THERMTEC

Thermisch – tektonische Modellierung orogenetischer Prozesse in den Ostalpen am Beispiel von Modellregionen - Tauernfenster (Brenner, Lungau / Pongau) und Mur- Mürzfurche / südliches Wiener Becken

Zusammenfassender Endbericht

im Auftrag der

Österreichischen Akademie der Wissenschaften

GÖTZL G. Bottig M. Hoyer S. Fuchsluger M. Rockenschaub M.

163 Seiten, 86 Abbildungen, 21 Tabellen mit 2 Beilagen

Geologische Bundesanstalt Wien, August 2015

Anschrift des Verfassers: gregor.goetzl@geologie.ac.at

Geologische Bundesanstalt, 1030 Wien Neulinggasse 38.

Die vorliegende Studie wurde von der Österreichischen Akademie der Wissenschaften, Programm Geophysik der Erdkruste (GdE) finanziert.

ISBN-Online: 978-3-7001-7877-4 DOI: 10.1553/THERMTEC

Projektteam

Geologische Bundesanstalt	
Mag. Gregor GÖTZL	Projektleitung, geothermische Feldmessungen
Mag. Magdalena Bottig	Geologische Modellierung, Petrologie
Dr. Manfred Rockenschaub	Geologie
Mag. Christoph Janda	Geologische Modellierung, Geochronologie
Mag. Martin Fuchsluger	Geothermische Feldmessungen, geothermische Modellierung
Mag. Stefan Hoyer	Geothermische Modellierung
Mag. Fatime Zekiri	Petrophysik
Mag. Christine Hörfarter	Geochronologie, Petrologie
Externe Kooperationspartner	
Dr. Nina Gegenhuber (MU-Leoben)	Petrophysik
Dr. Andreas Schindlmayr (Geo2 e.U.)	Geologie

Inhaltsverzeichnis

Ku	rzzus	amm	enfassung	10
Ab	stract	t		11
Vo	rwort	des '	Verfassers	12
Da	nksa	gung		12
1	Einl	eitun	g	14
	1.1	Aus	gangslage und Fragestellung	14
	1.2	Ziels	setzungen	18
	1.3	Vor	gehensweise und Methodik	20
2	Das	Proj	ektgebiet Tauernfenster	22
	2.1	Einl	eitung	22
	2.2	Geo	grafische Übersicht	23
2	2.3	Geo	logisch- tektonischer Übersicht	24
	2.3.	1	Ablagerungsgeschichte und tektonische Entwicklung	24
	2.3.	2	Die Metamorphose im Tauernfenster	27
	2.3.	3	Lithotektonische Gliederung	29
2	2.4	Geo	thermische Übersicht	37
3	Übe	rsich	t der durchgeführten Projektaktivitäten	39
	3.1	AP1	: Geothermische Untersuchungen	39
	3.1. Infra	1 astruł	Erhebung bestehender Temperaturinformationen	(Literatur, 40
	3.1.	2	Geothermische Felduntersuchungen	41
	3.1.	3	Datenauswertung	51
	3.1.	4	Thermische Modellierung	54
	3.1.	5	Dateninterpretation	62
3	3.2	AP2	: Geochronologische Untersuchungen	62
	3.2.	1	Erhebung von Literaturdaten	63
	3.2.	2	Durchführung von Labormessungen	65
	3.2.	3	Zusammenfassung der Daten zu Hebungsmodellen	65
3	3.3	AP3	: Petrophysikalische Untersuchungen	67
	3.3.	1	Einleitung	67
	3.3.	2	Durchführung zusätzlicher Messkampagnen	68
	3.3.	3	Aufbau petrophysikalischer Modelle	72

3

	3.4	AP2	1: Geologische Untersuchungen	79
	3.4.	1	Durchführung geologischer Exkursionen	79
	3.4.	2	Probenauswahl und Probenbearbeitung	82
	3.4.	3	Aufbau geologisches 3D Modell	86
	3.5	AP5	5: Dissemination	95
4	Erg	ebnis	SSE	95
4	4.1	Geo	othermische Felduntersuchungen	96
	4.1.	1	A10-Tauerntunnel, Röhre 2	96
	4.1.	2	Kabelstollen Hintermuhr	101
	4.1.	3	Erkundungsbohrungen S37 – Wildbad Einöd	103
	4.1.	4	Bergbau Mittersill	105
	4.1.	5	Badgastein: Franz Josef- und Rudolfstollen	.110
	4.1.	6	Bergbau Schellgaden	.112
	4.1.	7	Zusammenfassung	115
4	4.2	The	ermische Gesteinsparameter	116
4	4.3	Geo	blogisches 3D Modell Tauernfenster	122
	4.4	The	ermische Modellierung im Bereich des Tauernfensters	.133
	4.4.	1	Parameterstudie über den Einfluss von Paläoklima und Relief	.133
	4.4. Tau	2 ernfe	Drei-dimensionale Modellierung der thermischen Entwicklungsgeschichte	des 140
4	4.5	Zus	ammenfassung	144
5	Inte	rpret	ation und Schlussfolgerungen	145
;	5.1	Das	s rezente Wärmestromregime im Bereich des Tauernfensters	.145
	5.2	Sch	llussfolgerungen	150
	5.3	Ans	ätze für weiterführende Forschungsaktivitäten	152
	5.3.	1	Geothermische Untersuchungen	152
	5.3.	2	Geochronologische Untersuchungen	154
	5.3.	3	Petropyhsikalische Untersuchungen	154
Lit	eratu	rverz	eichnis	157
Be	eilage	nverz	zeichnis	163

Abbildungsverzeichnis

Abbildung 1: eines Gebirges	Zusammenhang zwischen dem terrestrischen Wärmestrom und dem Alter
Abbildung 2:	Geografische Lage des Modellierungsgebiets Tauernfenster
Abbildung 3:	Großtektonische Übersicht des Modellierungsgebiets Tauernfenster25
Abbildung 4:	Die Entwicklung des Penninischen Ozeans
Abbildung 5: Hohen T	Karte der Verbreitung der Eklogite und der Blauschieferfazies in den mittleren auern
Abbildung 6: Tauernfe	Druck – Temperatur – Diagramm für die Metamorphoseentwicklung im enster
Abbildung 7: Amphibo	Karte der Verteilung der tertiären Metamorphose in Grünschieferfazies und blitfazies
Abbildung 8:	Geologisches Übersichtsprofil durch die Pfitschtalzone und dem Tuxer Kern.
Abbildung 9:	Strukturübersicht über die Venedigerdecke im westlichen Tauernfenster36
Abbildung 10: Ostalper	Vergleich publizierter Wärmestromkarten für den österreichischen Anteil der n
Abbildung 11:	Startfenster (Formular) der projektspezifischen THERMTEC Datenbank. 41
Abbildung 12:	Temperaturfühler iButtons DS1922L (Fa. Maxim)
Abbildung 13: Tempera homoge	Verallgemeinertes Schema der Ausbreitung einer instationären aturstörung im Nahbereich eines bewetterten Stollens (Modell eines nen Halbraums)44
Abbildung 14: Hohlrau	Zeitabhängige Darstellung der Temperaturstörung durch einen belüfteten m45
Abbildung 15: Tempera	Regeneration einer durch Stollenbewetterung entstandener aturstörung im nahen Umgebungsgebirge46
Abbildung 16:	Schema zum Messprinzip faseroptischer Temperaturmessungen48
Abbildung 17: Tauernfe	Übersicht der erhobenen thermischen Basisdaten im Bereich des ensters
Abbildung 18:	Screenshot der Anwendung zur Korrektur des geothermischen Gradienten.
Abbildung 19:	Abhängigkeit des Korrekturterms vom geothermischen Gradienten53
Abbildung 20:	Modellgebiet mit topografischer Information55
Abbildung 21:	Paläoklimatische Oberflächentemperaturdifferenz (dT) im Vergleich57
Abbildung 22:	Lage des numerischen 3D Modells Tauernfenster
Abbildung 23:	Geometrisches Ausgangsmodell des numerischen Modells58

Abbildung 24: stationäre Temperat	Gegenüberstellung des im Rahmen von THERMTEC erstellten konduktiven n Startmodells mit dem von VOSTEEN ET AL (2006) publizierten urmodell entlang des TRANSALP Profils60
Abbildung 25: Kenndate	Temperatur- und Hebungsmodell, abgeleitet aus geochronologischen n61
Abbildung 26: Geschwin Tauernfer	Darstellung des im Zuge der Modelldurchläufe iterativ angepassten digkeitsmodells der Massenadvektion (Hebung) im Bereich des nsters
Abbildung 27:	Gesammelte Apatit Fission Track Daten im Bereich des Tauern Fensters
Abbildung 28:	Gesammelte Zirkon Fission Track Daten im Bereich des Tauern Fensters.
Abbildung 29:	Erhobene U,Th)/He Geothermometer im Bereich des Tauern Fensters64
Abbildung 30: (rote Kurv von 100 M	Exhumationsgeschichte des östlichen Ötztal-Stubai Kristallin Komplexes re) und des westlichen Tauern Fensters (grüne Kurve), über einen Zeitraum Ma
Abbildung 31: des westli	Eine Übersicht der modellierten Temperatur-Zeit Kurven aus dem Bereich chen Tauern Fensters
Abbildung 32: Zentralgn	Vergrößerte Darstellung des Temperatur-Zeit Fensters der eiskerne
Abbildung 33:	PETROBASE Datenbank – Eingabefelder mit den Suchkriterien
Abbildung 34: Wärmelei Gestein.	Gemittelte Werte (Symbole) und Spannweite der temperaturabhängigen tfähigkeit für (a) magmatisches und metamorphes und (b) sedimentäres
Abbildung 35: Batholith	Stufenmodell der radiogenen Wärmeproduktion für den Sierra Nevada
Abbildung 36:	Einfache Modelle für die radiogene Wärmeproduktion in der Kruste78
Abbildung 37: Muhr (Hä Hohlraum	Tektonische Übersichtskarte der Geologischen Karte 1:50.000, Blatt 156 Jusler 1995) mit der Lage der im Rahmen der Exkursion #1 besuchten bauten80
Abbildung 38: und desse Exkursion	Geologische Übersicht des westlichen Tauernfensters und seines Rahmens en Lage im Ostalpin sowie die Lage der einzelnen Exkursionspunkte zur #2
Abbildung 39:	Übersicht der im Rahmen von THERMTEC erhobenen Gesteinsproben83
Abbildung 40:	Lageplan der Probenpunkte, Ausschnitt "Ost"83
Abbildung 41:	Lageplan der Probenpunkte, Ausschnitt "Neumarkt – Wildbad Einöd"84
Abbildung 42:	Lageplan der Probenpunkte, Ausschnitt "Mittersill - Tauernmoos"84
Abbildung 43:	Lageplan der Probenpunkte, Ausschnitt "Brenner Basistunnel"85

Abbildung 44:	Lageplan der Probenpunkte Ausschnitt "Arlberg - Silvretta"
Abbildung 45:	Räumliches Grobkonzept der geologischen 3D Modellierung87
Abbildung 46:	Übersicht der verwendeten Profilschnitte im Projektgebiet
Abbildung 47:	Schichtfolge der zentralalpinen tektonischen Einheiten auf dem Blatt 156
Muhr (Erlå	auterungen 156 Muhr, Tafel 1)90
Abbildung 48:	Änderung der Interpolationsparameter von Isotrop (Kugelfunktion) auf
Anisotrop.	
Abbildung 49:	A10 – Tauerntunnel: Kombinierte Darstellung der prozessierten
Bohrlochte	emperaturen und Literaturdaten (Bohrung Tauerntunnel) und des
modellierte	en Temperaturverlaufs gemäß einem konduktiven Modell
Abbildung 50:	Kabelstollen KW - Hintermuhr: Kombinierte Darstellung der prozessierten
Bohrlochte	emperaturen und des modellierten Temperaturverlaufs gemäß einem
konduktive	en Modell
Abbildung 51:	Lageplan der geothermisch auswertbaren Untersuchungsbohrungen im
Bereich W	/ildbad Einöd103
Abbildung 52:	Lage der Stationen zur Beobachtung der Stollenluft Temperatur im Bergbau
Mittersill.	
Abbildung 53:	Zeitreihe der aufgezeichneten Stollenluft Temperatur im Bergbau Mittersill
Abbildung 54:	Ergebnisse der Temperaturprofilmessungen in untertägigen
Erkundung	gsbohrungen im Bergbau Mittersill107
Abbildung 55:	Lageplan der Temperatursensoren im Bereich der Zu- und Abluftstollen im
Bergbau M	//ittersill
Abbildung 56: Überlager	Gegenüberstellung der ermittelten Gebirgstemperatur mit der ungshöhe im Bergbau Mittersill109
Abbildung 57:	Thermisches 3D Modell der Umgebung des Bergbau Mittersills110
Abbildung 58:	Verlauf der Lufttemperaturen in verschiedenen Positionen im Franz Josef-
und Rudo	Ifstollen, Badgastein
Abbildung 59:	Lageplan der installierten Sensoren im Bergbau Schellgaden114
Abbildung 60:	Verlauf der Lufttemperatur im Bergbau Schellgaden115
Abbildung 61:	Häufigkeitsverteilung der Parameter Wärmeleitfähigkeit (inkl. Anisotropie),
radiogene	Wärmeproduktionsrate und spezifische Wärmekapazität
Abbildung 62:	Verteilung der Wärmeleitfähigkeit unter Berücksichtigung der
lithotekton	ischen Gliederung119
Abbildung 63: der lithote	Verteilung der radiogenen Wärmeproduktionsrate unter Berücksichtigung ktonischen Gliederung

Abbildung 64: unter Beri	Verteilung der spezifischen Wärmekapazität der festen Gesteinsmatrix ücksichtigung der lithotektonischen Gliederung121
Abbildung 65: radiogene Klassifizie	Gegenüberstellung der Wärmeleitfähigkeit (feste Gesteinsmatrix) mit der n Wärmeproduktion unter Berücksichtigung der lithotektonischen rung
Abbildung 66: Muhr (aus	Schichtfolge der zentralalpinen tektonischen Einheiten auf dem Blatt 156 Erläuterungen zu ÖK Blatt 156 Muhr, Tafel 1)123
Abbildung 67: Seriensch	Übersichtskarte des Tauernfensters kombiniert mit dem Lageplan der nitte
Abbildung 68:	Profil A durch das geologische 3D Modell126
Abbildung 69:	Profil B durch das geologische 3D Modell127
Abbildung 70:	Profil C durch das geologische 3D Modell128
Abbildung 71:	Profil D durch das geologische 3D Modell129
Abbildung 72:	Profil E durch das geologische 3D Modell130
Abbildung 73:	Profil F durch das geologische 3D Modell131
Abbildung 74:	Profil G durch das geologische 3D Modell132
Abbildung 75: Tiefensch	Einfluss des Reliefs auf das Temperaturregime entlang von verschiedenen nitten
Abbildung 76: Modellget	Störung des Temperaturregimes durch das Paläoklima für ein ebenes Diet ohne Relief136
Abbildung 77: Ankogelm	Einfluss des Paläoklimas am Beispiel eines Schnittes durch das assiv137
Abbildung 78 Untergrun	Einfluss des Klimas der letzten 1 Million Jahre auf das Temperaturfeld im id139
Abbildung 79: Zeitraum	Paläogeothermisches Regime im Bereich des Tauernfensters für den -8 Mio. Jahre bis -0.1 Mio. Jahre141
Abbildung 80: virtueller E	Einfluss der tektonischen Hebung auf das Temperaturregime am Beispiel Bohrpfade durch das Tauernfenster (export aus Comsol™ Modell)142
Abbildung 81: der Moho	Darstellung des rezenten Wärmeflusses auf Meereshöhe (oben), entlang (mitte) und auf Relief (unten)143
Abbildung 82:	Verteilung der 100°C Isotherme im Bereich des Tauernfensters144
Abbildung 83: geothermi	Vergleich der erhobenen Wärmestromdichten mit den Ergebnissen der ischen Modellierung
Abbildung 84: (2007) mit	Vergleich der Wärmestromkarten von CERNAK & HURTIG (1979) sowie Götzl t den Ergebnissen der geothermischen Modellierung147
Abbildung 85: Tauernfer	Wärmestromkarte für den inneralpinen Raum mit Fokus auf dem nster auf Grundlage der interpolierten Messdaten148

Abbildung 86:	Zusammenhang	zwischen	radiogener	Wärmeproduktion	und	P-
Wellenges	chwindigkeit (links)	und radioge	ener Wärmepr	oduktion und Dichte	(rechts	s)
					· · · · · · · · · · · · · · · · · ·	155

Tabellenverzeichnis

Tabelle 1: Ostal	Übersicht der wichtigsten Einflussfaktoren des geothermischen Regimes im penraum
Tabelle 2a:	Übersicht des Arbeitspakets (WP 1): Geothermische Untersuchungen20
Tabelle 3b:	Übersicht des Arbeitspakets (WP 2): Geochronologische Untersuchungen21
Tabelle 4c:	Übersicht des Arbeitspakets (WP 3): Petrophysikalische Untersuchungen21
Tabelle 5d:	Übersicht des Arbeitspakets (WP 4): Geologische Untersuchungen21
Tabelle 6e:	Übersicht des Arbeitspakets (WP 5): Dissemination22
Tabelle 7:	Übersicht der durchgeführten geothermischen Messkampagnen
Tabelle 8:	Übersicht der durchgeführten numerischen Modellrechnungen54
Tabelle 9: Einflu	Übersicht der gewählten Szenarien der Sensitivitätsstudie über den thermischen ss des Reliefs sowie des Paläoklimas56
Tabelle 10:	Materialparameter des numerischen Modells Tauernfenster
Tabelle 11:	Geologische Situation und Gebirgsüberlagerung an den Standorten der97
Tabelle 12:	Übersicht der durchgeführten Messreihen im A10 Tauerntunnel
Tabelle 13:	Übersicht der berechneten Gebirgstemperaturwerte
Tabelle 14: Luftte	Kabelstollen Hintermuhr: Statistische Übersicht der aufgenommenen mperaturen. Der Nullpunkt der Kilometrierung befindet sich im Portal Hintermuhr.
Tabelle 15:	Messkampagne Wildbad Einöd – mittlere Temperaturgradienten104
Tabelle 16:	Übersicht der ermittelten Wärmestromdichten im Bereich Wildbad Einöd104
Tabelle 17:	Lage der Stationen zur Beobachtung der Lufttemperatur im Bergbau Mittersill
Tabelle 18:	Übersicht der in Badgastein installierten Temperatursensoren110
Tabelle 19:	Lagebeschreibung der installierten Sensoren im Bergbau Schellgaden113
Tabelle 20:	Ergebnisse der durchgeführten geothermischen Untersuchungskampagnen 115
Tabelle 21:	Lithotektonische Übersicht der petrophysikalisch untersuchten Gesteinsproben.

Kurzzusammenfassung

Im Rahmen der Studie THERMTEC wurde die Auswirkung orogenetischer Prozesse auf die Entwicklung des geothermischen Regimes im Ostalpenraum an Hand von Modellregionen untersucht. Der inhaltliche Fokus wurde den Einfluss der Denudation des Tauernfensters auf das das geothermische Regime der vergangenen 16 Mio. Jahre gelegt. Die dem Projekt zu Grunde liegende Forschungshypothese besagt, dass der Einfluss der Denudation (Hebung bei gleichzeitiger Erosion) zu einer Erhöhung der Wärmestromdichte führt, die in tektonisch besonders aktiven Bereichen gegenwärtig noch messtechnisch feststellbar ist. Hierbei stellt sich ein instationäres geothermisches Regime ein, welches von Massenadvektion (Exhumierung tief versenkter Krustenblöcke), Wärmeleitung (Abkühlung durch Hebung in kühlere, oberflächennahe Bereiche der Erdkruste) sowie von der radiogenen Wärmeproduktion (Materialparameter) abhängig ist. In lithotektonischen Einheiten mit geringer Wärmeproduktion (vor Allem basische Tiefengesteine) wird der Abkühlungsprozess durch fehlende Wärmeproduktion beschleunigt, so dass nach Ende der Massenadvektion und Abkühlung durch Wärmeleitung ein Wärmedefizit resultiert. Dies äußert sich in einer reduzierten terrestrischen Wärmestromdichte.

