10 918.90 2.300 2.000

-15 919.40 2.340 1.972

-20 919.40 2.390 1.943

-30 920.00 2.500 1.882

-40 920.80 2.630 1.818

-50 921.60 2.760 1.751

-60 922.40 2.900 1.681

-70 923.30 3.050 1.609

-80 924.10 3.190 1.536

-90 924.90 3.340 1.463

-100 925.70 3.480 1.389

Table 8 contains the engineering data on water ice properties. The paper accounted
thermal properties of ice based on the model 1, after Steiner et al. (1991), without
judging which of the three models is closer to the real physical properties of ice.
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