
 567

Performance, Scale & Time in Agent-based Traffic
Modelling with NetLogo

Christoph Mayrhofer

Z_GIS, University of Salzburg, Austria · mayrhoferchr@stud.sbg.ac.at

Short paper

Abstract

Agent-based modelling has proven as an effective approach to analyze, reconstruct, and
predict systems with many individual entities. Typical use cases include segregation pro-
cesses, predator/prey models, or supply chain optimization (TISUE 2004). Most of these
models work within the framework of a “patch-dominated” world, where agents move
within a world consisting of square-cells named patches (AL-DMOUR 2011). The develop-
ment of network specific extensions for simulation software like the “network” and “gis”
extensions of NetLogo have allowed to apply agent-based theories to spatial data (CROOKS

2012). This allows the shift from a patch to a network concept. However, there are still
some shortcomings that are not satisfyingly solved within the NetLogo software that may
hinder an efficient and realistic simulation of agent movements along spatial networks.

This work evaluates the role of scale and time in agent-based traffic models and offers sug-
gested implementations to allow for easier and more realistic parameterization and runtime
analysis of traffic models. It will also discuss performance issues with the shortest path
calculation in NetLogo, and provide a possible solution to increase the simulation speed.

The model and analysis derived in this project are based on a polyline shapefile that con-
tains the street network of Salzburg city.

1 Spatial Scale

All conventional GIS systems work with coordinate systems in order to place information
in its correct spatial context. Simulation models on the other hand are usually independent
of spatial constraints and operate within an “abstract” spatial setting (AL-DMOUR 2011). It
is now necessary to combine those two worlds for traffic modelling since the agents need to
move at certain speeds and it is therefore necessary to have an actual measure (meters),
rather than patches.

GIS coordinates (map units) vs. NetLogo world coordinates: NetLogo uses its own
coordinate system. The map is called “world” and the coordinates correspond to the number
of patches in each dimension. This is suitable for “abstract” simulations with no spatial
context, but infers certain limitations for traffic modelling where it is crucial to know Net-
Logo’s actual scale. Since speed is an inherent parameter to any traffic model we also need
its main components – distance and time – in order to simulate accurate movement of the
agents within the given spatial setting (LANSDOWNE 2006).

GI_Forum ‒ Journal for Geographic Information Science, 1-2015.
© Herbert Wichmann Verlag, VDE VERLAG GMBH, Berlin/Offenbach. ISBN 978-3-87907-558-4.
© ÖAW Verlag, Wien. ISSN 2308-1708, doi:10.1553/giscience2015s567.

C. Mayrhofer 568

Connecting GIS and NetLogo coordinates: It is a rather trivial process to implement
scale in a NetLogo model. Nonetheless only few models apply this and make use of the
added functionalities that scale implies. The GIS extension provides functions that read the
actual coordinates from the input dataset. These coordinates are optimally already in UTM
or any other CRS that uses meters as its basic map unit. This number can now be used to
resize the NetLogo world accordingly. Our test dataset spans over 14500 x 14500 meters.
Thus, we would resize to a world of 14500 x 14500 patches to achieve a simple 1:1 scale
between the NetLogo and GIS coordinates.

However, it is important to consider performance once again, and keep in mind that the
software will slow down significantly with such huge patch numbers. It is therefore advis-
able to implement a maximum size (e.g. 1000 x 1000 patches) and use the ratio (1:14.5) as
a scale-factor that is later used for all calculations that involve distance.

2 Temporal Scale

The second necessary dimension is time. NetLogo’s logic is built on the concept of ticks.
Each tick represents one simulation step and equals to one cycle of the entire code. The
time representation of one tick is completely up to the developer and may be hard to com-
prehend by the users since they normally think in terms of seconds or hours, etc.

NetLogo computes the ticks as fast as possible and only provides a slider that allows users
to vary the amount of time that is waited between each tick (WILENSKY 2014). Thereby, it
completely ignores the variation within the ticks itself. The computation time of each tick
depends on the number of active agents in the model at each distinct time step. This number
may vary greatly during a simulation, which results in visualizations that continuously
change from several seconds per tick to dozens of ticks per second. The user is not able to
accurately follow the process and the visualization loses a lot of its purpose to support the
understanding and interpretation of the simulation.

This demonstrates that the concept of the speed control in NetLogo is not suitable for traffic
models that require constant timings during the simulation. However, models that only
focus on the end result are not negatively affected, since the simulation process itself is not
of interest to them.

It is necessary to “abandon” NetLogo’s native speed control in order to synchronize real-
time with the time passed within the simulation. This is possible using the “timer” variable
in NetLogo. This keeps track of the actual time passed since the start of a simulation and
allows the developer to time the duration of the ticks. The waiting time between the ticks
can now be dynamically changed to add up to a user-defined value.

 Variable tick duration + variable sleep time = constant simulation step time

An additional measure to improve usability is to implement a time-factor, which represents
the ratio between real-time and simulation time. A factor of 20 would cause the model to
simulate 20 seconds during every second the user watches the model run. It is advisable to
keep track of the past tick durations to automatically adjust that factor for the user in case
that a too large factor was chosen which cannot be computed fast enough by the system.
This control can now replace the native speed control.