Zur Untersuchung der gekoppelt thermisch- tektonischen Entwicklungsgeschichte des Tauernfensters wurden über 170 möglichst repräsentative Gesteinsproben aus dem Bereich des Tauernfensters und dessen Umgebung gesammelt und petrophysikalisch hinsichtlich der relevanten thermischen Gesteinsparameter (Wärmeleitfähigkeit, spezifische Wärmekapazität, radiogene Wärmeproduktionsrate sowie Dichte, Porosität und seismische P-Wellen Geschwindigkeit) untersucht. Die petrophysikalischen Untersuchungen wurden an der Montanuniversität (MU) Leoben durchgeführt. Ergänzend hierzu wurden geochronologische Daten zur Ableitung von Hebungsmodellen der vergangenen 16 Mio. Jahre aus Literaturguellen erhoben und zusammenge4fasst. Eine ebenfalls avisierte Messkampagne zur Bestimmung von Niedertemperatur Geothermometern (U,Th/He) in Kooperation mit der Universität Salzburg konnte nicht umgesetzt werden. Ergänzend zu den petrophysikalisch- geochemischen Untersuchungen wurden geothermische Daten aus dem inneralpinen Raum mit Fokus auf das Tauernfenster aus Literaturquellen erhoben und hinsichtlich der terrestrischen Wärmestromdichte ausgewertet. Ergänzend zu der Erhebung von Literaturdaten wurden eigene Messkampagnen zur Erfassung der Wärmestromdichte vorrangig in untertägigen Stollen und Tunnels durchgeführt. Hierbei wurde eine an der Geologischen Bundesanstalt neue Methode für untertägige geothermische Messkampagnen ausgearbeitet und erfolgreich angewendet. Das gesamte Tauernfenster wurde in einem geologischen 3D Modell abgebildet und anschließend einer Simulation der geothermischen Entwicklungsgeschichte für den Zeitraum der vergangenen 16 Mio. Jahre unterzogen. Die gekoppelt thermische- tektonische Simulation ergab für die meisten Areale des Tauernfensters keinen rezenten Wärmeüberschuss infolge der Exhumierung. Dies bestätigte sich auch in den erhobenen geothermischen Messdaten, sodass die eingangs postulierte Hypothese nicht verifiziert werden konnte. Eine lokal bis regional vorhandenen positive geothermische Anomalie, die auf tektonische Prozesse zurückgeführt werden kann, wurde lediglich am Südwestrand des Tauernfensters (Region Pustertal) beobachtet. Alle weiteren Anomalien können auf lokale Thermalwassersysteme oder auf erhöhte radiogene Wärmeproduktion zurückgeführt werden.

Abstract

The aim of THERMTEC was to investigate the influence of orogenetic processes on the past and present geothermal conditions at the Eastern Alps based on numerical 3D modelling. Exhumation of deeply buried crustal blocks, combined with simultaneous erosion may lead to excess heat, which is manifested by enhanced geothermal heat flux. The governing thermal processing are governed by mass-advection (exhumation), thermal conductivity (cooling by exposure to shallow crustal regions) and radiogenic heat production (lithological build up). The combination of these processes result in a time variant geothermal regime. Areas lacking of radiogenic heat sources (above all basic mantle rocks) are affected by enforced cooling and lowered heat fluxes, respectively. The geographical focus of THERMTEC was set on the so called Tauern Window, which is known to be highly influenced by tectonic processes.

In the frame of THERMTEC more than 170 rock samples have been collected and investigated for the thermal rock properties thermal conductivity, heat capacity, radiogenic heat production rate as well as for porosity, density and p-wave velocity. In addition geochronological data have been collected based on literature data. These geothermometer (Fission Track as well (U,Th/He)) have been summarized to uplift models, which have directly been applied at numerical 3D modelling.

The nuemrical 3D model bases on a geological 3D model, established by the software package GocadTM, which covers the entire Tauern Window. The numerical coupled thermal- tectonic modelling was performed using the software packages FEFLOWTM and ComsolTM. The influence of uplift on the thermal regime was considered by an advective term (mass advection). In addition, the influence of the surface relief as well as paleoclimatic conditions on the surface near geothermal regime was investigated at parameter studies. The coupled thermal- tectonic modelling resulted in heat flow density maps of the Tauern Window for different points in time at the period of the past 16 mio. years.

The numerical model was finally compared with present heatflow densities derived from geothermal data taken from literature as well as from field measurements executed during THERMTEC. The field measurements were focusing on subsurface temperature measurements in tunnels and mine galleries. In this context, a new workflow has been successfully designed and evaluated during THERMTEC.

The modelling showed, that most parts of the Tauern Window are presently not any longer affected by access heat due to denudation. This result is validated by data gained from field measurement. For that reason the initial hypothesis of still existing heat excess in the region of the Tauern Window could not be verified. Only at the southwestern margin of the Tauern Window a positive geothermal anomaly could be detected, which may result from tectonic processes. All other local to regional scale geothermal anomalies, existing at the Tauern Window, can be related to thermal water convection or enhanced radiogenic heat production (e.g. Zentralgneiskerne in the area of Badgastein – Mallnitz).

Vorwort des Verfassers

Der vorliegende Bericht fasst die wichtigsten Aktivitäten und die daraus erzielten Ergebnisse und Erkenntnisse aus dem Projekt "THERMTEC – Thermisch- tektonische Modellierung aktiver orogenetischer Prozesse in den Ostalpen am Beispiel des Tauernfensters und seiner Berandung sowie der Mur- Mürz- Furche und dem südlichen Wiener Becken" zusammen. Es wird hierbei eine Übersicht der durchgeführten Aktivitäten sowie der wichtigsten Ergebnisse gegeben. Für weiteführende Informationen zu Detailaktivitäten des Projekts THERMTEC wird in diesem zusammenfassenden Abschlussbericht aus Platzgründen auf die diversen Zwischen- und Jahresberichte der Studie THERMTEC verwiesen. Dem Leser soll mit Hilfe dieses Berichts lediglich eine integrative Zusammenschau der durchgeführten Untersuchungen zur Erfassung des terrestrischen Wärmeflusses im Bereich des Tauernfensters ermöglicht werden.

Danksagung

Das Projektteam möchte sich bei folgenden Personen und Betrieben für die aktive Unterstützung zur Durchführung der geothermischen und geologischen Felduntersuchungen bedanken:

Dr. Bruno Haunschmid (bfgh) für die Koordinierung und Begleitung der thermischen Untersuchungen im Vortrieb des zweiten Stollens des "A-10 Tauerntunnels". Besonderer Dank gilt hierbei Dr. Andreas SchindImayr (Geo 2 e.U.) für die Auswahl und Koordinierung der geothermischen Untersuchungen im A-10 Tauerntunnel sowie im "Kabelstollen Hintermuhr" sowie für die Organisation und Leitung der geologischen Exkursionen zum Nordrand und Ostrand des Tauernfensters. Des Weiteren gilt unser Dank Mag. Bernhard Humer (bfgh) für die Organisation und Koordinierung der geothermischen Untersuchungen im Bereich Wildbad Einöd.

Den Österreichischen Bundesbahnen, insbesondere Mag. Karl Hartleitner, Ing. Martin Spiss und Dr. Joschi Kaiser sei für die Ermöglichung und Unterstützung der geothermischen Untersuchungen im Arlberg Eisenbahntunnel herzlich gedankt. In diesem Zusammenhang gilt unser Dank auch Hr. Dipl. Ing. Bruno Klimmer (Asfinag) für die Unterstützung zur Durchführung von Temperaturmessungen im Arlberg Straßentunnel sowie in den Querschlägen zwischen Straßen- und Eisenbahntunnel.

Der Wolfram Bergbau und Hütten AG sei für die Ermöglichung und Begleitung von geothermischen Untersuchungen im Bergbau Mittersill gedankt. Unser besonderer Dank gilt Hr. DI Felix Gaul sowie Hr. DI Christoph Breinl.

Der Brenner Basistunnel BBT – SE, insbesondere Hr. Dr. Anton Rieder und Hr. Dr. Ulrich Burger wird für die Bereitstellung von Bohrkernen zur Durchführung petrophysikalischer Messungen entlang der Trasse des in Bau befindlichen Brenner Basistunnels gedankt.

Abschließend gilt unser besonderer Dank der Österreichischen Akademie der Wissenschaften, die dieses Forschungsprojekt ermöglicht hat.

1 Einleitung

Das Projekt Thermtec wurde von der Österreichischen Akademie der Wissenschaften (ÖAW), Programm Geophysik der Erdkruste (GdE) gefördert und im Zeitraum 2008 bis 2015 durchgeführt. Obgleich bereits mit den Vorbereitungen der Felduntersuchungen im Spätsommer 2007 begonnen worden ist fand der offizielle Projektstart am 17.06.2008 statt. Die Projektdauer war ursprünglich für den Zeitraum von vier Jahren vorgesehen, musste jedoch aufgrund von Personalwechsel und zeitlichen Überschneidungen mit flankierenden Projekten und Wartezeiten für Messkampagnen (z.B. Beprobung von Bohrkernen aus Erkundungsbohrungen des Brenner Basistunnels) kostenneutral verlängert werden. Der offizielle Projektabschluss fand somit im Juli 2105 statt.

Thermtec stellt eine inhaltliche Fortsetzung zu der von der ÖAW finanzierten Studie THER-MALP (2004 – 2012) dar und war zugleich ein wichtiger Stützpfeiler zum Aufbau einer geothermischen Expertengruppe an der Geologischen Bundesanstalt. Die im Rahmen von Thermtec entwickelten Untersuchungsmethoden werden mittlerweile im Rahmen einer geothermischen Landesaufnahme im inneralpinen Raum fortgesetzt.

1.1 Ausgangslage und Fragestellung

Die Verteilung der terrestrischen Wärmestromdichte ist im inneralpinen Raum Österreichs bislang noch nicht flächendeckend bekannt. Als Ursachen hierfür ist primär das Fehlen gleichmäßig verteilter, belastbarer empirischer Daten (Gebirgstemperaturen und thermische Gesteinsparameter) zu nennen. Im Gegensatz zu den großen Beckenregionen fand im inneralpinen Raum mit Ausnahme der Areale der Nördlichen Kalkalpen keine Tiefbohraktivität der Erdölindustrie statt, die wiederum die bislang wichtigste Datenquelle für geothermische Wärmeflussdaten in Österreich repräsentiert. Im inneralpinen Raum standen zu Beginn der Studie THER-MTEC Temperaturdaten aus folgen Quellen zur Verfügung:

- Wärmeflussuntersuchungen in österreichischen Seen: HAENEL & ZOTH (1973) führten Untersuchungskampagnen mittels Rammsonden mit geringen Eindringtiefen an Seeböden durch (siehe hierzu auch Kapitel 2.4). Trotz Durchführung topografischer Korrekturen scheint die Aussagekraft der erhobenen Messdaten jedoch nur bedingt gegeben sein.
- <u>Temperaturmessungen in seichten Erkundungsbohrungen</u>: In den inneralpinen Becken und Tälern wurden zur Erfassung von Grundwasservorkommen und zu Erkundung von Naturraumpotenzialen oftmals Temperaturprofile erhoben. In vielen Fällen liegen auch hier aufgrund von Grundwasserführung Störsignale vor, die zu einer Verzerrung der terrestrischen Wärmestromdichte führen.
- Temperaturmessungen in Tiefbohrungen zu Trassenerkundungen von Tunnelprojekten: Zur Planung der Klimatisierung von Verkehrstunneln wurden in Trassenerkundungsbohrungen oftmals Temperaturmessungen durchgeführt. Diese Datenquellen weisen in nahezu allen Fällen eine hohe Güte auf und sind für die Bestimmung der terrestrischen Wärmestromdichte gut geeignet. Die erste aus Literaturquellen erhobene Tiefbohrung mit präziser Temperaturmessung fand 1973 im Zuge der Planung

des A10 – Tauerntunnels statt (HAHN & HAENEL, 1974). Aufgrund der gesteigerten Tunnelbauaktivität in den vergangenen 10 bis 15 Jahren liegen mittlerweile präzise Temperaturprofile zum Beispiel aus dem Bereich des Brenner- Basistunnels und des Semmering- Basistunnels vor.

- <u>Untertägige Temperaturmessungen</u>: Die ältesten Temperaturmesskampagnen des österreichischen Alpenraums fanden im Arlberg- und Tauerntunnel (Tauernbahn) statt. CLARK (1961) berichtet von den Temperaturmessungen in beiden Tunnel, die bereits vor 1900 durchgeführt worden sind und erstaunlich präzise Ergebnisse erbracht haben. Untertägige Temperaturmessungen in Bergbau Stollen fanden mit Ausnahme touristisch genutzter Stollenanlage (z.B. Heilstollen Radhausberg, Badgastein) und vereinzelter wissenschaftlicher Untersuchungen (z.B. Bergbau Mittersill) bislang nicht statt. Für die Mineral- und Erzprospektion sind Gebirgstemperaturen unerheblich und zudem sind untertägige Explorationsbohrungen aufgrund ihres geringe Durchmessers und der oftmals horizontalen Orientierung nicht für konventionelle Temperaturmessungen geeignet.
- Temperaturmessungen in Thermalwasserquellen und Thermalwasseraustritten: Hierunter sind Temperaturaufzeichnungen in natürlich austretenden Thermalwasserquellen sowie in Thermalwassererkundungsbohrungen zu verstehen. Im Inneralpinen Raum beschränken sich diese Daten auf dem Verbreitungsgebiet zirkulierender Thermalwässer. Neben den bekannten Thermalwasseraustritten im Raum Badgastein bis Lend (Pongau) wurden im Zeitraum der vergangenen 10 bis 15 Jahren im inneralpinen Raum einige Thermalwassererkundungsbohrungen durchgeführt, welche im Fall der Fündigkeit ebenfalls Aufschlüsse über die Gebirgstemperaturen liefern. Leider handelt sich hierbei wiederum um Datenquellen mit hohem Anteil an Störsignalen. Der advektive bzw. konvektive Wärmetransport und der daraus resultierende effektive terrestrische Wärmefluss besitzt nur eine lokale, auf die Fließbahnen der zirkulierenden Thermalwässer beschränkte Gültigkeit. Dies ist zum Beispiel deutlich am Beispiel Badgastein zu erkennen. Hier führen rasch aufsteigende Thermalwässer zu lokalen Wärmeanomalien, die vermutlich um den Faktor 2 bis 3 über dem regionalen Wärmefluss liegen.
- Geothermometrische Untersuchungen: Seit über 20 Jahren werden verstärkt geothermometrische Untersuchungen im Alpenraum zur Erfassung der paläothermischen Zustände in den verschiedenen Krustenelementen der Ostalpen durchgeführt. Zu Beginn wurde der methodische Fokus auf Hochtemperaturanzeiger gelegt (z.B. Apatite Fission Track Geochronolgie). Hierzu gibt MOST (2003) einen guten Überblick über den Datenbestand im Bereich des Tauernfensters. In den vergangenen Jahren verlagerte sich der Forschungsschwerpunkt zusehends auf Niedertemperatur Geothermometer (z.B. U,Th/He Geothermometer). Geothermometrische Daten lassen sich nicht zur Bestimmung der rezenten terrestrischen Wärmestromdichte heranziehen. Sie liefern jedoch wichtige Nebenbedingungen zur Modellierung der thermischen Entwicklungsgeschichte der Ostalpen.

Die geringe Datendichte erlaubt nicht die Erstellung flächendeckender Wärmestromkarten. Daher muss ergänzend auch auf Modellen zurückgegriffen werden. Ein stark generalisiertes Modell des terrestrischen Wärmestroms wurde z.B. von Haenel, 1976) veröffentlicht, welches auf einfachen Überlegungen und stark generalisierten Messdaten beruht (siehe Abbildung 1). Die

Abbildung 1: Zusammenhang zwischen dem terrestrischen Wärmestrom und dem Alter eines Gebirges (entnommen aus HAENEL, 1976; S. 799).

Das in Abbildung 1 dargestellte, stark generalisierte Modell projiziert tektonische Vorgänge auf eine allgemeine Zeitachse. Für eine räumlich differenzierte Betrachtung des Alpenraums ist es natürlich nicht geeignet. Die wichtigsten Einflussfaktoren des geothermischen Regimes im Bereich der Ostalpen sind in der nachfolgenden Tabelle 1 angeführt. Die Klassifizierung dieser Einflussfaktoren erfolgt hierbei nach den Merkmalen (i) räumlicher Einwirkungsraum (lokal bis überregional), (ii) Art des Wärmetransports (Wärmeleitung bis Advektion bzw. Konvektion) und (iii) Prozessgeschwindigkeit (quasistationär bis transient).

Tabelle 1:	Übersicht der wichtigsten Einflussfaktoren des geothermischen Regimes im Ostalpen-
	raum. Grün markierte Parameter wurden im Rahmen von Thermtec berücksichtigt, gelb unter-
	legte Parameter vereinfacht berücksichtigt und rot unterlegte Parameter nicht berücksichtigt.

Einflussfaktor	Räumlicher	Transportmechanis-	Prozessgeschwindig-
geothermisches Regime	Einwirkungs-	mus	keit
	raum		(Zeitraum τ in Jahren)
Oberflächenrelief	lokal bis	Wärmeleitung	transient (τ > 5 Mio.)
	überregional		
Paläoklima	überregional	Wärmeleitung	transient (100.000 < т <
			1 Mio.)
Tiefenwasserzirkulation,	lokal	Advektion / Konvektion	transient (т < 100.000)
Thermalwasser			

Radiogene Wärmeproduk-	Überregional	Wärmeleitung	quasistationär (т > 50
tion			Mio.)
Massenadvektion (Hebung,	lokal bis regional	Advektion (& Wärme-	transient (τ > 5 Mio.)
Senkung mit begleitenden		leitung)	
erosiven und sedimentären			
Prozessen)			

Numerische Modelle zur Quantifizierung der Einflussparameter des effektiven geothermischen Regimes wurden zum Beispiel entlang des TRANSALP Profils (Nord Süd Profil durch Tirol) von CLAUSER & LAMMERER (2003) bzw. VOSTEEN ET AL (2006) publiziert. Diese Modelle beruhen jedoch ausschließlich auf Krustenkonzepte, die auf den Ergebnissen des Tiefenseismischen Profils entlang der TRANSALP Trasse und konnten nicht mit realen Messdaten kalibriert werden (z.B. mittels Bestimmung des rezenten Wärmestroms). Regionale bis überregionale 3D Modelle zum geothermischen Regime in den Ostalpen wurden bislang nicht erstellt.

Neben den Modellen über das rezente geothermische Regime sind in der Literatur einige Modelle zur Entwicklung des geothermischen Regimes im Ostalpenraum angeführt. Stellvertretend zu vielen anderen Arbeiten werden an dieser Stelle die Veröffentlichung zu Paläowärmeflüssen von SACHSENHOFER (2001) und FÜGENSCHUH (2000) erwähnt. Paläothermische Modelle fokussieren jedoch zumeist auf zeitlich differenzierte tektonische Prozesse, wobei Paläotemperaturen als Teil der zeitlich abhängigen p-T Bedingungen nur als Stützstellen der tektonischen Modelle fungieren. Aussagen über die Auswirkungen der paläothermischen Regimes und den dazwischen stattgefunden tektonischen Aktivitäten auf das rezente geothermische Regime werden hierbei nicht getätigt.

An diesem Punkt setzte die Studie THERMTEC an: Die zentrale Fragestellung betraf die Auswirkungen orogenetischer Prozesse in Form von vertikalen Krustenbewegungen (Massenadvektion) auf das rezente geothermische Regime im Ostalpenraum. *Die zu Grunde liegende forschungsleitende Hypothese besagt, dass die maßgeblichen orogenetischen Prozesse der Ostalpen noch immer zu rezenten lokalen bis regionalen geothermischen Anomalien (Wärmeüberschuss oder Wärmedefizit) führen.*

Tektonisch verursachte vertikale Bewegungen von Krustenblöcken in Form von Hebungen und Senkungen besitzen in Zusammenwirkung mit den hiermit verbundenen exogenen geologischen Prozessen wie Erosion und Sedimentation einen nicht vernachlässigbaren Einfluss auf das regional vorherrschende geothermische Regime. Die rasche Hebung (Exhumierung) tief versenkter und daher warmer Krustenelemente in Kombination mit Erosion und/oder tektonisch verursachter Denudation führt zu einer positiven Wärmeanomalie, welche sich durch einen erhöhten terrestrischen Wärmefluss manifestiert. Versenkung in Kombination mit der Ablagerung "kalter" Oberflächensedimente führt hingegen zu einer allgemeinen Abkühlung und der Herabsetzung des terrestrischen Wärmeflusses. In beiden zuvor skizzierten Fällen liegt ein zeitlich veränderliches (instationäres) Temperaturregime vor.

Im Bereich der Ostalpen und den umschließenden Vorlandbecken lassen sich sowohl Bereiche aktiver Hebung als auch Bereiche aktiver Versenkung identifizieren. Bei Betrachtung der jungalpidischen tektonischen Entwicklungsgeschichte der Ostalpen ab dem frühen Miozän sind vor allem die penninischen und subpenninischen Krustenblöcke des Tauernfensters jene

Elemente, die am weitesten exhumiert wurden und auch rezent noch die größten Hebungsraten der Ostalpen aufweisen. Dem gegenüber stehen junge intramontane Versenkungs- und Störungszonen, wie etwa das Fohnsdorfer Becken oder das Lavanttal.

Eine Sonderstellung nimmt das Wiener Becken, insbesondere dessen südlicher Anteil (südliches Wiener Becken) ein. Seit dem unteren Miozän (Burdigal) findet eine bis dato andauernde Absenkung alpiner Einheiten mit syntektonischer Sedimentation statt. Die Beckenfüllungen bestehen aus bis zu über 5000m mächtigen neogenen Sedimenten. Das tektonische Bindeglied zwischen den beiden zuvor angesprochenen Regionen bildet die Mur- Mürzfurche, eine tektonisch aktive Region, in welcher Horizontalbewegungen (Translationen) überwiegen.

1.2 Zielsetzungen

Das übergeordnete Ziel der Studie "THERMTEC" lag im Versuch einer Quantifizierung des Einflusses junger (jungtertiärer) bis rezenter tektonischer Aktivität auf das geothermische Regime der Ostalpen. Dies soll am Beispiel folgender Untersuchungsgebiete erfolgen:

<u>Tauernfenster</u>: Als Beispiel einer positiven geothermischen Anomalie, verursacht durch die rasche Exhumierung der penninischen und subpenninischen Decken des Tauernfensters.

<u>Südliches Wiener Becken</u>: Dieses Testgebiet weist aufgrund der jungtertiären Beckenbildung und der syntektonischen Ablagerung "kalter" Sedimente einen negativen Einfluss auf das geothermische Regime auf.

<u>Mur-Mürzfurche</u>: Diese Modellregion diente als Referenzgebiet. Da hier subhorizontale Bewegungskomponenten vorherrschen, sollten die Auswirkungen auf das rezente geothermische Regime vernachlässigbar sein.

Durch begleitende Felduntersuchungen sollte zudem die Anzahl an Stützstellen zum rezenten geothermischen Regime erhöht werden. Letztendlich sollten mit Hilfe von Thermtec aus der Kombination von Modellen und Felddaten wichtige Beiträge für zukünftige flächendeckende Wärmestromkarten des Alpenraums erarbeitet werden.

Zum Erreichen der übergeordneten Zielsetzungen wurden nachfolgend aufgelistete, sekundäre Projektziele formuliert:

Thermische Untersuchungen:

- Verbesserung der geothermischen Datenlage im inneralpinen Raum durch Zusatzmessungen im Bereich des östlichen und zentralen Anteils des Tauernfensters und der Murfurche.
- Entwicklung geeigneter Messanordnungen und Auswertealgorithmen zur Erfassung von ungestörten Gebirgstemperaturen und Wärmeflussdichten in untertägigen Stollenund Bergbausystemen.

- Entwurf einer geeigneten Vorgehensweise zur Darstellung der geothermischen Auswirkungen vertikaler Krustenbewegungen auf Grundlage der Finite-Elemente Simulationstechnik. Hier gilt es vor allem geeignete Wege zur Berücksichtigung eines zeitlich veränderlichen Oberflächenreliefs (dynamische Gitternetze) zu finden.
- Erarbeitung verbesserter Konzepte hinsichtlich des rezenten terrestrischen Wärmestroms in den Ostalpen. Diese Konzepte sollen sowohl auf empirisch erhobene als auch auf modellrechnerisch ermittelten Kenndaten beruhen. In diesem Zusammenhang soll verstärktes Augenmerk auf den Versuch gelegt werden, das geothermische Gesamtfeld in seine Einzelfelder (basaler Wärmefluss, Anteil radiogener Wärmeproduktion sowie geothermisches Anomaliefeld infolge der Gebirgstektonik).

Petrophysikalische Untersuchungen:

- Verdichtung der Datenlage hinsichtlich thermisch relevanter Gesteinsparameter (z.B. Wärmeleitfähigkeit und deren Anisotropie, spezifische Wärmekapazität und radiogene Wärmeproduktionsrate). Besonderer Fokus wird auf die Erfassung anisotroper Wärmeleitungseigenschaften kristalliner und metamorpher Gesteine aus den Untersuchungsgebieten gelegt.
- Erweiterung bestehender petrophysikalischer Datenbanken an der Geologischen Bundesanstalt und der Montanuniversität Leoben.

Geologische Modellierung:

- Darstellung des geologisch-tektonischen Aufbaus des Tauernfensters in dreidimensionalen Modellen mit unterschiedlichen Auflösungen (tektonisch simplifiziertes Regionalmodell des Tauernfensters, Detailmodelle im Bereich dessen Ost- und Westrandes). Überprüfung gängiger tektonischer Modelle des Tauernfensters im Zuge der Modellierung.
- Kritische Überprüfung der bislang publizierten geologischen und tektonischen Modelle durch Einbau in geologische 3D Modelle.
- Leistungstest der geologischen Modellierprogramme Geomodeller™ (Fa. Intrepid Geophysics) und GOCAD™ (Paradigm) anhand komplexer geologischer Fragestellungen im Bereich des Tauernfensters.

Darstellung der tektonischen Entwicklungsgeschichte:

- Zusammenfassung und Interpretation bereits publizierter geochronologischer Basisdaten aus dem Tauernfenster.
- Ergänzung der geochronologischen Kenndaten im Bereich des Tauernfensters und dessen Berandung durch gezielte Datierungen in ausgewählten Gebieten.

• Entwicklung von paläotektonischen Modellen für die einzelnen Arbeitsgebiete. Diese Entwicklungsmodelle dienen als konvektive Randbedingung (Massenadvektion) der numerischen thermischen Simulation.

1.3 Vorgehensweise und Methodik

Der zu Grunde liegende Ansatz der Studie lag in der Verarbeitung rezenter geothermischer insitu Messungen in einer zeitabhängigen drei-dimensionalen Simulation unter Berücksichtigung der tektono- metamorphen Entwicklungsgeschichte ab dem Miozän. Diese wurde anhand radiometrischer Altersdaten von unterschiedlichen Mineralen abgeleitet. Durch den Entwurf drei dimensionaler geologisch-tektonischer Modelle sollte die zeitabhängige Simulation des terrestrischen Temperaturregimes unter Berücksichtigung anisotroper Wärmeleitfähigkeiten erfolgen, welche vor allem in den betroffen Krustenanteilen des Penninikums und Subpenninikums, aber auch in den angrenzenden kristallinen Einheiten des Ostalpins, als nicht vernachlässigbar einzuschätzen sind. Die Beurteilung der Hebungs- und Senkungsentwicklungen einzelner tektonischer Elemente sollte auf Grundlage der Annahme von Massenadvektion erfolgen. Hierbei wird der advektive Wärmetransport durch zeitlich variierende Bewegungsraten gesteuert - das Gebirge wird über einem Zeitraum von mehreren Millionen Jahren guasi als Flüssigkeit betrachtet. Eine weitere entscheidende Größe der instationären Betrachtung des geothermischen Regimes mittels Massenadvektion stellt die radiogene Wärmeproduktion dar. Dies gilt vor Allem in Arealen, in welchen basische Gesteinskörper mittels Hebung an die Oberfläche verfrachtet werden. Aufgrund der geringen Wärmeproduktion in diesen Gesteinsserien kann nach Abbau des Wärmeüberschusses infolge von Denudation (Hebung bei gleichzeitiger Erosion) ein Wärmedefizit auftreten. Dies führt zu einer weiteren Verstärkung des transienten Charakters des geothermischen Regimes im Bereich aktiver Orogene. HAENEL (1976) vermutet diesen Effekt für den Bereich des Tauernfensters und begründet dies mit den Ergebnissen Wärmeflussmessungen in Gebirgsseen entlang dessen Berandungsbereichs.

Zur Umsetzung des Forschungsansatzes wurde ein Arbeitsplan basierend auf 4 operativen Arbeitspaketen erarbeitet. Die definierten Arbeitspakete samt wichtigster Arbeitsschritte sind in der nachfolgenden Tabelle 2 *a* bis *e* zusammengefasst:

Arbeitspaket (WP) 1: Geothermische Untersuchungen		
WP 1.1	Erhebung von Literatur- und Archivdaten aus	Literaturdatenbank
	den Untersuchungsgebieten.	
WP 1.2	Geothermische Felduntersuchungen in den	Detailberichte zu den Feldkampagnen
	Untersuchungsgebieten mit Fokus auf untertä-	
	gigen Messkampagnen	
WP 1.3	Datenauswertung bestehender und neu erho-	Kenndatenbank (GIS fähig)
	bener geothermischer Basisdaten	
WP 1.4	Thermische Simulationsläufe mit Fokus auf die	2D Temperaturschnitte
	modellrechnerische Erfassung von Massenad-	
	vektion.	

Tabelle 2a: Übersicht des Arbeitspakets (WP 1): Geothermische Untersuchungen

WP 1.5	Datenanalyse und Interpretation mit Fokus auf	Wärmeflusskonzepte für verschiedene
	der komplexen Zusammenschau der erhobe-	Positionen innerhalb der Untersu-
	nen Felddaten und numerischen Modellen.	chungsgebiete.

Tabelle 3b: Übersicht des Arbeitspakets (WP 2): Geochronologische Untersuchungen

Arbeitspaket (WP) 2: Geochronologische Untersuchungen		
WP 2.1	Erhebung von Literaturdaten aus den Untersu-	Literaturdatenbank
	chungsgebieten.	
WP 2.2	Geochronologische Untersuchungen mit Fo-	Kenndatenblätter
	kus auf Niedertemperatur Geothermometer an	
	der Universität Salzburg.	
WP 2.3	Zusammenfassung bestehender und neu er-	GIS fähiger Kenndatensatz
	hobener geochronologischer Messdaten ge-	
	mäß den ausgewiesenen tektonischen Ele-	
	menten.	
WP 2.4	Erarbeitung von Hebungsmodellen ausge-	1D Hebungsmodelle
	wählter tektonischer Blöcke als Eingangspara-	
	meter für die thermische Simulation.	

Tabelle 4c: Übersicht des Arbeitspakets (WP 3): Petrophysikalische Untersuchungen

Arbeitspaket (WP) 3: Petrophysikalische Untersuchungen		
WP 3.1	Erhebung von Literaturdaten aus den Untersu-	Literaturdatenbank
	chungsgebieten.	
WP 3.2	Erhebung von Gesteinsproben und Durchfüh-	Kenndatenblätter
	rung petrophysikalischer Laboruntersuchun-	
	gen an der MU Leoben.	
WP 3.3	Zusammenfassung bestehender und neu er-	GIS fähiger Kenndatensatz
	hobener petrophysikalischer Messdaten ge-	
	mäß den ausgewiesenen tektonischen Ele-	
	menten.	
WP 3.4	Erarbeitung von petrophysikalischen Modellen	1D Hebungsmodelle
	als Eingangsparameter für die thermische Si-	
	mulation.	

Tabelle 5d: Übersicht des Arbeitspakets (WP 4): Geologische Untersuchungen

Arbeitspaket (WP) 4: Geologische Untersuchungen		
WP 4.1	Vorbereitung der geologischen 3D Modelle: Er-	Darstellung der Datenlage (GIS Daten-
	hebung von publizierten geologischen Karten	satz der Metainformationen)
	und Profilen sowie geologisch- tektonische	Konzeptionelle geologische 3D Mo-
	Gliederung der Modelle (Auswahl Modellein-	delle (Modelldesign)
	heiten).	
WP 4.2	Auswahl von Gesteinsproben für WP3 und be-	Probenkennblätter
	gleitende petrologische und mineralogische	
	Untersuchungen zur Ableitung petrophysikali-	
	scher Modelle	

WP 4.3	Aufbau geologischer 3D Modelle in unter-	3D Modelle
	schiedlichen Detailierungsgraden für das Tau-	Geologische Serienschnitte und Karten
	ernfenster.	
WP 4.4	Aufbereitung und Export der geologischen 3D	Geologische Strukturmodelle in aus-
	Modelle für die numerische Simulation.	tauschfähigen Datenformaten

Tabelle 6e: Übersicht des Arbeitspakets (WP 5): Dissemination

Arbeitspaket (WP) 5: Dissemination		
WP 5.1	Präsentation der Studie Thermtec in Konferen-	Mindestens 2 Fachbeiträge
	zen und Fachveranstaltungen	
WP 5.2	Öffentliche Workshops zu den Ergebnissen	Mindestens eine Fachveranstaltung
	der Studie Thermtec	(öffentlicher Vortrag) an der Geologi-
		schen Bundesanstalt

Das Projekt Thermtec gliederte sich in folgende drei Hauptphasen:

- Initialphase (Projektmonat 1 bis 18): In diesem Zeitraum werden die bestehenden Literatur- und Archivdaten erhoben sowie die avisierten zusätzlichen Feldmessungen durchgeführt. Der damit verbundene Meilenstein sieht die Auswahl der Modellierungsgebiete sowie die Kompilation der für die Modellierung und Interpretation der Modellierungsergebnisse notwendigen Daten vor.
- <u>Modellierungsphase</u> (Projektmonat 18 bis 36): Im Zuge der Modellierungsphase werden die geologisch- tektonischen Modelle aufgebaut und die avisierten numerischen Simulationen durchgeführt. Hierbei wird der Fokus im Modellgebiet Tauernfenster auf der Abbildung von Denudationsprozessen und das Hauptaugenmerk im Modellgebiet südliches Wiener Becken auf die Abbildung von Sedimentationsprozessen gelegt. Der Abschluss der numerischen Simulationen bildet die abschließenden Meilensteine dieser Phase.
- Interpretationsphase (Projektmonat 36 bis 48): Im Rahmen der Interpretationsphase werden die erarbeiteten Modelle hinsichtlich des Einflusses auf das rezente geothermische Regime interpretiert. Die damit verbundenen Meilensteine sehen die Quantifizierung des Einflusses tektonischer Bewegungen auf das geothermische Regime sowie Aussagen über rezente Wärmestromverteilungen im alpinen Raum vor.

2 Das Projektgebiet Tauernfenster

2.1 Einleitung

Wie in Kapitel 1 angeführt war in der Planung der Studie THERMTEC ursprünglich vorgesehen drei Untersuchungsgebiete zu bearbeiten, wobei der Arbeitsschwerpunkt stets auf dem Gebiet "Tauernfenster" gelegt worden ist. Für das Untersuchungsgebiet "Murz- Mürzfurche" war vorgesehen zu Referenzzwecke Wärmestromdaten zu erheben.

Für das Gebiet "Südliches Wiener Becken" waren ebenfalls thermische Simulationen zur Quantifizierung des Einflusses von Subduktion mit gleichzeitigen Sedimentationsprozessen

vorgesehen. Im Rahmen der Bearbeitung von Daten aus dem Wiener Becken zeigte sich jedoch, dass der thermische Einfluss der Sedimentation im südlichen Wiener Becken in den zur Verfügung stehenden Temperaturdaten nicht eindeutig feststellbar ist. Dieser Effekt lässt sich hingegen im zentralen und nördlichen Abschnitt des Wiener Beckens in den dort vorhandenen Depozentren erkennen. Im südlichen Wiener Becken sind hingegen Maskierungseffekte durch zirkulierendes Thermalwasser und durch den Einfluss des angrenzenden Pannonischen Beckens zu erkennen. Aus den zuvor genannten Gründen wurde nach der Initialphase des Projekts beschlossen die zusätzlichen thermischen Simulationen im Bereich des südlichen Wiener Beckens zu Gunsten einer Vertiefung der Datenerhebungs- und Modellierungsaktivitäten im Tauernfenster aufzugeben.

Da der Bearbeitungsschwerpunkt von THERMTEC schließlich klar auf dem Tauernfenster lag wird nur dieses Gebiet im nachfolgenden Kapitel beschrieben. Der geologische Rahmen der Mur- Mürzfurche wird im Rahmen der Beschreibung der Wärmestromerhebungen im Raum Neumarkt – Wildbad Einöd (Kapitel 4.1) sowie in der Diskussion der erzielten Ergebnisse (Kapitel 5.1) skizziert.

2.2 Geografische Übersicht

Das Modellierungsgebiet Tauernfenster besitzt bei einer rechteckigen Form eine Ost – West Ausdehnung von 175 km sowie eine Nord – Süd Erstreckung von 55 km. Die nördliche Berandung befindet sich nördlich des Salzachtals. Im Westen endet das Modellierungsgebiet westlich des Wipptals, sodass der gesamte Abschnitt der Trasse des Brenner- Basistunnels erfasst werden konnte. Die südliche Berandung umfasst Teile des westlichen Pustertals in Südtirol und verläuft anschließend nördlich der Linie Bruneck – Millstatt. Im Osten endet das Modellierungsgebeit entlang der Linie Katschberg – St. Michael im Lungau – Schladming.

Das Modellierungsgebiet umfasst die Bundesländer Salzburg (Pongau, Lungau und Pinzgau), Kärnten (Oberkärnten), Tirol (Osttirol, Unteres Inntal) sowie Teile Italiens (Südtirol). Das Gebiet wurde zudem so gewählt, dass die angrenzenden Ostalpinen Randzonen ebenfalls abgebildet werden konnten (siehe hierzu auch Kapitel 2.3). Zudem beinhaltet das Gebiet wichtige Nord – Südverkehrsachsen (A10 Tauernautobahn, Tauernbahn und A13 Brenner Autobahn sowie geplanter Brenner Basistunnel), um auf Tunnelgebäude zur Erhebung von untertägigen Gebirgstemperaturen zurückgreifen zu können. Die Lage des Modellierungsgebiets ist in der nachfolgenden Abbildung 2 dargestellt.

Abbildung 2: Geografische Lage des Modellierungsgebiets Tauernfenster.

Der Datenerhebungsraum der Studie THERMTEC umfasste jedoch auch Areale außerhalb des Modellierungsgebiets Tauernfenster. Neben den bereits erwähnten Wärmestrom Erhebungen im Bereich der geplanten S37 – Trasse entlang der Achse Neumarkt i.d. Steiermark und Wildbad Einöd (Murtal) wurden auch Daten im Bereich des Arlbergs erhoben.

2.3 Geologisch- tektonischer Übersicht

2.3.1 Ablagerungsgeschichte und tektonische Entwicklung

Im Tauernfenster kommen zwischen Brennerpass und Katschberg in einer weit gespannten Aufwölbung die tektonisch tiefsten Einheiten der Ostalpen zum Vorschein.

Drei tektonische Haupteinheiten können unterschieden werden:

Im Innersten des Fensters tritt **voralpidisches Grundgebirge** (Zentralgneis mit Altem Dach) zu Tage. Dieses hat mitsamt seiner **permomesozoischen Sedimentbedeckung** starke Ähnlichkeit mit dem Grundgebirge und den Sedimenten des nördlichen Vorlandes (Molasseuntergrund, Böhmische Masse, helvetische Kristallinkerne der Schweizer Alpen).

Darüber folgen paläozoische und mesozoische Serien, die mit dem Penninikum der Schweizer Alpen verglichen werden können.

Um das Fenster herum schließt sich ein in Decken und Schuppen zerlegter Ring **unterostalpiner und penninischer Gesteinsserien** (Unterostalpiner Rahmen, Matreier Zone, Nordrahmenzone).

Das voralpidische Kristallin besteht hauptsächlich aus Orthogneisen, Migmatiten, Paragneisen, sauren tuffitischen Gneisen, Glimmerschiefern und Phylliten. Weiters sind einige Serpentinit- und Talkvorkommen (Zemmgrund, Pfitscherjochgebiet, Stubachtal) bekannt. Die Orthogneise werden traditionell als **Zentralgneise, die Hüllgesteine als Altes Dach** bezeichnet.

Abbildung 3: Großtektonische Übersicht des Modellierungsgebiets Tauernfenster. Kartengrundlage: Geologische Karte Rocky Austria im Maßstab 1:500.000.

Bei den Metaplutoniten (Intrusionsalter zwischen 340 und 250 Ma) lässt sich eine zeitliche Abfolge erkennen. Kalifeldspatreiche, porphyrische Metagranite und ihre Gangfolge sind älter einzustufen als die zweite, stärker differenzierte Intrusivgesteinsgruppe. Diese beginnt mit Dioriten, eventuell Gabbros und umfasst überwiegend granitische bis tonalitische und leukogranitische Gesteine. Die Zentralgneise sind tlw. vererzt (z. B. Fluorit, Molybdänglanz, Gold, Pyrit, Arsenkies, Bleiglanz, Kupferkies).

Bei den voralpidischen Gesteinen des **Alten Daches** (Paragesteine, Migmatite, Metabasite und Metavulkanite) ist die Altersgliederung schwierig. Bei einigen vulkanogenen und tuffitischen Gneisen ergeben sich Vergleichsmöglichkeiten mit altpaläozoischen (speziell ordovizischen) Serien des Ostalpins. Paläozoische Karbonatgesteine fehlen im Allgemeinen. Lediglich bei einigen Marmorzügen des Venediger- und Granatspitzgebietes besteht Verdacht auf paläozoisches Alter.