Performance, Scale and Time in Agent-based Traffic Models 569

3 Performance

Performance is not a major issue with most basic operations like changing agent statuses or
moving an agent. The NetLogo software can easily handle several thousand agents on a
modern computer. However, there is one bottleneck in most traffic models ‒ The shortest
path calculation. The street network needs to be evaluated and analyzed for each agent that
is added to the model in order to create a route from its location to its destination. This is
computationally expensive and may have a big impact on the model performance with
larger networks of many thousand vertices.

Shortest path algorithm: NetLogo uses the Dijkstra algorithm to find the shortest path
between two points in the network. This algorithm builds a tree of distance values between
the location and its linked vertices. It then continues to expand until the tree includes the
desired destination. The time complexity of this algorithm is nonlinear and performance
slows down significantly with larger networks (BARBEHENN 1998).

NetLogo saves those trees to reuse suitable parts of them for later path calculations. While
this improves performance it may also cause physical memory issues on the computer. All
the saved trees add up quickly and they will eventually cause a java heap space overflow
(the computer runs out of RAM). It is therefore advisable to disable this temporary tree
storage and use another approach to improve performance: Reduce the network com-
plexity to the necessary minimum.

The main objective is to eliminate all vertices that are not essential for the path calculation
and then only pass this smaller subset of vertices to the shortest path algorithm. The first
step is to remove all “duplicate” vertices (i.e. vertices with the same location). The topology
of the test dataset divided all streets in segments that would reach from one junction to the
next. The meeting points of those segments would then consist of two points (the street
ends) or several points if more than two streets meet and create a junction. It is now possi-
ble to link all streets to a single common junction vertex and delete the remaining unused
junction vertices.

Most of the improvement can be achieved by excluding all vertices that are not a junction.
There is no decision to be made if there is no junction, since the agents can only go forward
or backwards. (a shortest path will never include a move back). The reduction in network
complexity can be very significant if the network contains many intermediary vertices (e.g.
to follow the shape of curvy roads). The resulting “junctions only” network may only con-
sist of a few percent of the initial vertices (Fig. 1).

Fig. 1:
Subset of the network
before (top, 76894
vertices) and after
(bottom, 7589 vertices)

C. Mayrhofer 570

The effectiveness of this approach depends on the overall number of vertices and the share
of junctions and intermediary vertices in the dataset. The performance improvement (com-
parison of full and reduced network calculation) increases with larger networks and may
not be noticeable with small ones of several hundred vertices.

Table 1: Calculation times for 1000 agents using different types of network reduction

Generate
1000 cyclists

Time
(min)

#vertices
(shortest-path)

#intermediary
vertices

#vertices
(total)

Full network 12:30 76894 0 76894

Simplified network 00:51 7589 0 7589

Simplified network 2 00:57 7589 53428 61017

The above table shows the times necessary to calculate the shortest paths for 1000 agents
on the test computer. The origin and destination points are randomly selected and the simu-
lations were repeated 40 times. The time listed is the mean of the second and third quartile
of the result values. The second network type (simplified network 2) adds the vertices be-
tween the junctions to create the actual path along the street as it would also be computed
by the shortest-path algorithm if the entire network was used with it. This approach is al-
most as fast as only using the junctions and seems to be the best compromise for the route
calculation. However, there may be further potential to improve the model performance by
choosing more advanced routing algorithms like a dynamic Landmarks-A* router as im-
plemented by MEISTER et. al. (2010) in the simulation tool MATSIM-T.

References

AL-DMOUR, N. A. A. H. (2011), TarffSim: Multiagent traffic simulation. European Journal
of Scientific Research, 53(4), 570-575.

BARBEHENN, M. (1998), A note on the complexity of Dijkstra's algorithm for graphs with
weighted vertices. IEEE transactions on computers, 47 (2), 263-263.

CROOKS, A. T. & CASTLE, C. J. (2012), The integration of agent-based modelling and geo-
graphical information for geospatial simulation. In: Agent-based models of geographical
systems. Springer Netherlands, 219-251.

LANSDOWNE, A. (2006), Traffic simulation using agent-based modelling. University of the
West of England.

MEISTER, K., BALMER, M., CIARI, F., HORNI, A., RIESER, M., WARAICH, R. A. & AXHAU-
SEN, K. W. (2010), Large-scale agent-based travel demand optimization applied to Swit-
zerland, including mode choice. 12th World Conference on Transportation Research,
Lisbon.

TISUE, S. & WILENSKY, U. (2004). NetLogo: Design and implementation of a multi-agent
modelling environment. Proceedings of the Agent 2004 Conference on Social Dynam-
ics: Interaction, Reflexivity and Emergence, Chicago, IL.

WILENSKY, U. (2014), NetLogo Users Manual. http://ccl.northwestern.edu/netlogo/.
Center for Connected Learning and Computer-Based Modeling, Northwestern Univer-
sity, Evanston, IL.