Gute stratigraphische Vorstellungen existieren bezüglich der **postvariszischen Metasedimente auf Zentralgneisen und Altem Dach.** Hier diente die Oberjura-Datierung des Hochstegenmarmors durch Perisphinctes sp., Belemnitenfragmente und Schwammspiculae als stratigraphischer Fixpunkt. Davon ausgehend lässt sich, vom Transgressionskontakt weg folgende Stratigraphie ableiten:

Perm- und Triassedimente (Quarzite, quarzitische Schiefer, Dolomite, Kalke, Rauhwacken,...) sind nur lokal und in geringer Mächtigkeit vorhanden. Über diese Schichten transgredieren schwarze Quarzite und Schwarzphyllite des Lias. Lokal folgen darüber braune, unreine Marmore (vermutlich Dogger) und der oberjurassische Hochstegenmarmor und Hochstegendolomit.

Vermutlich kretazisches Alter hat die über dem Hochstegenmarmor (Hochstegenfazies) einsetzende **Kaserer Formation** (stark terrigen beeinflusste Bündner Schiefer – Fazies; Schwarzphyllite, Kalkphyllite, Metaarkose, Breccie, Dolomitlagen und –linsen, Quarzite).

Die **permotriassischen Transgressionssedimente** auf den Zentralgneisen bzw. dem Alten Dach sind als **Wustkogelserie** (Permoskyth) und **Seidelwinkeltrias** (Mittel- und Obertrias) beschrieben. In den mittleren Hohen Tauern wurde in der südlichen Venedigerdecke fossilführendes Karbon gefunden. In den permoskythischen Sedimenten kommen lokal synsedimentäre Urananhäufungen (Pechblendenlagen in Quarzitschiefern z. B. Windtal, Ahrntal) vor. In den mittleren Hohen Tauern besteht das **Permoskyth** aus quarzreichen Metasedimenten (Quarzite, Arkosegneise mit Quarzporphyrgeröllen, Quarzkonglomerate, Rötschiefer...). Es liegt dem Hochalm-Ankogel-Massiv diskordant auf.

Die **Mitteltrias** ist karbonatisch entwickelt (Reichenhaller Rauhwacke, anisischer Bänderkalk, Hornsteinknollenkalk, Dolomit). Eine **gipsreiche Dolomitserie** wird ins Karn gestellt. Die höhere Trias repräsentieren helle Chloritoidphyllite, Quarzitschiefer und auch glimmerreiche Dolomitschiefer. Die geschilderte Serie **(Seidlwinkelformation)** liegt bestens erhalten im Seidlwinkeltal und an der Glocknerstraße vor. In anderen Abschnitten des Tauernfensters ist sie primär oder tektonisch stark reduziert.

Die Bündner Schiefer Fazies werden in eine Brennkogel- Glockner- und Fuscherfazies gegliedert. Die in den mittleren Hohen Tauern auftretende **Brennkogelserie** weist in der nachtriassischen Schichtfolge eine mächtige Serie in **Bündner Schieferentwicklung** (Glocknerdecke in Brennkogelfazies) auf. Charakteristisch für diese Schichtfolge ist das Auftreten von reichlich detritischem Material in der Phyllit-, Graphitphyllit- und Kalkphyllitfolge. Man erkennt darin die Kontinentnähe der terrigen beeinflussten Lias- oder Doggersedimente. Im Gegensatz zur südlich anschließenden Glocknerfazies treten in der Brennkogelfazies nur untergeordnet basische Vulkanite auf. Die Brennkogelserie wird üblicherweise als liassische bis kretazische Schichtfolge eingestuft, da ein normaler Verband mit der unterlagernden Permotrias zu bestehen scheint. Vergleiche zwischen Brennkogelserie und Kaserer Formation lassen eher den Schluss zu, dass es sich bei beiden um kretazische Schichtfolgen handelt. Das kann aus Profilen, die nahezu idente lithostratigraphie aufweisen, abgeleitet werden. Ein kretazisches Alter der Brennkogelserie wurde von THIELE (1980) bereits vermutet.

Die **Glocknerdecke s.str.** liegt in **Glocknerfazies** vor. Aufgrund der Lithofazies wird angenommen, dass dieser Sedimentationsraum ursprünglich südlich an die **Brennkogelfazies** anschloss und durch außerordentlich mächtige Serien von Bündner Schiefern und die basischen Metavulkanite gekennzeichnet ist. Die zahlreichen Vorkommen von ultrabasischen Gesteinen, meist Serpentinite, belegen, dass große Teile der Glocknerdecke direkt auf ozeanischer Kruste abgelagert worden ist. Der Ablagerungsraum der **Fuscherfazies** ist südlich der Glocknerfazies anzunehmen. Charakteristisch für die Fuscherfazies sind tonreiche Sedimente, die nahe dem ostalpinen Kontinentalrand abgelagert wurden. Dünnschichtige Quarzite in den Phylliten werden als jurassische Radiolarite interpretiert (FRASL & FRANK 1966). Gering mächtige Breccienlagen in den Fuscher Phylliten, können vom südlich anschließenden unterostalpinen Faziesraum abgeleitet werden. Die darüber liegende Serie (Anthauptenserie am Tauernnordrand) führt flyschartige, zum Teil gradierte Sandsteine und Feinbreccien und dürfte unterkretazischen Alters sein. Die Gesteine der Fuscher Fazies sind heute in einer schmalen Zone am Südrand des Tauernfensters und an dessen Nordrand erhalten. Die Zone der **Klammkalkfazies** repräsentiert den südlichsten penninischen Faziesraum (nach TOLLMANN, 1962),

der sehr kalkreich entwickelt ist und am weitesten nach Norden transportiert wurde. Die **un**terostalpinen und oberostalpinen Faziesbereiche schließen südlich an die Klammkalkzone an.

Entwicklung des Penninischen Ozeans

Das Profil a zeigt schematisch das Auseinanderbrechen der kontinentalen Kruste zu Beginn des Jura mit der Ablagerung klastischer Kontinentalrandsedimente und dem ersten Eindringen basischer Magmen. Profil b zeigt die fortgeschrittene Entwicklung des Ozeanbeckens mit einer ozeanischen Kruste und einem dieser Kruste aufgesetzten Vulkanismus.

Die tektonisch tiefsten Elemente des Tauernfensters sind die Zentralgneiskerne mit ihrem Alten Dach. Das **Alte Dach** wird in folgende lithologische Einheiten unterteilt (FRISCH ET AL. 1993, in RAUMER ET AL. (1993) S 349):

1. In eine **ophiolithische Serie** (Stubach-Gruppe).

2. In eine spät proterozoische bis früh paläozoische, hauptsächlich **kalkalkaline magmatische und sedimentäre Serie** (Habach-Storz-Gruppe), die einen vulkanischen Inselbogen repräsentiert. Die hauptsächlich kalkalkalinen, variszischen Granitoide (Zentralgneise), intrudierten in das Alte Dach.

2.3.2 Die Metamorphose im Tauernfenster

Das Metamorphosegeschehen im Tauernfenster besitzt mehrphasigen Charakter, wobei es präalpidische bis jungalpidische Ereignisse umfasst.

Die **variszische Metamorphose** lässt sich nur lokal nachweisen. Die Intrusion der variszischen Granite führte zu einer weit verbreiteten Migmatitbildung. Relikte einer voralpidischen Metamorphose sind in der südlichen Habachzunge noch vorhanden (z. B. Formrelikte von Andalusiten in Glimmerschiefern). Amphibolitfazielle Metamorphosebedingungen sind aus dem sogenannten "Zwölferzug" der Habachserie bekannt. Relikte variszischer Eklogite wurden aus dem Tauernfenster ebenfalls beschrieben.

Alpidisch lassen sich mindestens drei Metamorphoseereignisse differenzieren. Das erste alpin-tertiäre Ereignis führte zur Bildung der Eklogite, die an eine schmale Zone in der Südabdachung des Tauernfensters gebunden sind. Die Bildungsbedingungen der Eklogite werden mit 20 kbar und 550-600°C angegeben (MILLER ET AL. 1980).

Das zweite Metamorphoseereignis, eine **Blauschiefermetamorphose**, wird generell jünger als die Eklogitfaziesmetamorphose eingestuft. Die Bildungsbedingungen der Blauschiefer lassen sich nicht klar definieren, da nur mehr Mineralrelikte (z. B. Pseudomorphosen nach Lawsonit, sehr Si-reiche Phengite in Metavulkaniten, Relikte von Na-Amphibolen – Glaukophan, Crossit) erkennbar sind. Die Verbreitung dieser Relikte beschränkt sich auf die mesozoischen Ophiolithe und den Serien im Liegenden. Die Metamorphosebedingungen liegen bei ca. 450°C und 7-9 kbar.

Das **dritte Metamorphoseereignis**, in **Grünschiefer bis Amphibolitfazies** zeigt eine Zunahme von den Rändern des Tauernfensters hin zum Zentrum. Dies kann gut an der Zusammensetzung der Feldspate nachvollzogen werden. Am Rand des Tauernfensters treten Albite auf, im zentralen Bereich Oligoklase. Das Auftreten von Granat deckt sich weitgehend mit dem des Oligoklas. Innerhalb der Granatzone finden sich lokal die Minerale Disthen und Staurolith. Die Temperatur dieser Metamorphose variiert vom Rand zum Zentrum des Tauernfensters zwischen ca. 400 – 450°C und 500 – 550°C. Bereichsweise waren die Temperaturen noch etwas höher.

Abbildung 5: Karte der Verbreitung der Eklogite und der Blauschieferfazies in den mittleren Hohen Tauern; HÖCK ET AL. (1994).

Abbildung 6: Druck – Temperatur – Diagramm für die Metamorphoseentwicklung im Tauernfenster. *E... Eklogitfazies, B... Blauschieferfazies, G/A... Grünschiefer-Amphibolitfazies*

Abbildung 7: Karte der Verteilung der tertiären Metamorphose in Grünschieferfazies und Amphibolitfazies. HÖCK ET AL. (1994).

2.3.3 Lithotektonische Gliederung

Die Systematik der Zentralgneiskerne

Als Zentralgneis werden in der Literatur verschiedene präalpidische Metaplutonite und Migmatite des Tauernfensters zusammenfassend bezeichnet (Porphyrische Granite, Tonalite, Leukogranite, Granodiorite, Diorite und selten Gabbros).

Die altbekannten Bezeichnungen der Zentralgneiskomplexe als "Kerne" sind in diesem Bericht als informelle Arbeitsbegriffe zu sehen. Sie werden zukünftig nicht weiter verwendet werden, da diese Granitoide keine in situ aufgewölbten Krustenteile darstellen sondern über weite Stre-

cken belegbare eigenständige Deckenkörper (Venediger-Deckensystem) sind. Nomenklatorisch wird der Gliederung von SCHMID ET AL (2013) gefolgt. Diese Autoren fassten die "Zentralgneisdecken" mit ihren Metasedimenten als ursprünglichen Teil des distalen europäischen Kontinentalrandes auf (Subpenninische Decken), der in den Hangendteil des Venedigerduplex (Modereck Decken System, Eklogit Zone, Wolfendorn Decke) und in den Venediger Duplex untergliedert wird. Letzterer besteht aus den postvarizischen Metasedimenten und ihrem kristallinen Untergrund und wird von der höchsten zur tiefsten Einheit folgendermaßen eingeteilt: Zillertal-Riffel-, Sonnblick- Romate- und Mureck-Storz-Decken; Tux-, Granatspitz- und Hochalmdecken; Ahorn- und Gössdecken.

Durchschlagen werden diese Metaplutonite häufig von hellen und dunklen Gängen. Den Plutoniten folgen pegmatitische und aplitische Gänge als spätmagmatogene Bildungen. Diese zeigen außer Quarz und Feldspat keine auffallenden Mineralisationen. Die Gänge weisen scheinbar eine sehr lose E – W Orientierung auf, schlagen aber auch in allen anderen Richtungen durch. Die jüngeren Lamprophyre führen als dunkle Gemengteile hauptsächlich Biotit, der vielfach in Pseudomorphosen nach Hornblende und Pyroxen auftritt.

Im östlichen Tauernfenster wird die **Sonnblick Decke** durch die Mallnitzer Mulde von der **Hochalm Decke** getrennt, welche durch die Reißeckmulde von der liegenden **Ahorn- und Göss Decke** getrennt wird.

Im westlichen Tauernfenster ist die tiefste tektonische Einheit der mächtige Komplex der **Venedigerdecke**, der sich in drei, jeweils durch Mulden mehr oder weniger getrennte Kerne gliedern lässt: den **Ahorn Kern**, den **Tuxer Kern** und den **Zillertaler Kern**. Der polyphase Internbau der Venedigerdecke ist durch komplexe präalpidische und alpidische Tektonik gekennzeichnet.

Der **Ahornkern** als nördlichster und tektonisch tiefster Zentralgneiskern im westlichen Tauernfenster, trägt eine reliktische mesozoische Hülle in Hochstegenfazies. Die südlich anschließende **Schönachmulde** wurde nach Norden überfaltet und bildet über dem Ahornkern und dessen Nordabfall die **Höllsteintauchfalte.** Er wurde zumindest 4 – 5 km unter die Schönachmulde geschoben. Zusätzlich wurde eine Lamelle des Tuxer Kerns (Tuxer Lappen) ca. 1,5 km über den Höllsteintauchsattel nach N überschoben.

Der Nordosten des **Tuxer Kernes** teilt sich in die nördliche und südliche **"Sulzbachzunge"** auf. Der Hochstegenmarmor liegt über beiden. Südlich des Ahornkernes sind mehrere Zonen (Mulden) mit Schiefergneisen und Migmatiten bekannt (z. B. die Gaulkopf-Schiefergneiszone).

Bezeichnung "Altes Dach"

Das Alte Dach besteht überwiegend aus feinkörnigen Biotitgneisen und Bändergneisen mit quarzitischen Lagen. Durch die granitischen Intrusionen wurde es zum Teil in Schollen aufgelöst (Schollenmigmatite). In den Paragneisen und Amphiboliten sind örtlich Biotitschieferlagen eingeschaltet.

Glocknerdecke

Die Glocknerdecke (Obere Schieferhülle) besteht im Untersuchungsgebiet hauptsächlich aus einer Wechselfolge von Kalkglimmerschiefern, Kalkphylliten, kalkfreien Phylliten und untergeordnet Grünschiefern (Prasiniten). Die Hauptgesteinsarten sind "kalkreiche Bündner Schiefer" und "kalkarme Bündner Schiefer". Eine exakte Abgrenzung dieser beiden Typen ist oft sehr subjektiv. Generell ist festzustellen, dass im nördlichen und westlichen Gebiet, besonders im Navistal, die kalkarmen Bündner Schiefer vermehrt auftreten. Die kalkreichen Bündner Schiefer dominieren im Gebiet des Pfitschtales. Besonders südlich des Pfitschtales und am Westrand des Tauernfensters kommen sie gemeinsam mit den Prasiniten vor.

Die Gesteine des Tauernfensters zeichnen sich durch vielfache Wechsellagerungen von kalkreichen, kalkärmeren und kalkfreien Phylliten aus. Grüngesteine sind in unserem Arbeitsgebiet sehr selten anzutreffen. Diese scheinbaren Wechsellagerungen dürften oft durch große liegende Isoklinalfalten (IsoF2) und die dadurch erzeugten Schichtwiederholungen verursacht worden sein. Die Achsenebenen dieser Falten liegen parallel zur Hauptschieferung (S2). Solche Isoklinalfalten konnten im Kleinbereich wiederholt beobachtet werden. Aus dem Kartenbild ergeben sich Hinweise auf das Vorhandensein solcher Falten im Kilometermaßstab. Die Isoklinalfalten wurden nachträglich von meist südvergenten engen und offen Falten (F3-Falten) überprägt.

Die Serien fallen N des Schmirntales (bis südlich der Nordrahmenzone) sehr gleichmäßig nach Nord bis Nordwest ein. Im Schmirntal und knapp südlich davon ist eine Zone intensiver Faltung zu beobachten. Die Zone ist die Fortsetzung der Faltenstrukturen von den Schöberspitzen gegen Westen.

Ein Isoklinalfaltenkern dürfte im Kammbereich Gammerspitze – Ottenspitze vorliegen. Hier besteht der vermutete Isoklinalfaltenkern vor allem aus Schwarzphylliten und Chloritphylliten. Markiert werden diese Strukturen zusätzlich von Triaskarbonatschollen aus der Basis der Glocknerdecke.

In den großen Tälern (Schmirntal, Valstal, Venntal, Padastertal) werden Störungen vermutet, die aber den großen Zusammenhang der Serien nicht übermäßig stören. Im Schmirntal zieht eine solche Störungszone, ausgehend von der Schöberspitzentrias gegen W bis WSW. Auffallend ist, dass die Permotrias an der Basis der Glocknerdecke (z. B. Schöberspitzentrias, Kalkwandstange) ihre größten Mächtigkeiten in ± W–E streichenden Strukturen aufweist.

Nordrahmenzone (Matreier Zone)

Es ist dies eine Mischserie aus unterostalpinen und penninischen Gesteinen, die an der Grenze des Penninikums zu den großen ostalpinen Decken auftritt. Diese Zone repräsentiert eine tektonische Melangezone (vor allem Bündner Schiefer mit Turbiditen und tektonischen Schollen).

Im Arbeitsgebiet nimmt die Nordrahmenzone bzw. Matreier Zone einen relativ breiten Bereich des Navistales ein. An der Westgrenze des Tauernfensters treten Schollen aus der Nordrahmenzone nur untergeordnet auf. Durch die Brennerabschiebung wurde die Matreier Zone in ihrer Mächtigkeit stark reduziert. Vorkommen solcher Schollen finden sich in der Umgebung von Gries/Brenner, am Padauner Berg (Dolomite, Kalkmarmore, bunte Keuperphyllite) und in den Felswänden westlich des Brennerpasses.

Die Metasedimente südlich von Steinach, die direkt an der Basis des Ötztalkristallins liegen, werden zum Tarntaler Mesozoikum gestellt. Die größten Vorkommen sind entlang der Grenze zum Kristallin (Ötztal- Stubaikristallin, Steinacher Decke) südlich von Steinach und südlich des Brennerpasses aufgeschlossen. NE von Sterzing (bei Schmuders und Braunhof) liegen unter dem Ötztalkristallin ebenfalls typische Metasedimente des Tarntaler Mesozoikums: Quarzite, Rauhwacken, Kalk- und Dolomitmarmore, Serpentinite und Ophikalzite.

Regional taucht das Tauernfenster nach N bzw. nach NW unter die Innsbrucker Quarzphyllitzone ab. Im Bereich des Navistales ist dieses primäre Abtauchen der Serien nur lokal erhalten. Die Serien stehen überwiegend sehr steil. In den Hängen südlich des Navistales fallen sie verbreitet nach Süden ein. Diese steilstehende bzw. südfallende Struktur kann in den Kämmen zwischen den Karen mehrfach eindeutig beobachtet werden. Lokal ist dieses Südfallen auf Massenbewegungen (toppling) zurückzuführen, bzw. es wurde dadurch verstärkt. Am Hauptkamm südlich des Navistales herrscht durchwegs mittelsteiles Nord- bis Nordwestfallen. In einer Höhe von ca. 2000 m wird das Einfallen innerhalb kurzer Distanz zunehmend steiler und geht zuerst in steiles und dann in mittelsteiles Südfallen über. Aufgrund dieser Beobachtungen wird auf eine komplexe, mehrphasig entstandene Struktur geschlossen.

Auffallend ist, dass in dieser Zone (im Navistalbereich) keine Tarntaler Breccien und Serpentinite aufgeschlossen sind. Die Serpentinite bei Matrei haben als Teile des Tarntaler Mesozoikums eine tektonisch höhere Position. Kleinere Serpentinit- und Breccienvorkommen konnten erst wieder weiter östlich im Kluppenbachtal (Innerschmirn) beobachtet werden. Die Schuppenzone konnte am Westrand des Tauernfensters bis Sterzing kartiert werden.

Hochstegenzone

Die Schichtfolge der Hochstegenzone s. str. nach FRISCH (1974) beginnt mit der Liastransgression. Diese erfolgte zum Teil direkt auf dem Zentralgneis, teilweise aber auch auf den Resten der permotriassischen Metasedimente der Zentralgneiskerne bzw. des Alten Daches.

In der vorliegenden Arbeit werden die permotriassischen und jurassischen Metasedimente zur "Hochstegenzone" zusammengefasst. Diese präjurassischen Metasedimente sind in den Nordhängen des Pfitschtales mächtig erhalten (z. B. Permotrias vom Typ Aigerbach - Flatschjoch).

Pfitschtalzone

Bei der Pfitschtalzone handelt es sich um eine großräumige und mehrphasig entstandene Struktur. Es wird angenommen, dass die Gesteine der Greiner Mulde ursprünglich in einem Sedimentbecken zwischen dem Tuxer und dem Zillertaler Kern abgelagert wurden. Sie bestehen aus der Abfolge der Hochstegenzone (Oberperm – Malm) und den vermutlich oberkarbonen Furtschagelschiefern, welche mit größerer Mächtigkeit dort abgelagert wurden. Voranschreitende N-S-gerichtete Konvergenz führt in der Greiner Mulde, welche zwischen den rigideren Blöcken der Zentralgneiskerne liegt, zur Ausbildung einer großräumigen transpressiven Struktur. In dieser wird der Deckenbau durch eine W bis WSW orientierte offene F3-Faltung und eine WSW-ENE orientierte steilstehende amphibolitfazielle sinistrale Scherzone (Greiner

Scherzone) überprägt. Nach BEHRMANN & FRISCH (1990) folgt der sinistralen Scherung an der Greiner Scherzone eine weitere (untergeordnete) dextrale Scherung mit W-E bis WNW-ESE orientieren Scherflächen. Die Greiner Scherzone erfasste den steilstehenden Schenkel der südlich des Tuxer Kerns anschließenden Synform (bzw. überprägt diesen). Die Scherzone ist im Bereich des Pfitscher Joches und östlich davon gut bekannt. Ihre Fortsetzung nach Westen ist unsicher.

Schönachmulde

Die Schönachmulde enthält migmatisierte Serien, wahrscheinlich Altpaläozoikum, die mit der Habachserie vergleichbar sind. Im nördlichen Teil treten Quarzphyllite bis Glimmerschiefer auf, südlich davon Epidot-Albitgneise. Der südliche Teil der Mulde wird von quarzitischen Gesteinen, sauren tuffitischen Gneisen und Geröllgneisen aufgebaut. Mit dem Geröllgneis verbunden ist der phyllonitische Knollengneis des Höllsteines, der sich nach kurzer Unterbrechung in einer schmalen, langsam mächtiger werdenden Lage nach E fortsetzt. Er ist von Hochstegenmarmor umgeben und mündet im Schönachtal in die Schönachmulde.

Habachmulde, Greinermulde

Südlich der südlichsten Sulzbachzunge schließt die Habachmulde an. Strukturell (nicht im Muldeninhalt) entspricht sie der nördlichen Greiner Mulde. Die Greiner Mulde enthält im Schlegeis und Zemmgrund jungpaläozoische bis triassische Gesteinsserien. Die Gesteine der Habachmulde werden ins Altpaläozoikum gestellt und sind über die Krimmler "Gneiswalze" und ihre mesozoische Bedeckung nach Norden überfaltet und überschoben.

Die Greiner Mulde trennt im Westen den Zillertaler Kern vom Tuxer Kern. Der Südteil der Greiner Mulde besteht aus den vermutlich karbonischen (möglicherweise auch altpaläozoischen) Furtschaglschiefern, aus Metavulkaniten, Serpentiniten, Talkschiefern, usw., die im Bereich der Berliner Hütte in eine Migmatitzone übergehen. Die strukturelle Fortsetzung dieses Südteiles der Greiner Mulde findet sich in einer Para- und Metavulkanitserie südlich der Reichenspitze. Sie nimmt eine Position zwischen Habachzunge und Zillertaler Kern ein.

Serie der alten Gneise

Am Nordrand des Tauernfensters liegt ein primärer Verband zwischen der Habachserie und der Habachzunge (Zentralgneis) vor. Die "Serie der alten Gneise" (nach FRASL UND FRANK, 1966) im Süden, ist Teil des Zillertaler Kernes. Die Grenze zwischen Habachzunge und Zillertaler Kern wird zwischen diesen beiden Serien gezogen. Die Habachzunge keilt im Westen, zwischen den Schiefer- und Migmatitmulden aus. Die mesozoische Bedeckung des Zillertaler Kernes kann von seinem Westende her entlang des Ahrntales bis zur Dreiherrenspitze verfolgt werden. Gegen Osten keilt, so wie am Nordrand des Tauernfensters, der Hochstegenmarmor aus.

Seidlwinkel – Modereckdecke

Über der Südabdachung des Sonnblickmassives liegen mehrere Gneislamellen, die als Wurzelzone der Seidlwinkel-Modereckdecke (entspricht der Schöberspitzen- und Kalkwandstangen–Permotrias) interpretiert werden. In den mittleren Hohen Tauern sind ähnlich dünne Gneislamellen über der Granatspitzeinheit aufgeschlossen. Sie werden dort als Riffeldecken bezeichnet.

Die Gneislamellen bestehen aus Zentralgneis, Gesteinen des Alten Daches sowie paläozoischen und mesozoischen Metasedimenten. Die ursprüngliche Bezeichnung Rote Wand-Decke, stammt von STARK (1912). KOBER (1922) nannte diese (nach der analogen Modereckgneislamelle) Modereckdecke. Das über dieser Modereck–Rote Wand–Gneislamelle liegende Schieferhüllsystem umfasst eine mächtige Trias (Seidlwinkeltrias) und den an Detritus reichen nachtriassischen Anteilen in Brennkogelfazies. FRANK (1969) nimmt als Sedimentationsraum für die Seidlwinkeltrias den Bereich der Rote Wand–Modereck–Gneislamelle an. Diese Decke wird hier als Seidlwinkel-Modereckdecke bezeichnet.

Eine äquivalente Position zur Modereck–Rote Wand Gneislamelle mit seiner mesozoischen Bedeckung hat die Eisbruggjoch–Lamelle am südwestlichen Teil des Zillertaler Kernes. Zur Seidlwinkel–Modereckdecke werden alle permomesozoischen Metasedimentserien gezählt (teilweise mit Kristallin und Metasedimenten in Brennkogelfazies), die zwischen der Glocknerdecke s. str. und den Zentralgneisen mit Metasedimenten der Hochstegenzone bzw. Wolfendorndecke liegen. Es sind dies die Seidlwinkel- und Modereckdecke s. str., die Schuppenzone zwischen Venediger- und Glocknerdecke s. I. (Kalkwandstangen-Permotrias, Permotrias der Schöberspitzen und deren Fortsetzung nach E und W, das Mesozoikum der Riffeldecken, die Eisbruggjochlamelle, die Zone von Gerlos, Storz-, Kareck-, Murtörlserie und Schrovineinheit.

Schöberspitzen-Kalkwandstangen Einheit (Seidlwinkel-Modereck-Decke)

Als Seidlwinkeldecke werden hier nur die permotriassischen Metasedimente im Liegenden der Glocknerdecke zusammengefasst. Lithologisch entsprechen sie der Seidlwinkeltrias (Seidlwinkelformation) und der Wustkogelserie (Wustkogelformation.

In zwei Gebieten ist die Schöberspitzen–Kalkwandstangen–Einheit mit großer Mächtigkeit vorhanden. Im Norden, im Gebiet von Hintertux, den Schöberspitzen, im innerstes Schmirn- und Wildlahnertal und im Süden im Gebiet um die Kalkwandstange und in der Fortsetzung nach Osten in das Pfitschtal.

Wolfendorndecke Hochstegenzone

Die Jurasedimente der Wolfendorndecke liegen in Hochstegenfazies vor. Die Kreide (Kaserer Formation) besteht aus Bündner Schiefern (Schwarzphylliten, Kalkphylliten, Kalkmarmore, ...) und klastikareichen Metasedimenten (Breccien, Arkosen, Quarzite,...). Hochstegenmarmor (Malm), braune unreine Kalkmarmore (Dogger) und Graphitquarzite mit Schiefern (Lias) repräsentieren den Jura.

Die Basis der Wolfendorndecke bilden die paläozoischen Porphyrmaterialschiefer. Sie sind nur im Gebiet östlich von Hintertux vorhanden. Westlich davon treten an der Basis sporadisch

triassische Schichtglieder auf (Rauhwacken, Kalkmarmore, Dolomite und lokal auch Quarzite). Östlich der Saxalmwand trennt eine Schuppe von schwarzem Liasquarzit die Wolfendorndecke von der Hochstegenzone. Wo diese Schollen fehlen, liegt der Hochstegenmarmor der Wolfendorndecke direkt auf dem der Hochstegenzone.

Abbildung 8: Geologisches Übersichtsprofil durch die Pfitschtalzone und dem Tuxer Kern.

Unterschiedliche Auffassungen existieren bezüglich der Existenz der Wolfendorndecke. FRISCH (1974, 1975) löste die Tektonik mittels Deckenbau und führte die Wolfendorndecke ein, LAMMERER (1986) zieht einen Faltenbau zur Auflösung der komplexen Strukturen im Bereich des Pfitschtales heran. Der von Lammerer vorgeschlagene Faltenbau, anstatt eines Deckenbaues (Wolfendorndecke), scheint nur teilweise vorzuliegen. Die Isoklinalfaltung der Hochstegenzone, die dem Zentralgneis direkt aufliegt, ist eindeutig nachvollziehbar. Probleme verursacht die südlich anschließende zweite Isoklinalfalte mit der Kaserer Formation im Kern. Hier kann keine Symmetrie im Aufbau des Gebirges erkannt werden, die es ermöglicht die postulierte Isoklinalfalte zu konstruieren. Vielmehr bestätigt sich die Interpretation nach Frisch, nämlich die Existenz der Wolfendorndecke.

Wie aus den Profilen ersichtlich ist, liegen sowohl Hochstegenzone als auch Wolfendorndecke nördlich der Pfitschtalzone mehr oder weniger planar auf dem Tuxer Zentralgneiskern. Auf weiten Strecken überlagert der Hochstegenmarmor der Wolfendorndecke jenen der Hochstegenzone ohne Deckenscheider. Im Gebiet nördlich und südlich des Valstales (beim Gasthof Touristenrast bzw. bei der Bloaderalm) dürfte die Kaserer Formation direkt am Hochstegenmarmor der Hochstegenzone aufliegen. Die schon beschriebenen großen Karbonatkörper in der basalen Wolfendorndecke könnten zum Teil tektonische Schürflinge sein, die eine Deckengrenze markieren.

Die Kaserer Formation konnte am Zillertaler Kern, trotz ihrer hohen Metamorphose (Almandin-Amphibolit-Fazies), aufgrund ihrer Dolomitresedimente und ihrer sedimentären Verbindung zum Hochstegenmarmor eindeutig identifiziert werden (FRISCH 1976, LAMMERER ET. AL. 1976).

Abbildung 9: Strukturübersicht über die Venedigerdecke im westlichen Tauernfenster; nach FRISCH 1977, Abb. 1., S 678.

2.4 Geothermische Übersicht

In einigen überregionalen Geothermie Atlanten Europas wurde der österreichische Anteil der Alpen aufgrund fehlender Daten ausgespart (z.B. HURTER & HAENEL, 2002). CERNAK & HURTER (1979) veröffentlichten eine flächendeckende Wärmefluss Karte im Rahmen einer europäischen Wärmeflusskarte im Maßstab 1:10 Mio. Die Bestimmung des Wärmeflusses im österreichischen Alpenraum basiert hierbei jedoch nur auf 33 Messpunkten, die größtenteils auf Seebodenmessungen der Autoren HAENEL & ZOTH (1973) beruhen. Aufgrund der geringen Datendichte wurden geothermische Strukturen aus vergleichbaren alpinen Nachbarregionen in den österreichischen Alpenraum extrapoliert.

Der Verfasser dieses Berichts erstellte zudem 2007 eine konzeptionelle Wärmestromkarte Österreichs, die als a-priori Vorstellung der terrestrischen Wärmeflussdichte im Alpenraum zu verstehen ist und in welcher Wärmeflussklassen mit tektonischen Großelementen korreliert worden sind (GÖTZL, 2007). In der nachfolgenden Abbildung 10 werden Ausschnitte aus der Wärmeflusskarte von HAENEL & ZOTH (1979) der konzeptionellen Karte von GÖTZL (2007) gegenübergestellt.

Erste geothermische Untersuchungen zur Evaluierung der terrestrischen Wärmestromdichte wurden bereits in den frühen 1960ern durchgeführt (vgl. CLARK 1961), um den zum damaligen Zeitpunkt bereits guten Datenbestand aus den Schweizer Westalpen nach Osten zu erweitern. Auf Grundlage weniger, verstreuter Temperaturmessdaten (z.B. Arlberg Tunnel, Böckstein Tunnel) wurden mit Hilfe zusätzlich durchgeführter Wärmeleitfähigkeitsuntersuchungen an Proben aus dem Arlberg- und Tauerngebiet ein-dimensionale Modellierungen des rezenten stationären Wärmfeldes sowie Simulationen der zeitlichen Entwicklung des thermischen Regimes isoliert betrachteten Blöcke durchgeführt.

In weiterer Folge wurde im Rahmen des TRANSALP-Projektes versucht das rezente, thermische Regime der ostalpinen Kruste und die Änderung der Wärmeflussdichte an der Moho Diskontinuität entlang eines Reflexionsseismik-Profils abzuschätzen (vgl. VOSTEEN ET AL 2003). Hierfür wurden die Ergebnisse von gesteinsphysikalischen Labormessungen (Wärmeleitfähigkeit, -kapazität, -produktionsrate, Dichte und Porosität) an 118 Gesteinsproben in Kombination mit Vorwärts- und Inversionsrechnungen benutzt. Um die Simulationsrechnungen durchzuführen, wurde ein 2D-FE-Startmodell benötigt, welches mit Hilfe von gesteinsphysikalischen Eigenschaften und schon vorhandenen Literaturangaben zur Temperatur- und Wärmestromdichte generiert worden ist. Zudem wurde der Einfluss instationärer Effekte wie Paläoklima und Hebung der Alpen mit Hilfe von 1D-Vorwärtsmodellierung sowie einem analytischen Ansatz abgeschätzt. Aufgrund der Unsicherheit der Wärmeproduktionsrate der mittleren Kruste und der zu geringen Anzahl von exakten Temperaturdaten aus großen Tiefen konnten nur Abschätzungen des basalen Wärmeflusses gemacht werden, wobei die ermittelten Wärmestromdichten an der Moho Diskontinuität sich in dem Wertebereich 15 mW/m² und 30 mW/m² befanden und somit nur etwa 30% des an der Oberfläche zu beobachtenden Wärmestroms repräsentierten. Hieraus wurde gefolgert, dass mehr als 60% des Oberflächenwärmeflusses aus internen radiogenen Wärmequellen aus Gesteinen der oberen Kruste stammen muss.

Oben: Ausschnitt der Wärmestromkarte Europas (1:10 Mio.) für den Ostalpenraum (nach CERNAK & HURTIG, 1979, bearbeitet).

Unten: Konzeptionelle Wärmestromkarte Österreichs im Maßstab 1:2 Mio. (Götzl, 2007, überarbeitet 2013).

Abbildung 10: Vergleich publizierter Wärmestromkarten für den österreichischen Anteil der Ostalpen.

SACHSENHOFER (2001) führte wiederum Modellierungen der Paläo – Wärmeflussdichte in den Ostalpen auf Basis geothermometrischer Untersuchungen (Inkohlungsgrad Bestimmungen) durch und lieferte hierdurch einen wesentlichen Beitrag zum großräumigen Verständnis der thermischen Entwicklung der Ostalpen. Der Autor gelangte hierbei zu folgendem Entwicklungszenario:

Stufe 1: Syn-Kollision-Stufe (spätes Oligozän, 25 – 30 Mio. Jahre)

Charakteristisch ist eine geothermische Asymmetrie in Form von niedrigen Wärmestromdichten entlang der nördlichen Front der Alpen <55mW/ m² und hohen Werte im Bereich der Peradriatischen Naht >150mw/ m²).

Stufe 2: Syn-Extrusion-Stufe (frühes/mittleres Miozän, 17 – 15 Mio. Jahre)

Sehr hohe Werte im Tauernfenster (>150mW/m²), Rechnitzfenster (150 – 200mW/m²) und Steirischen Becken (> 300mW/m² – aufgrund von vulkanischer Aktivität). Mit zunehmender Entfernung von Tauernfenster erfolgte auch eine kontinuierliche Abnahme des Wärmeflusses und der Vitrinitreflektivität. Im Gegensatz zu den hohen Werten im inneralpinen Raum wurden sehr niedrige Paläowärmeflüsse an der nördlichen Front der Alpen (< 55mW/m²) errechnet.

Stufe 3: Post-Extrusion-Stufe (spätes Miozän, 6 Mio. Jahre)

Die Ostalpen waren im späten Miozän relativ "kühl". Aufgrund der Sedimentstapelung entlang der Alpen Nordfront sowie der massiven Subsidenz und Sedimentation des Wiener Beckens weisen die untersuchten Inkohlungsrad Daten auf deutlich erniedrigte Wärmestromdichten hin. Positive Wärmeflussanomalien sind aufgrund der Exhumationsgeschichte der penninischen Krustenelemente nur im Bereich des Tauernfensters zu erwarten gewesen, wo Paläowärmeflüsse zwischen 75mW/m² und 150mW/m² berechnet worden sind.

3 Übersicht der durchgeführten Projektaktivitäten

In den nachfolgenden Kapiteln werden die wichtigsten Aktivitäten des Projekts THERMTEC, gegliedert nach den zugeordneten Arbeitspaketen, zusammengefasst. Für die Darstellung der daraus abgeleiteten Ergebnisse sei auf das Kapitel 4 verwiesen.

3.1 AP1: Geothermische Untersuchungen

Die im Rahmen von THERMTEC durchgeführten geothermischen Datenerhebungen und Untersuchungen dienten der Erfassung des terrestrischen Wärmeflussregimes in den Ostalpen für den Zeitraum der vergangenen 5 Mio. Jahre. Hierbei wurde der räumliche Fokus auf das Tauernfenster und dessen angrenzenden Regionen gelegt.

Die durchgeführten Untersuchungen lassen sich in folgende Arbeitsschritte unterteilen:

- i. Erhebung von Literaturdaten und Erkundungsdaten aus Infrastrukturprojekten im Alpenraum
- ii. Geothermische Felduntersuchungen
- iii. Datenauswertung: Berechnung der rezenten Wärmestromdichte
- iv. Thermische Modellierung
- v. Dateninterpretation im Hinblick auf die Verteilung der Wärmestromdichte im Bereich des Tauernfensters.

Die einzelnen Arbeitsschritte werden in den nachfolgenden Kapiteln näher erläutert.

3.1.1 Erhebung bestehender Temperaturinformationen (Literatur, Infrastrukturprojekte)

Zu Beginn der Studie THERMTEC wurde eine Erhebung bestehender Literaturdaten durchgeführt. Hierbei wurde auf Archive der Geologischen Bundesanstalt zurückgegriffen. Erhoben wurden nur jene Daten, die repräsentative Aussagen über die rezente terrestrische Wärmestromdichte erlauben, d.h. ausreichend dokumentiert vorliegen und nicht zu stark von lokalen Einflüssen (z.B. Grundwasserfluss) beeinflusst sind. Die Recherchen wurden vorrangig in der Bibliothek sowie in den Archiven der Geologischen Bundesanstalt durchgeführt.

Darüber hinaus wurden bei den Betreibern großer Infrastrukturprojekte im Ostalpenraum geothermische Basisdaten erhoben. Hierbei handelt es sich vor allem um die Tunnelprojekte Brenner Basistunnel und Semmering- Basistunnel. Im Rahmen von THERMTEC wurden jedoch nur Daten aus dem Bereich des Brenner- Basistunnels ausgewertet. Die im Rahmen der Erkundung von Tunneltrassen durchgeführten Erkundungsbohrungen weisen in der Regel Temperaturdaten mit hoher Qualität, respektive langer Stillstandzeit der Bohrung vor Beginn der Messung auf, zumal der Parameter Gebirgstemperatur bei der Planung eines Basistunnels mit hoher Überdeckung eine entscheidende Rolle spielt (Klimatisierung der Tunnelröhre).

Neben Daten aus Tunnelerkundungsprojekten wurden im Rahmen der Akquisition externer Daten auch Bohrungsunterlagen zu balneologischen Projekten (z.B. Kaprun TH1 oder Heilstollen Radhausberg) erhoben. Neben Gebirgs- und Wassertemperaturen wurden auch chemische Kenndaten zur Berechnung von Geothermometern sowie petrophysikalische Kenndaten erhoben. Die Literaturrecherche ergab jedoch, dass bis zum Beginn der Studie THERMTEC kaum thermische Gesteinsparameter (Wärmeleitfähigkeit, Wärmekapazität, radiogene Wärmeproduktionsrate usw.) aus dem Ostalpenraum veröffentlicht worden sind.

Die Datenerhebung ergab thermische Basisdaten zu 87 Standorten im Bereich der Ostalpen. Es sei an dieser Stelle darauf hingewiesen, dass die Erhebung von Basisdaten im Rahmen von THERMTEC das eigentliche Modellierungsgebiet deutlich überschritten hat. Während die Literaturstudie und Datenerhebung bei externen Firmen über 150 thermische Kenndaten erbrachte, konnten lediglich 6 petrophysikalische Basisdaten recherchiert werden. Die Lage der Standorte mit thermischen Basisdaten (Zielwert terrestrische Wärmestromdichte) ist in Abbildung 17 dargestellt.

Zur Archivierung der erhobenen Daten wurde eine auf MS-Access basierende, projektspezifische Datenbank erstellt, die nach Abschluss der Studie THERMTEC in die Basisdatenbanken der Fachabteilung Hydrogeologie und Geothermie an der Geologischen Bundesanstalt integriert wird.

THERMTEC	
Projektdatenban	k
Formular Kopfdaten	
Formular Thermik	THERNTER
Formular Petrophysik	THERMITEC
Formular Hydrologie	

Abbildung 11: Startfenster (Formular) der projektspezifischen THERMTEC Datenbank. Bei der Projektdatenbank handelt es sich um eine relationale MA-Access Datenbank. Die Datenbank gliedert sich in die Tabellen Kopfdaten (Metainformationen), Thermik (geothermische Daten), Petrophysik (petrophysikalische Daten), Hydrologie und Literaturquellen.

3.1.2 Geothermische Felduntersuchungen

Die zusätzlich im Rahmen von THERMTEC durchgeführten geothermischen Felduntersuchungen basieren auf folgenden grundsätzlichen Methoden:

- i. Untertägige Messkampagnen zur Erfassung der Luft- und Gesteinstemperatur
- ii. Temperaturprofilmessungen in Bohrungen

Ad i. Untertägige Messkampagnen

Temperaturmessungen in untertägigen Aufschlüssen (Stollen, Tunnelvortrieb) bedingen gesonderte Messkonzepte. Stichtagsmessungen können aufgrund des Einflusses der Bewetterung der untertägigen Hohlräume zu Verzerrungen der Temperaturverhältnisse führen. Aus diesem Grund wird empfohlen untertägige Messkampagnen im Rahmen von Langzeitbeobachtungsreihen zu realisieren. Im Rahmen von THERMTEC betrug der Aufnahmezeitraum mindestens mehrere Wochen, in der Regel jedoch 12 bis 18 Monate. Gemessen werden grundsätzlich die Stollenlufttemperatur sowie die Felstemperatur in ultraseichten Bohrungen.

Im Zuge des Stollenvortriebs ist die wetterbedingte Störung des Temperaturregimes noch gering (siehe Abbildung 13), sodass vorrangig die Gebirgstemperatur in ultraseichten Bohrungen erfasst werden kann. Aufgrund des begrenzt zur Verfügung stehenden Raums stehen nur ultra-seicht Bohrungen mit einer Bohrlänge von weniger als 10 Metern zur Verfügung, die in

der Regel als Schrägbohrung (Neigungswinkel ca. 45°) in die Seitenwand des Stollens niedergebracht werden. Aufgrund des Umstandes, dass der künstlich geschaffene, belüftete Hohlraum eine thermische Störquelle des Gebirges darstellt, erfolgt die Bestimmung der scheinbaren Gebirgstemperatur transient in Form einer mehrwöchigen Dauerregistrierung. Die Bestimmung der wahren Gebirgstemperatur muss anschließend durch Anwendung empirischer Korrekturmethoden erfolgen. Bei langer Standzeit des Stollens unter Bewetterung ist die Durchführung von Temperaturmessungen in ultraseichten Bohrungen nicht sinnvoll, zumal die durch das Stollengebäude hervorgerufene Temperaturstörung bereits einige 10¹ Meter in das umgebende Gebirge eingedrungen ist. Zur Rekonstruktion der wahren Gebirgstemperatur können nachfolgend angeführte, adaptierte Untersuchungsansätze angewendet werden:

<u>Variante 1</u>: Gradientenmessung der Gebirgstemperatur in seichten untertägigen Bohrungen (Länge mind. 10m)

<u>Variante 2</u>: Langzeitmonitoring (mind. 1 Jahr) der Stollenlufttemperatur an verschiedenen Beobachtungspunkten in einem Grubengebäude

Wie anhand der Abbildung 13 zu erkennen ist, kann in der unmittelbaren Umgebung eines Stollengebäudes selbst bei langen Bewetterungszeiträumen ausgeprägte thermischer Gradienten beobachtet werden, deren Intensität proportional zur Temperaturdifferenz zwischen ungestörtem Gebirge und dem belüfteten Stollen ist. In Abhängigkeit der thermischen Randbedingungen kann das ungestörte Temperaturregime des Gebirges in Form einer Gradientenmessung in Kombination mit einer darauf basierenden Modellrechnung (Berechnung von Masterkurven) bestimmt werden. Um die Präzision dieser Methode zu erhöhen (Relatives Auflösevermögen des Sensors, zu erwartende Temperaturänderung) empfiehlt es sich Bohrungen mit größeren Bohrlängen (mind. 10 m) zu untersuchen. Der Nachteil dieser Methode liegt in dem stark erhöhten logistischen Aufwand und Messkosten durch das Niederbringen untertägiger Bohrungen. Im Rahmen der Studie THERMTEC bot sich jedoch die Gelegenheit dieses Messkonzept an bereits bestehenden untertägigen Erkundungsbohrungen eines aktiven Bergbaubetriebs in Mittersill (Salzburg) einzusetzen. Nähere Informationen zu dem Messkonzept in längeren untertägigen Bohrungen ist dem nachfolgenden Abschnitt *ii. Bohrlochprofilmessungen* zu entnehmen.

Die zuvor angeführte Variante 2 stellt ein nicht invasives Messkonzept auf Grundlage der Beobachtung der Stollentemperatur (Lufttemperatur) an verschiedenen, unterschiedlich stark bewetterten Beobachtungspunkten in einem Grubengebäude dar. Bei Abschätzung des Luftaustausches im Grubengebäude (thermische Senke) lässt sich die wahre Gebirgstemperatur wiederum unter Zuhilfenahme von Masterkurven des thermischen Ausgleichs zwischen Stollen und Gebirge abschätzen. Die untertägigen Messungen der Fels- und Lufttemperatur erfolgten hauptsächlich mit Hilfe des automatisch registrierenden Sensors "iButton". Die Genauigkeit dieser Methode wird deutlich erhöht, wenn thermische Messungen in nicht bewetterten Stollen durchgeführt werden können. Sollte dies a-priori nicht möglich sein, so kann diese Methode auch in Blindstollen angewendet werden, die im Zuge der Messkampagne von der Bewetterung abgeschnitten werden (z.B. durch Anbringung einer Isolation. Wie anhand der Abbildung an einem Modellbeispiel gezeigt wird, startet bei Vorliegen eines entsprechenden Temperaturgefälles zwischen Stollengebäude und Gebirge bereits nach kurzer Zeit ein thermischer

Ausgleichsprozess, der zu einer Änderung der Stollentemperatur führt. Aus thermischer Sicht ist es vollkommen ausreichend die Stollenluft zu untersuchen, zumal Temperaturmessung in ultraseichten Bohrungen keinen zusätzlichen Informationsgewinn bringen

Im Zuge des Projekts THERMTEC kommen die automatisch registrierenden Messsensoren "iButtons DS1922L" der Firma Maxim zum Einsatz (siehe auch Abbildung 12). Dieses Gerät weist nachfolgend gelistete Spezifikationen auf:

Messbereich:	-40°C bis 85°C
Auflösung (relativ)	0.0625°C
Messgenauigkeit (absolut)	ca. 0.1°C (bei Kalibrierung)
Speichereinheit	ca. 4000 Werte
Ausmaße	Durchmesser: 26 mm, Länge 28 mm

Abbildung 12: Temperaturfühler iButtons DS1922L (Fa. Maxim).

Die Geräte wurden nach Ankauf in einem Wasserbad kalibriert und ermöglichen die Programmierung beliebiger zeitlicher Abtastintervalle und Verzögerungszeiten (Delay Time). Sie können in wassergefüllten Bohrungen mit Durchmessern ab einem Zoll eingesetzt werden und sind aufgrund ihres stabilen Kunststoffgehäuses wasserdicht und stoßgesichert.

Zur Qualitäts- und Plausibilitätskontrolle der erhobenen Bohrlochtemperaturen wurden zeitgleiche Messungen der Außenlufttemperatur mittels iButtons an ausgewählten Messpositionen durchgeführt.

Abbildung 13: Verallgemeinertes Schema der Ausbreitung einer instationären Temperaturstörung im Nahbereich eines bewetterten Stollens (Modell eines homogenen Halbraums).

Die zeitabhängige Position der Einhüllenden einer Temperaturstörung (Annahme: isotrope Ausbreitung der Temperaturfront) wurde für zwei Gesteinstypen berechnet, die häufig im Tauernfenster anzutreffen sind. Die Berechnung des zeitabhängigen Störradius (r) um den Stollen zum Zeitpunkt t wurde unter Benutzung des Materialparameters Temperaturleitfähigkeit [a] mit Hilfe von

folgendem analytischen Ansatz berechnet:
$$\underbrace{\frac{T(r,t)-T_s}{T_i-T_s}}_{A} = erf\left(\frac{r}{2\sqrt{a \cdot t}}\right)$$
[Gauß'sche Fehler-

funktion]. Term A beschreibt die Größe der Temperaturstörung am Ort r zum Zeitpunkt t bezogen auf die Grenzflächentemperaturen T_i (ungestörte Gebirgstemperatur) und T_s Temperatur des Stollens unter Annahme eines Explosionsquellenansatzes (abrupte Senkung der Stollentemperatur von T_i auf T_s). Hierbei wurde die Einhüllende folgender Temperaturniveaus berechnet: Gebirgstemperatur beträgt 99% des ungestörten Niveaus sowie 80% des ungestörten Niveaus.

Abbildung 14: Zeitabhängige Darstellung der Temperaturstörung durch einen belüfteten Hohlraum

Für das Modell eines homogenen Gebirgsblocks [WL: 3.42 w/(m.K), WK: 800 J/(kg.K)] wurde die Berechnung der zeitabhängigen Störung der Gebirgstemperatur durch einen belüfteten Hohlraum mit quadratischen Querschnitt (Kantenlänge: 2.5 m) mit Hilfe des FE – Simulationspakets Comsole Multiphysics™ durchgeführt.

Das Berechnungsmodell geht von einer ungestörten Gebirgstemperatur von 25°C und einer Stollentemperatur infolge der Belüftung von 15°C aus. Unter Annahme eines Wärmeaustauchkoeffizienten (h = 8) zwischen Stollenfläche und Stollenluft ergibt sich ein in das Stollengebäude gerichteter, erzwungener Wärmestrom an der Außenfläche des Stollens in der Höhe von 80 W/m²

gemäß der Beziehung $\dot{q} = h \cdot \Delta \left(T_{\text{Gebirge}}, T_{\text{Stollen}} \right)$. Abbildung 6 zeigt zudem, dass im Fall der

gewählten Modellstudie die nahe Umgebung des Stollengebäudes bereits nach 30 Jahren beginnt in eine quasistationäres thermisches Gleichgewicht zu treten (zu sehen an der Differenz der Temperaturverteilung nach 30 und 50 Jahren nach Errichtung des Stollens).

Abbildung 15: Regeneration einer durch Stollenbewetterung entstandener Temperaturstörung im nahen Umgebungsgebirge

Auf Grundlage der in Abbildung 6 dargestellten und beschriebenen Temperaturstörung infolge eines über 50 Jahre hindurch bewetterten Stollens wurde der thermische Ausgleich zwischen Stollen und Gebirge aufgrund der Einstellung der Bewetterung simuliert (Comsole Multiphysics™). Hierzu wurden folgende Beobachtungspunkte der zeitabhängigen thermischen Regeneration gewählt: [a] Stollenmittelpunkt (Luft), [b] Distanz von 2 m zu Außenfläche Stollen (Gebirge). <u>Oben</u>: Fokussierung auf den nahen Zeitraum nach Einstellen der Bewetterung. <u>Unten</u>: Langzeitbetrachtung über einen Zeitraum von 10 Jahren.

Wie anhand der Abbildung 15 erkannt werden kann ist die Differenz der Temperaturregeneration zwischen der Stollenluft und der unmittelbaren Stollenumgebung äußert gering, wodurch Temperaturmessungen in ultraseichten Bohrungen (Bohrlänge < 5m) in der Stollenwand oder

Ortsbrust keinen zusätzlichen Informationsgewinn erzielen. Gemäß den vorliegenden Simulationsergebnissen wurde nach einem Jahr bereits 50% und nach 10 Jahren ca. 75% der ursprünglich vorhandenen Temperaturstörung abgebaut. Aufgrund des asymptotischen Charakters der thermischen Ausgleichsfunktion ist ein nahezu vollständiger Abbau der Temperaturstörung erst nach mehreren Jahrzehnten zu erwarten.

Ad ii. Temperaturprofilmessungen in Bohrungen

Temperaturprofilmessungen wurden im Rahmen von THERMTEC sowohl in konventionellen obertägigen Erkundungsbohrungen (Vertikalbohrungen mit Bohrdurchmesser > 2 Zoll) als auch in nicht konventionellen untertägigen Bergbau Erkundungsbohrungen (Schräg- und Horizontalbohrungen mit Durchmesser < 2 Zoll) durchgeführt). Je nach Typ der zur Verfügung gestandenen Bohrungen wurden unterschiedliche Messmethoden eingesetzt:

Bohrlochmessungen in konventionellen Bohrungen erfolgten mit Hilfe einer kombinierten Temperatur- und Leitfähigkeitssonde Cond 197i der Firma WTW. Dieses Gerät besitzt folgende Spezifikationen:

Messbereich:	-5°C bis 105°C
Auflösung (relativ)	0.1°C
Messgenauigkeit (absolut)	0.1°C (bestimmt im Zuge einer Kalibrierungsmessung im Juli 2008)
Maximale Messtiefe	100 m

Die kontinuierlichen Bohrlochmessungen wurden in Form einer Relativmessung zur Bestimmung des geothermischen Temperaturgradienten durchgeführt. Die begleitend gemessene elektrische Leitfähigkeit des Bohrlochinhaltes (Frischwasser) dient zur Überprüfung der Aussagekraft der erhobenen Temperaturwerte (Identifizierung von Wasserzutrittsbereichen). Zusätzlich hierzu wird der Wasserstand der zu untersuchenden Bohrung festgehalten. Die Messung selbst stellt eine Stichtagsmessung (Einzelmessung) dar, sodass eine Korrektur instationärer Temperaturverhältnisse im Bohrloch (BHT Korrektur) nicht möglich ist. Es wurde bei den durchgeführten Messungen darauf geachtet, dass die jeweils untersuchte Bohrung mehrere Wochen in Stillstand (keine Bohrarbeiten oder Spülungszirkulationen) gewesen ist. Die Bestimmung des geothermischen Gradienten erfolgt hierbei direkt aus der Messkurve, wobei darauf geachtet wurde, dass das betrachtete Tiefenintervall nicht von äußeren Störeinflüssen (z.B. Wasserzutritten, instationären Temperaturverhältnissen infolge der Ankoppelung mit der Oberfläche) betroffen ist.

Temperaturprofilmessungen in unkonventionellen Bohrungen erfolgten mit Hilfe eines faseroptischen Messsystems (DTS – Messverfahren). Aufgrund des schmalen Kalibers der Bohrungen (Durchmesser 1 Zoll) sowie der teilweise deutlichen Neigung der Bohrungen waren Temperaturmessungen mit konventionellen Sonden nicht möglich. Die Messungen erfolgten im Rahmen von THERMTEC im Zeitraum September 2010 in untertägigen Erkundungsbohrungen im Bergbau Mittersill. Die Messungen selbst wurde durch das Austrian Institute of Technology (Mitarbeiter: R. Niederbrucker) in Subbeauftragung unter Mitwirkung von G. Götzl durchgeführt.

Für die gegenständlichen Messungen wurde das Gerät *DTS 5100* der Firma *Sensortran* verwendet. Hierbei handelt es sich um ein opto-elektronisches Messinstrument, das in der Lage ist die Temperatur exakt und schnell über die gesamte Länge eines Lichtwellenleiters zu messen. DTS steht für Distributed Temperature Sensing und beruht darauf, dass Laserlicht, sobald es auf eine Probe trifft, gestreut wird. Hierbei wird Laserlicht in kurzen Pulsen in einen Lichtwellenleiter eingekoppelt und an-schließend die Intensitäten des gestreuten Lichts zu bestimmten Frequenzen gemessen.

Im charakteristischen Streuspektrum erkennt man einen dominanten Peak, dessen Frequenz der des eingestrahlten Lichtes entspricht. Dieser Bereich wird als Rayleigh-Streuung bezeichnet, welche nicht temperaturabhängig ist. Des Weiteren erkennt man noch die Raman-Peaks, den Stokes-Peak bei höheren Wellenlängen und den Anti-Stokes-Peak bei kürzeren Wellenlängen. Da aber nur die Intensität des Anti-Stokes-Peaks temperaturabhängig ist, kann man aufgrund des Peakverhältnisses der beiden Signale die Temperatur an definierten Positionen innerhalb des Lichtwellenleiters bestimmen.

Abbildung 16: Schema zum Messprinzip faseroptischer Temperaturmessungen.

Das eingesetzte Gerät weist folgende Spezifikationen auf:

Gerätehersteller:	Sensortran
Gerätebezeichnung:	DTS 5100 P
Maximale Messkabellänge:	5 km
Ortsauflösung am Messkabel:	0,5 m
Anzahl der Messkanäle:	4
Messkonfigurationen:	Open End oder Loop
Messgenauigkeit (absolut):	<1°C (in Abhängigkeit von der Aufnahmedauer)
Sensitivität (relativ):	<0.01°C 28

Aufgrund der im Messkabel integrierten Sensorik eignet sich das DTS 5100 P für Messungen in schmalkalibrigen Bohrlöchern. Mit Hilfe einer Führungsschiene konnten zudem Temperaturmessungen in Schräg- bzw. Horizontalbohrungen durchgeführt werden. Zudem brachte dieses Messverfahren den Vorteil mit sich, dass Bohrlochtemperaturen sowohl räumlich als auch zeitlich differenziert durchgeführt werden konnten (transiente 1D Messung). Aus diesem Grund wurden zu experimentellen Zwecken einige der untersuchen Bohrungen im Zuge der Wiederholungsmessungen mit Frischwasser befüllt, um den thermischen Ausgleichsprozess im Bohrloch registrieren und hieraus Rückschlüsse auf die wahre Gebirgstemperatur ziehen zu können.

Im Rahmen von THERMTEC wurden folgende zusätzlichen Messkampagnen durchgeführt:

Standort	Methodik	Zeitraum	Beschreibung
A10-Tauerntunnel, Vortrieb Röhre 2	Untertägige Messkam- pagne Felstemperatur und Lufttemperatur	2007 - 2008	Messung inultraseichten Boh- rungen mit gleichzeitiger Re- gistrierung der Lufttemperatur an 13 Stationen entlang der Tunneltrasse
Kabelstollen Hinterm- uhr Zedernhaus	Untertägige Messkam- pagne Lufttemperatur	2008 - 2009	Messungen an 6 Stationen entlang des Stollens
S37 – Wildbad Einöd	Temperaturprofile in konventionellen Tras- senerkundungsboh- rungen	2008 - 2009	Messung in 10 Trassenerkun- dungsbohrungen (Bohrtiefe <10 Meter).
Bergbau Mittersill	Untertägige Messkam- pagne Lufttemperatur Temperaturprofilmes- sungen in unkonventi- onellen Bohrunngen	2010 - 2012	Lufttemperaturmessungen an 4 Positionen mit Fokus auf Zu- luft und Abluftstollen Bohrlochtemperaturmessung mit faseroptischen Messsys- tem in 5 untertägigen Bohrun- gen.
Thermalstollen Bad- gastein (Franz Josef-, Rudolf Stollen)	Untertägige Messkam- pagne Lufttemperatur	2010 - 2012	Messungen an 9 Positionen entlang der beiden Stollen.
Arlberg Eisenbahn- und Straßentunnel	Untertägige Messkam- pagne Felstemperatur und Lufttemperatur	2012 - 2014	Messungen an 24 Positionen entlang des Eisenbahntunnels. Messungen in 2 Seichtbohrun- gen in den Querschlägen zwi- schen dem Eisenbahn- und Straßentunnel.

Tabelle 7: Übersicht der durchgeführten geothermischen Messkampagnen.

			Messung der Lufttemperatur
			im Fahrbahnraum des Stra-
			ßentunnels (Messpunktdistanz
			1000m).
Bergbau Schellgaden	Untertägige Messkam-	2013 - 2015	Messungen an 13 Positionen
	pagne Lufttemperatur		im Grubengebäude.
			-

Sämtliche Felduntersuchungen wurden zwecks Bestimmung der terrestrischen Wärmestromdichte von petrophysikalischen Messkampagnen begleitet. Für eine detaillierte Betrachtung der erzielten Ergebnisse sei auf Kapitel 4.1 verwiesen.

Die im Rahmen von THERMTEC ausgearbeitete Vorgehensweise zur Erfassung der terrestrischen Wärmestromdichte mittels untertägiger Messkampagnen wird nach Abschluss der Studie im Rahmen einer "geothermischen Landesaufnahme" an der Geologischen Bundesanstalt fortgesetzt.

Abbildung 17: Übersicht der erhobenen thermischen Basisdaten im Bereich des Tauernfensters. Die rote Linie umgrenzt das Modellierungsgebiets des geologischen 3D Modells Tauernfenster.

Die Erhebung geothermischer Daten führte zu einer deutlichen Verdichtung der Datenlage im Bereich des Tauernfensters und dessen Umgebung. Wie in Abbildung 17 zu erkennen ist, sind

vor allem der östliche sowie der westliche Randbereich des Tauernfensters relativ gut mit thermischen Basisdaten belegt. Im zentralen Bereich des Tauernfensters fehlen jedoch weiterhin Basisdaten.

3.1.3 Datenauswertung

Die Auswertung der erhobenen Daten beruhte auf folgenden Hauptarbeitsschritten:

- Digitalisierung und Qualitätskontrolle: Literaturdaten sowie Daten von externen Firmen.
- Bestimmung des geothermischen Gradienten.
- Topografische Korrektur des geothermischen Gradienten.
- Berechnung der terrestrischen Wärmestromdichte.
- Bestimmung der terrestrischen Wärmestromdichte aus untertägigen Profilmessungen.

Datendigitalisierung und Qualitätskontrolle:

Die Digitalisierung der in Literaturquellen und Archiven erhobenen Daten erfolgte auf Grundlage von Plausibilitätsanalysen und der Bewertung der Datenlage hinsichtlich der Möglichkeit zur Auswertung der terrestrischen Wärmestromdichte. In einem darauf folgenden Schritt wurden die Daten digitalisiert, georeferenziert und als Rohdaten in die projektspezifische Datenbank eingegeben. Im Rahmen von THERMTEC wurden alle thermischen Daten auf das Koordinatensystem Austria Lambert (WGS, 1984) projiziert.

Bestimmung des geothermischen Gradienten

Die Bestimmung des geothermischen Gradienten erfolgte mittels Intervall Methode. Es wurde der geothermische Gradient zunächst für jeweils aufeinander folgende Sektionen eines Temperaturprofils berechnet und anschließend der gewichtete Mittelwert aller Gradienten berechnet. Als Gewichtungsmaß wurde hierbei die Länge des jeweiligen Intervalls herangezogen.

Topografische Korrektur des geothermischen Gradienten

Die Wärmeflussdichte berechnet sich nach dem Fourier'schem Gesetz zu $\dot{q} = -\lambda \cdot \nabla T$. Sie kann bestimmt werden, wenn zu einem Temperaturlog die Wärmeleitfähigkeit λ bekannt ist. Die Auswertung kann beispielsweise mit der Intervall- bzw. Bullard Methode vollzogen werden (siehe POWELL ET AL, 1988). Der Temperaturgradient ∇T wird teilweise stark von den Terrain Effekten, die zuvor korrigiert werden müssen, beeinflusst.

Eine ausgeprägte Topografie der Erdoberfläche verursacht Störungen des Temperaturgradienten in der Erdkruste. Dabei wirkt ein Berg wie eine zusätzliche Isolation für den nach oben gerichteten Wärmefluss, wobei ein komplexer Wärmeaustausch an der Erdoberfläche durch Abstrahlung und Konvektion in die Atmosphäre stattfindet. Hier spielt theoretisch auch die Sonneneinstrahlung eine Rolle, die je nach Neigung und Vegetation der Hänge regional sehr unterschiedliche Beiträge liefert. Den größten Beitrag liefert jedoch das Relief selbst, das meist

als topografischer Effekt bezeichnet wird. Es bewirkt eine Stauchung des Temperaturgradienten unterhalb von Tälern und eine Zerrung unterhalb von Bergspitzen. JEFFREYS (1938) entwickelte mit Hilfe eines potenzialtheoretischen Ansatzes die Grundlage für die Korrektur eines gemessenen Gradienten in Bohrlöchern und BULLARD (1938) beschrieb die praktische Anwendung. Dabei geht man von einem homogenen, isotropen Untergrund mit konstantem Temperaturgradienten g aus und setzt als Randbedingung an der Oberfläche eine linear mit der Höhe abnehmende Temperatur (konstanter Luftgradient g^c).

Obwohl einige vereinfachende Annahmen in der Berechnung dieses Korrekturterms stecken, liefert die Formel eine gute erste Näherung des topografischen Einflusses auf den Temperaturgradienten in einem Bohrloch. Die Formel ist gültig für Tiefen ζ die klein gegenüber den maximalen Radius R_{max} sind und berücksichtigt keine transienten Effekte wie Sedimentation, Hebung oder Erosion des Gebirges. Diese Effekte werden von BIRCH (1950), BECK (1977) oder CLAUSER (1984) behandelt. Korrekturwerte nahe der Oberfläche tendieren zu divergieren und lassen somit keine stabilen Lösungen zu.

Diese Methode wird auch "Solid Angle Method" (Raumwinkelmethode) genannt auf dessen Basis ein Programm in Visual Basic Studio 2010 erstellt wurde (siehe Abbildung 18).

Abbildung 18: Screenshot der Anwendung zur Korrektur des geothermischen Gradienten.

Das Programm beinhaltet ein digitales Geländehöhenmodell für Westösterreich im Raster 100 x 100m (frei verfügbar www.bev.ac.at). Es müssen lediglich die Koordinaten (Lambert) des Bohrlochs, der atmosphärische Gradient, der unkorrigierte geothermische Gradient, die Tiefe wo der Gradient bestimmt wurde, sowie der maximale Umgebungsradius R_{max} um die zu betrachtende Gradientenmessung angegeben werden.

Aus dem Temperaturlog der Thermalbohrung TH2 in Längenfeld in den Öztaler Alpen wurde ein thermischer Gradient von 2 °C/100m über ein Bohrlochintervall von ca. 1250 m gemessen. Abbildung 19 zeigt die Entwicklung des Korrekturterms in Anhängigkeit des maximalen Radius. Dargestellt ist dabei der Korrekturterm am Bohrlochmund (blau), der mittlere Korrekturterm zwischen Tiefe 0 m und 1250 m (rot), sowie der Korrekturterm in 1250 m Tiefe (grün).

Der Korrekturterm beträgt bei Berücksichtigung der Topografie bis 20 km um das Bohrloch 0.35 °C/100m, womit der korrigierte geothermische Gradient bei 1.65 °C/100m liegt, bzw. um 17.5% niedriger ist.

Abbildung 19: Abhängigkeit des Korrekturterms vom geothermischen Gradienten mit wachsendem R_{max}, am Bohrlochmund (blau), an der Messstelle (grün) und der Mittelwert dazwischen (rot).

Bei einer Wärmeleitfähigkeit von 4 W/K/m würde die Wärmestromdichte 69 mW/m² betragen. Die solid angle Methode ist nicht geeignet, um den topografischen Effekt für ein ganzes Gebiet (z.B. das Modellgebiet des Tauernfensters) zu berechnen, da die Temperaturen auf der Referenzebene mit einem einheitlichen geothermischen Gradienten (dem gemessenen) berechnet wurden. Für die Anwendung auf das Bohrloch minimieren sich diese Fehler jedoch durch die Wichtung der Temperaturen mit quadratischem Radius.

Bestimmung der terrestrischen Wärmestromdichte

Auf Grundlage der topografisch korrigierten geothermischen Gradienten (∇T) wurde in einem letzten Arbeitsschritt die terrestrische Wärmestromdichte [mW/m²] mittels Fourier Gesetz der Wärmeleitung bestimmt:

$$q = \nabla T \cdot \lambda \cdot 10 \left[\frac{mW}{m^2}\right]$$
 3.1

Zur Bestimmung der terrestrischen Wärmestromdichte müssen noch Annahmen hinsichtlich der Wärmeleitfähigkeit (λ) getätigt werden. Diese wurde auf Grundlage der durchgeführten Labormessungen für die betrachteten Tiefenintervalle am jeweiligen Messstandort gemittelt, wobei die effektive Wärmeleitfähigkeit (mit Bergwasser gefüllte Porenräume) ohne Anwendung von Temperaturkorrekturen angewendet worden ist. Bei Vorliegen mehrerer geothermischer Gradienten über verschiedene Tiefenintervalle an einem Standort wurde die so genannte Intervall Methode angewendet. Gemäß dieser Methode wird der Fourie'schen Wärmefluss für die jeweiligen Tiefenintervalle getrennt berechnet und anschließend gemittelt. Die Mittelung erfolgt über Gewichtungsfaktoren (Mächtigkeit des jeweiligen Intervalls).

Die Bestimmung der terrestrischen Wärmestromdichte aus untertägigen Messkampagnen erfolgte über numerische Modellierung des konduktiven Wärmeregimes. Mit Ausnahme des

Standorts Mittersill wurden im Rahmen von Thermtec 2D – Wärmeleitungsmodelle erstellt, wobei die terrestrische Wärmestromdichte iterativ an den beobachteten Untertagetemperaturen angepasst worden ist.

3.1.4 Thermische Modellierung

Gemäß dem Projektentwurf war der Fokus in der thermischen Modellierung auf die drei- dimensionale Abbildung des geothermischen Regimes im Tauernfenster für den Zeitraum der vergangenen 5 Mio. Jahre gelegt. Im Zuge der Projektbearbeitung wurden thermische Simulationen jedoch auch zur Auswertung der in Kapitel 3.3.2 angeführten Messkampagnen eingesetzt. Generell wurden zur Durchführung der numerischen, thermischen Modellrechnungen die Softwarepakete FEFLOW™ (DHI-Wasy) und Comsol™ (Multiphysics) eingesetzt. Beide Software Pakete beruhen auf der "Finite Elemente" Simulationsmethodik und sind in der Lage gekoppelte physikalische Transportprozesse abzubilden. Während die Software FEFLOW™ speziell auf Fragestellungen der Hydrogeologie und Geothermie angepasst ist, handelt es sich bei der Software Comsol™ um ein allgemeines physikalisches Simulationspaket, welches dadurch mehr Freiheiten in der Festlegung der Transportprozesse bietet und daher das hauptsächlich in THERMTEC eingesetzte Computerprogramm darstellt.

Die nachfolgende Tabelle 8 gibt einen Überblick der angewendeten thermischen Modellierungen:

Anwendungsziel	Lokation	Software	Konfiguration
			Simulation
Berechnung der Wär- mestromdichte aus un- tertägigen Temperatur-	A10 – Tauerntunnel Kabelstollen Hintermuhr	Comsol™	2D stationär konduktiv, Längsschnitt entlang Tun- nel.
messungen	Bergbau Mittersill	FEFLOW™	3D stationär konduktiv, Lo- kalmodell des Bergbaure- viers.
Parameterstudien: Bemessung des Einflus- ses von Relief und Palä- oklima	Tauernfenster	FEFLOW™	3D stationär und transient, Zeitraum 1 Mio. Jahre.
Modellierung der Ent- wicklung des geothermi-	Tauernfenster	FEFLOW™	Parameter Estimation für Hauptmodell
schen Regimes		Comsol™	3D instationär konduktiv und advektiv (Massenad- vektion), Zeitraum 15 Mio. Jahre.

Tabelle 8: Übersicht der durchgeführten numerischen Modellrechnungen.

Berechnung des Wärmestroms im Bereich untertägiger Temperaturmesskampagnen

Die 2D Lokalmodelle entlang von Tunnelachse wurden zu Bestimmung des Einflusses des Reliefs und der Gebirgsüberdeckung auf die beobachteten Tunneltemperauren eingesetzt, um

iterativ eine optimierte Anpassung der terrestrischen Wärmestromdichte an das gemessene Temperaturprofil zu erreichen. Das geometrische 2D Modell wurde aus geologischen Tunnelschnitten abgeleitet und mittels lokal erhobener Wärmeleitfähigkeitsdaten parametrisiert. Die Simulation erfolgte konduktiv stationär. Im Bereich des Bergbaus Mittersill wurde aufgrund der drei dimensionalen Verteilung von Temperaturmesspunkten in den verschiedenen Arealen des Bergbaus ein lokales 3D Modell des Bergbau Mittersills erstellt. Die Bestimmung der terrestrischen Wärmestromdichte erfolgte wiederum mittels konduktiven, stationären Ansatzes.

Die Ergebnisse der durchgeführten Modellrechnungen sind in Kapitel 4.1 angeführt.

Parameterstudien zur Ermittlung des Einflusses von Relief und Paläoklima

Zur Beurteilung des topografischen und paläoklimatischen Effekts auf die Temperaturverteilung im Untergrund des Tauernfenstergebietes wurde ein dreidimensionales Modell unter Benutzung des Finite Elemente Simulationspakets FEFLOW[™] mit den Abgrenzungen 200 km (W-E Erstreckung), 90 km (N-S Erstreckung) und 55 km (Tiefe) erstellt. Die Topografie wurde aus dem digitalen Geländemodell, mit einer horizontalen Auflösung von 100 m (©BEV), auf das Modellgitter interpoliert.

Abbildung 20: Modellgebiet mit topografischer Information. Ebenfalls sind Flussverläufe, wichtige Orte, Gipfel und Gebirgszüge eingezeichnet.

Das Modell reicht bis in eine Tiefe von z = -55 km (u. NN), wo als untere Randbedingung eine Wärmeflussdichte von 60 mW/m² gesetzt wurde. Im Rahmen dieser Sensitivitätsstudie wurde ein vereinfachtes, homogenes und isotropes Modell angenommen, welches folgende thermische Eigenschaften aufweist:

- Wärmeleitfähigkeit (solid): 3 W/m/K)
- Wärmeleitfähigkeit (fluid): 0.65 W/m/K)

- Volumetrische Wärmekapazität (solid): 2.52 MJ/m³/K)
- Volumetrische Wärmekapazität (fluid): 4.2 MJ/m³/K)
- Porosität: 5% (Poren wassergesättigt)

Die durchgeführte Sensitivitätsstudie basiert auf 4 Szenarien, in denen vorerst der Einfluss des Reliefs und des Paläoklimas getrennt sowie anschließend kombiniert betrachtet worden sind (siehe Tabelle 9). Hierbei galt es auch zu eruieren, welcher der beiden Störeinflüsse eine größere Auswirkung auf das gegenwärtige geothermische Regime im Projektgebiet ausübt.

Tabelle 9:Übersicht der gewählten Szenarien der Sensitivitätsstudie über den thermischen Einfluss
des Reliefs sowie des Paläoklimas.

	Topografie	Paläoklima	Temperatur als obere Randbedingung
Szenario 1	ohne	ohne	konstant (10.88°C) auf z = 400m
Szenario 2	mit	ohne	höhenabhängige Temperatur auf Topografie
Szenario 3	mit	mit	zeitlich variable höhenabhängige Temperatur auf Topografie
Szenario 4	ohne	mit	zeitlich variable Temperatur auf z = 400m

Bei Szenario 1 und 4 ist die Topografie über z = 400 m quasi weggeschnitten. Als obere Randbedingung für Szenario 2 wurde eine mit der Seehöhe linear abnehmende Temperatur gesetzt. Diese wurde empirisch bestimmt und beschreibt die mittlere Jahrestemperatur in Österreich (GÖTZL ET AL., 2010):

$$T(z) = 12,52[^{\circ}C] - 0.0041[^{\circ}C/m] \cdot z[m]$$
 3.2

Zur Berücksichtigung des Paläoklimas wurde die höhenabhängige Oberflächentemperatur zusätzlich auch zeitlich für den Zeitraum der vergangenen eine Million Jahre variiert. Hierfür wurde ein paläoklimatisches Modell nach Rellstab benutzt (vgl. RELLSTAB 1981, 1982, Abbildung 21, blaue Linie).

In Abbildung 21 sind die Temperaturen für drei ausgewählte Höhenniveaus an der Oberfläche des Modells dargestellt:

- i. Geglättetes Relief (z = 400 m): Obere Randbedingung in Szenario 4,
- ii. Mittelwert der im Modellgebiet auftretenden Seehöhen (z = 1630 m)
- iii. Obersten Bergspitzen in einer Seehöhe von ca. 3400 m.

In den Eiszeiten liegen die Durchschnittstemperaturen bis zu 13 °C unter dem Niveau von heute (blaue Linie). Da in diesen Zeiten das gesamte Modellgebiet vergletschert war und die Eisschichten bis in eine Seehöhe von 2000 m – 2500 m Seehöhe reichten (VAN HUSEN 1987),

wurden die Temperaturfunktionen für negative Temperaturen um 70 % gedämpft. Diese Abschätzung soll den isolierenden Effekt der Eisdecke darstellen. Die Dämpfung ist deutlich zu sehen beim Temperaturverlauf für z = 3400 m (lila Linie in Abbildung 21).

Szenario 3 berücksichtigt die Wechselwirkung beider Effekte (Oberflächenrelief und Paläoklima) auf das geothermische Regime im Untergrund.

Abbildung 21: Paläoklimatische Oberflächentemperaturdifferenz (dT) im Vergleich zu 1980 (nach RELL-STAB, 1981, 1982) und Temperaturen in Abhängigkeit von ausgewählten Seehöhen z.

Die Ergebnisse der durchgeführten Modellrechnungen sind in Kapitel 4.4 angeführt.

Modellierung der Entwicklung des geothermischen Regimes im Bereich des Tauernfensters

Das numerische Modell umfasst die Grenzen des geologischen 3D Modells. Um numerische Instabilitäten infolge der Berücksichtigung von Massenadvektion zu vermeiden wurden auch die in der Modellierung als räumlich stabil angenommen Elemente der angrenzenden tektonischen Haupteinheiten (siehe Abbildung 22) in das Modell integriert.

Aus dem Geologischen Modell wurden die Haupthorizonte Moho, die Subtauernramp und die Topographie sowie die wichtigsten lateralen Begrenzungen des Tauernfensters exportiert, um damit ein Modell zur numerischen geothermischen Modellrechnung zu erstellen (siehe Abbildung 23). Die Arbeitsschritte für den Export des geologischen Basismodells (Software Gocad™) in das numerische Modellierungsprogramm Comsol[™] weden in Kapitel 3.4.3 skizziert.

Abbildung 22: Lage des numerischen 3D Modells Tauernfenster.

Abbildung 23: Geometrisches Ausgangsmodell des numerischen Modells (Software Comsol™).

Für die numerische Modellierung in 3 D wurde das Softwarepakete Comsol[™] eingesetzt. FEFLOW[™] in Kombination mit FEPEST[™] wurde verwendet, um die zuvor ermittelten Materialparameter Wärmeleitfähigkeit und radiogene Wärmeproduktion (siehe Kapitel 3.3) und den basalen Wärmestrom an publizierte Temperaturdaten (VOSTEEN ET AL, 2006) anzupassen. Diese Vorgehensweise wurde gewählt, da im Untersuchungsgebiet "Tauernfenster" nicht genügend gemessene Temperaturdaten für eine Modellkalibrierung zur Verfügung stehen. Das für die Kalibrierung verwendete Temperaturprofil wurde von VOSTEEN ET AL (2006) entlang des TRANSALP Profils modelliert, somit bilden diese Daten die beste zur Verfügung stehende Möglichkeit zur Kalibrierung (Abbildung 24). Die erlaubte Schwankungsbreite der Materialparameter wurde auf +/- 50 % vom ermittelten Ausgangswert beschränkt. Die Parameter Estimation Routine (PEST[™]) ist über eine Schnittstelle (FEPEST[™]) mit FEFLOW[™] verbunden und ermittelt in einem iterativen Verfahren aus Modellrechnung und statistischer Auswertung ein Set von Parametern, das eine hinreichende Anpassung der modellierten Temperaturen an die vorgegebenen Temperaturdaten erfüllt. Die so ermittelten Materialparameter dienen als Eingangsdaten für die weiteren Modellierungsschritte (Tabelle 10).

Index	Modelleinheit	$\lambda_{Startwert}$	λ_{PEST}	Δλ	A _{Startwert}	A PEST	ΔA	ρ	C _P
		[W/m/K]	[W/m/K]	[%]	[µW/m³]	[µW/m³]	[%]	[kg/m³]	[J/kg/K]
1	Molassesedimente	3.40	2.28	-33	.60	.30	-50	2200	800
2	Nördliche Kalkalpen	3.90	3.84	-2	.87	.45	-48	2780	770
3	Grauwackenzone	3.40	3.06	-10	1.40	1.21	-14	2500	800
4	Quarzphyllit	3.96	4.10	4	1.04	.52	-50	2760	750
5	Glocknerdecke	3.90	2.59	-34	.87	.63	-28	2780	770
6	Zentralgneisdecken	3.07	2.56	-17	1.48	.74	-50	2600	885
8	Ostalpin	3.66	2.61	-29	1.04	1.41	36	2760	750
9	Suedalpin	3.66	3.41	-7	1.04	1.24	19	2760	750
10	Dolomiten	3.40	3.85	13	1.90	.95	-50	2800	750
11	Europäische Kruste	2.50	2.31	-8	1.00	1.49	49	2700	900
13	Adriatische Unterkruste	3.00	3.36	12	.50	.63	27	2700	1200
14	Oberer Mantel	2.50	3.28	31	.02	.03	50	2800	1200

Tabelle 10: Materialparameter des numerischen Modells Tauernfenster.

Die Modellierung selbst gliederte sich in drei Phasen:

Den Anfang bildet ein rein konduktives, stationäres Wärmeleitungsmodell. Die Materialparameter Wärmeleitfähigkeit und radiogene Wärmeproduktionsrate sowie die basale Wärmestromdichte als untere Randbedingung wurden zuvor durch die Parameter Estimation ermittelt. Als obere Randbedingung wurde die Oberflächentemperatur als lineare Funktion der Seehöhe gesetzt (entnommen von GÖTZL ET AL, 2010). Dieses Modell kann als Startbedingung für die weiteren Modellierungsschritte eingesetzt werden.

Abbildung 24: Gegenüberstellung des im Rahmen von THERMTEC erstellten konduktiven stationären Startmodells mit dem von Vosteen et AL (2006) publizierten Temperaturmodell entlang des TRANSALP Profils. Links oben: Konduktives Temperaturmodell entlang des TRANSALP Profils (Vosteen et al, 2006). Darunter ein Temperaturschnitt entlang desselben Profils aus dem mittels Parameter Estimation (PEST[™]) Anwendung optimierten drei-dimensionalen konduktiven Modells. Links unten: Resultierende Temperaturabweichung nach Abschluss der PEST[™] Anwendung. <u>Rechts</u>: Ausschnitt aus dem Modell von Vosteen et al (2006), violettes Quadrat links oben, darunter Abweichung des nicht mittels PEST[™] optimierten konduktiven 3D Modells. Der initiale Fehler betrug bis zu 50°C. Nach Optimierung betrug der Restfehler maximal 10°C.

Die zweite Phase widmete sich den Auswirkungen der raschen Hebung des zentralen Tauernfensters auf das regionale geothermische Regime. Es kamen folgende vereinfachende Modellannahmen zu tragen:

- Die tektonische Hebung der penninischen Einheiten fand weitestgehend in den letzten 16 Ma statt (siehe dazu Abbildung 25). Dieser Ansatz beruht auf einem Konzept von SCHMID ET AL, 2013.
- Die Modellgeometrie bleibt im betrachteten Zeitraum unverändert, das bedeutet, dass die tektonische Hebungs- und die Erosionsrate als gleich groß angenommen werden.
- Die Hebungsrate des Zentralkerns des Tauernfensters entspricht der mittels Fission Track Analyse ermittelten Exhumationsrate (sh. Kapitel 3.2.3).

Um eine repräsentative Hebungsrate für den gesamten Zentralkern zu ermitteln, wurde eine mittlere Temperaturgeschichte aller verfügbarer Fission Track-Proben aus dem zentralen Teil

des Penninikums ermittelt und über einen geothermischen Standard-Gradienten (30 K/km) in Tiefe umgerechnet (Abbildung 25).

Abbildung 25: Temperatur- und Hebungsmodell, abgeleitet aus geochronologischen Kenndaten.

Die zeitliche Ableitung der Tiefe ergab somit die mittlere Exhumationsrate unter der Annahme des Standard-Gradienten (a-priori-Modell). Diese Analyse der Fission Track Daten ergab eine maximale Exhumationsrate von fast 1.6 mm/a vor etwa 8.5 Ma. Von diesem Zeitpunkt an bis etwa 3 Ma vor heute verlangsamt sich die tektonische Hebung wieder und erreicht dann eine Rate von etwa 0.3 mm/a. Die letzte Abkühlphase (3 Mio. Jahre bis heute) wurde nicht als Hebungs-, sondern als Abkühlvorgang des nach der Orogenese überhitzten Gebirges abgebildet. Daher wurde bei den darauf folgenden Modellinversionen die Exhumationsrate in diesem Zeitraum konstant niedrig gesetzt (Abbildung 26). Um die Auswirkung der tektonischen Hebung (Massenkonvektion) auf das geothermische Regime zu untersuchen, wurde nun der Wärmeleitungsgleichung ein konvektiver Term hinzugefügt. Das a-priori Geschwindigkeitsmodell entspricht der Massenkonvektion im Bereich des Tauernfensters. Nun wurde das numerische Modell transient über den Zeitraum von 15 Mio. Jahren mit einem zeitlich variablen Massenkonvektionsterm belegt. Aus dem Ergebnis dieses Modells konnte hierdurch die Temperatur/Tiefeninformation zu jedem beliebigen Zeitpunkt der letzten 16 Mio. Jahre ausgelesen werden, um somit verbesserte Exhumationsraten ermitteln zu können. Dieser Vorgang wurde drei Mal iterativ wiederholt. Hierdurch konnte die Qualität der Temperatur zu Tiefenkonvertierung der Fission Track Daten verbessert werden, da kein zeitlich konstanter geothermischer Gradient angenommen werden musste, sondern die geothermischen Verhältnisse zum jeweiligen Zeitpunkt in der Vergangenheit abgebildet werden konnten.

Abbildung 26: Darstellung des im Zuge der Modelldurchläufe iterativ angepassten Geschwindigkeitsmodells der Massenadvektion (Hebung) im Bereich des Tauernfensters.

Letztlich wurde dem Modell in der dritten Phase an der Oberfläche ein transientes Temperatursignal (RELLSTAB, 1982) aufgeprägt um den paläoklimatischen Effekt der letzten Eiszeiten auf das Temperaturregime zu simulieren. Die Rellstab-Funktion beschreibt die Oberflächentemperatur im Alpenraum für die letzte Million Jahre vor heute. Wie sich bereits in vorangegangenen Modellen gezeigt hat, hat die paläoklimatisch induzierte Temperaturanomalie nur eine Eindringtiefe von wenigen Kilometern mit einer Amplitude von etwa 5 K. Bei der kombinierten Betrachtung im finalen Modell wurde diese Anomalie noch vom Abklingen der tektonischen induzierten Anomalie überprägt.

3.1.5 Dateninterpretation

Die Interpretation der erhobenen thermischen Basisdaten fokussierte auf das rezente Wärmeflussregime im Bereich des Tauernfensters. Die Interpretation erfolgte qualitativ durch Gegenüberstellung der erhobenen Literatur- und Messdaten mit den Ergebnissen der numerischen Modellrechnung. Für die Ergebnisse der Dateninterpretation sei auf das Kapitel 5.1 verwiesen.

3.2 AP2: Geochronologische Untersuchungen

Die im Rahmen von THERMTEC avisierten geochronologischen Untersuchungen gliederten sich in drei wesentliche Arbeitsschritte:

- i. Erhebung und Zusammenfassung bestehender Literaturdaten
- ii. Durchführung zusätzlicher Laboruntersuchungen mit Hauptaugenmerk auf Niedertemperatur Geothermometer an der Universität Salzburg.
- iii. Zusammenfassung der unter den Punkten i.) und ii.) erhobenen Daten zu zeitabhängigen Temperatur- und Hebungsmodellen (siehe hierzu auch Kapitel 3.1.4).

Die Zielsetzung der geochronologischen Untersuchungen fokussierte auf Bereitstellung kritischer Nebenbedingungen (Hebungsmodelle) und Kalibrierungsdaten (Paläotemperaturen) für die thermische Simulation.

3.2.1 Erhebung von Literaturdaten

Mit Hilfe der radiometrischen Altersdatierung von Mineralen werden die Exhumationsgeschichte, der Weg des Gesteines an die Oberfläche sowie der Temperatureinfluss über die Zeit, erfassbar. Die berücksichtigten thermochronologischen Methoden, ermöglichen es, einen Blick auf die junge (~ 20 - 5 Ma) Exhumationsgeschichte zu werfen und die damit verbundene thermische Prägung der Einheiten innerhalb des Projektgebietes abzuleiten. In der Literatur vorhandene Fission Track (FT) Daten, werden zur Ableitung dieser Exhumationspfade für unterschiedliche tektonische Einheiten des Tauernfensters herangezogen.

Um die die Entwicklung der thermischen Geschichte im Bereich des Tauern-Fensters nachvollziehen zu können, wurden im Zuge der Literaturrecherchen sämtliche zu verwendenden Fission Track Daten in eine Datenbank transferiert.

Den Überblick der im Bereich des Tauern Fensters bisher gesammelten Apatit Fission Track Daten liefert Abbildung 27, die Zirkon Fission Track Daten sind in Abbildung 28 dargestellt. Des Weiteren zeigt Abbildung 29 die erhobenen Literaturdaten zu (U, Th)/He Geothermometer.

Abbildung 27: Gesammelte Apatit Fission Track Daten im Bereich des Tauern Fensters. Angabe des Alters in Mio. Jahren.

Abbildung 28: Gesammelte Zirkon Fission Track Daten im Bereich des Tauern Fensters. Angabe des Alters in Mio. Jahren.

Abbildung 29: Erhobene U,Th)/He Geothermometer im Bereich des Tauern Fensters. Angabe des Alters in Mio. Jahren.

Die Erhebung von Literaturdaten basiert hauptsächlich auf den Analysenergebnisse aus den Arbeiten von MOST (2003), STAUFENBERG (1987), FÜGENSCHUH (1995), GRUNDMANN & MORTE-ANI (1985), FOEKEN ET AL. (2007), DUNKL ET AL. (2003), STEENKEN ET AL. (2002) und COYLE (1994). Die erhobenen Daten wurden in einer projektbezogenen Datenbank abgelegt, die nach Abschluss von THERMTEC in die zentralen Datenbanken der Geologischen Bundesanstalt integriert wird.

Wie in den vorangegangen Abbildungen deutlich zu erkennen ist, decken lediglich die Apatit Fission Track Daten das gesamte Gebiet des Tauernfensters ab. Zirkon Fission Track Daten konnten für den westlichen und östlichen Rand des Tauernfensters erhoben werden. (U, Th)/He Daten lagen hingegen nur für den östlichen Rand des Tauernfensters vor.

3.2.2 Durchführung von Labormessungen

Da das Hauptaugenmerk ursprünglich auf die thermischen Verhältnisse der letzten 5 Mio. Jahre gelegt worden ist, ergibt sich aus den erhobenen Literaturdaten, die vorrangig den Zeitraum 70 Mio. Jahre bis ca. 10 Mio. Jahre abbilden, eine Datenlücke, die durch geochronologische Zusatzuntersuchungen im Niedertemperaturbereich geschlossen werden sollte. Hierbei waren vor Allem (U, Th)/He Untersuchungen durch die Universität Salzburg vorgesehen. Im Rahmen der ersten Feldexkursion zum Ostrand des Tauernfensters (siehe hierzu auch Kapitel 3.4) wurden Gesteinsproben gesammelt und der Universität Salzburg übermittelt. Da von der Universität Salzburg leider anschließend keine Ergebnisse zur Verfügung gestellt worden sind musste dieser wichtige Arbeitsschritt leider fallen gelassen werden.

3.2.3 Zusammenfassung der Daten zu Hebungsmodellen

Die Überführung von geochronologischen Basisdaten zu tektonisch zusammengefasste Hebungsmodelle erfolgte hauptsächlich auf Grundlage von Literaturerhebungen.

Die Arbeit von MOST (2003) enthält zu den meisten Proben auch Modellrechnungen zur thermischen Evolution, welche auf einem Monte-Carlo Algorithmus basieren. Das Resultat sind Temperatur-Zeit-Kurven. Sie resultieren aus der statistischen Auswertung der Spaltspuren-Längenverteilung. Hierbei wurden (i) das Zirkon FT-Alter, (ii) das Apatit FT-Alter in Bezug zur Schließungstemperatur sowie (iii) eine Oberflächentemperatur von 20°C zugrunde gelegt.

Verwendet man zur Darstellung der Temperatur-Zeit Kurve nicht nur Daten aus den Fission Track Analysen, sondern auch die weiterer geochronologischen Methoden, so lassen sich regionalisierte Aussagen zur Exhumationsgeschichte über einen weit größeren Zeitraum eines Komplexes bzw. einer Einheit treffen (siehe Abbildung 30). So lässt die rapide Exhumation des westlichen Tauern Fensters, beginnend vor ca. 20 Ma (unteres Miozän), zum Zeitpunkt verstärkter N-S Kompression, erkennen. Im Vergleich dazu begann die Abkühlung des östlichen Teiles des Ötztal-Stubai-Komplexes um ~ 90 Ma, während des eoalpinen Orogenese-stadiums, (Unterschreitung der Ar-Blockingtemperatur für Hellglimmer).

Abbildung 30: Exhumationsgeschichte des östlichen Ötztal-Stubai Kristallin Komplexes (rote Kurve) und des westlichen Tauern Fensters (grüne Kurve), über einen Zeitraum von 100 Ma. Verändert nach FÜGENSCHUH (2000).

Abbildung 31: Eine Übersicht der modellierten Temperatur-Zeit Kurven aus dem Bereich des westlichen Tauern Fensters. Daten aus Most (2003).

Legt man die Temperatur-Zeit Kurven, von Proben der verschiedenen Einheiten Übereinander, lassen sich Unterschiede und Gemeinsamkeiten in der Abkühlungsgeschichte erkennen. Die hier angeführte Probe aus der Kaserer Formation (blaue Kurve) war bereits vor ~13 Ma auf ca. 100°C abgekühlt und befand sich somit viel früher in einem oberflächennahen Tiefenbereich, als die restlichen, hier dargestellten Einheiten. In der jüngeren Exhumationsgeschichte

lassen sich Parallelen zum tektonisch liegenden Zentralgneis ziehen und somit wird die Kaserer Formation, in das folgend dargestellte Kurven-Mittel (Abbildung 31) des Tuxer-Gneiskernes, miteinbezogen.

Abbildung 32: Vergrößerte Darstellung des Temperatur-Zeit Fensters, der Zentralgneiskerne, innerhalb der letzten 5 Ma. Jede Kurve repräsentiert einen geschätzten Mittelwert aus den Kurven des jeweiligen Zentralgneiskernes. Die 20°C repräsentieren die angenommene Oberflächentemperatur.

Die Kurven in Abbildung 32 beruhen auf Simulation unterhalb der Apatit FT-Temperaturgrenze und lassen somit nur eine relative Ableitung von Zeit und Temperatur in Bezug auf die Abkühlungsgeschichte der Einheiten zu. Deutlich zu erkennen ist der unterschiedliche Verlauf der Abkühlpfade. Interessant ist die jüngste und rapide Exhumation des Ahornkernes, während der Tuxer und Zillertaler Kern einen kontinuierlichen und zeitlich etwas versetzten, vergleichsweise langsamen Abkühlpfad erkennen lassen. Diese Daten sowie Ergebnisse aus der Umgebung des westlichen Tauern Fensters, wurden für die geothermische Simulation der jüngsten thermischen Entwicklungsgeschichte des Tauernfensters herangezogen (siehe auch Kapitel 4.4).

3.3 AP3: Petrophysikalische Untersuchungen

3.3.1 Einleitung

Die durchgeführten petrophysikalischen Untersuchungen dienten dem Aufbau thermischer Gesteinsmodelle der im geologischen- und numerischen Modell abgebildeten tektonischen Einheiten. Hierbei handelt es sich um folgende Gesteinsparameter:

T	ab	el	le	1	;	

Übersicht der erhobenen thermischen Gesteinsparameter

Parameter	Symbol	Einheit	Einsatzzweck	Modellannahmen
Wärmeleitfähigkeit (Matrix, effektiv)	$\lambda_{s,eff}$	W/m/K	Berechnung der ter- restrischen Wär- mestromdichte	Gemittelte, effektive Ge- steinskennwerte bei

			Thermische Model-	25°C, keine Temperatur
			lierung (konduktiv)	Abhängigkeit
Spezifische Wärme-	Cp _{s,eff}	J/kg/K	Thermische Model-	Temperatur Abhängig-
kapazität (Matrix, ef-			lierung (instationär	keit.
fektiv)			konduktiv und advek-	Parameter Optimierung
			tiv)	(PEST) im Rahmen der
				numerischen Simulation
Radiogene Wärme-	A	µW/m³	Thermische Model-	Gemittelte. effektive Ge-
produktionsrate			lierung (konduktiv)	steinskennwerte, keine
			Interpretation Wär-	Temperatur Abhängigkeit
			mestromdichte	
				Tiefenabhängige
				Modelle
Porosität (total)	ф	-	Berechnung effekti-	Gemittelte Kennwerte
			ver Gesteinsparame-	
			ter (λ, cp)	
Dichte	ρ	Kg/m³	Thermische Model-	
			lierung (instationär	
			konduktiv und advek-	
			tiv)	

Die durchgeführten Untersuchungen gliederten sich in folgende Arbeitsschritte:

- i. Erhebung von Literaturdaten
- ii. Durchführung von Laboruntersuchungen an der Montanuniversität Leoben
- iii. Aufbau von zusammenfassenden thermischen Gesteinsmodellen.

Die Arbeitsschritte i. und ii. wurden in Kooperation mit der Montanuniversität Leoben durchgeführt. Die eingangs der Studie THERMTEC durchgeführte Literaturerhebung ergab für den Bereich des Tauernfensters lediglich Wärmeleitfähigkeitskennwerte an den Standorten der Erkundungsbohrung der A10 – Tauernautobahn (HAHN & HAENEL, 1974) und dem Bergbau Mittersill (HAENEL & ZOTH, 1975). Kennwerte zu den Parametern spezifische Wärmekapazität und radiogene Wärmeproduktionsrate konnten nicht recherchiert werden.

Aus diesem Grund wurde das Hauptaugenmerk des Arbeitspakets AP3 auf die auf die Erhebung zusätzlicher Kennwerte mittels Labormessungen an der Montanuniversität Leoben gelegt.

3.3.2 Durchführung zusätzlicher Messkampagnen

Die im Rahmen der Studie THERMTEC durchzuführenden petrophysikalischen Untersuchungen basierten auf in-situ Gesteinsproben, die in der Region des Tauernfensters und dessen Berandung erhoben wurden. Es war hierbei vorgesehen eine repräsentative Anzahl an Gesteinsproben zu möglichst allen in den späteren geologischen 3D Modellen und respektive in den darauf basierenden thermischen Simulationen abgebildeten Gesteinsverbänden zu sammeln. Die gewählte Probennahme Strategie sah vor, vorrangig unverwitterte Tiefenproben aus untertägigen Aufschlüssen oder Bohrungen (Bohrkerne) zu erheben. Nur im Bedarfsfall wurde auch ergänzend auf Oberflächenproben zurückgegriffen. Die Anzahl der zu einem bestimmten Gesteinsverband erhobenen Proben wurde iterativ nach Durchführung der petrophysikalischen Laboruntersuchungen festgelegt. Ausgehend von der jeweils zu beobachtenden

Schwankungsbreite der Untersuchung an Einzelproben wurden sukzessive neue Gesteinsproben aus unterschiedlichen Aufschlüssen gleicher Gesteinsverbände erhoben, bis die Prognose-Unsicherheit durch Erhöhung der Betrachtungsmenge auf ein vertretbares Maß gesenkt werden konnte.

In einem ersten Bearbeitungsschritt wurden die vorhandenen Großproben (Probendurchmesser zumeist größer als 20 cm) in mehrere repräsentative Kleinproben getrennt. Zur Schaffung einer möglichst guten thermischen Ankoppelung zwischen Sensor und Gesteinsprobe wurden die Kontaktflächen der Probe poliert und zusätzlich ein Kontaktgel aufgetragen. Die Kleinproben mit Durchmessern von etwa 9 cm wurden anschließend im Labor gelagert um in thermisches Gleichgewicht mit der Laborumgebung eintreten zu können. Die Messung der spezifischen Wärmeleitfähigkeit erfolgte zunächst im getrockneten Zustand durch Aufheizen der Probe auf bis zu 100°C für einen Zeitraum von mindestens 12 Stunden. Zur Erfassung möglicher Anisotropien der spezifischen Wärmeleitfähigkeiten wurden die Messungen in paralleler und normaler Orientierung der scheinbaren Schicht- und Schieferungsflächen durchgeführt.

Des Weiteren wurde ein Teil der Proben mit einer hochsalinaren Lösung gesättigt um den Einfluss der Porenfüllung sowie der Porosität abschätzen zu können. Die Lösung besteht aus 100g Salz und 1I destilliertem Wasser. Im nächsten Schritt wurden Kerne mit einem Durchmesser von einem Inch und einer Länge von ca. 2 cm aus den Proben gebohrt. An diesen wurden dann die Porosität, mit Hilfe des Archimedischen Prinzips, und die Wärmekapazität bestimmt. Die Wärmekapazität an gesättigten Proben wurde mit einem Flüssigkeitskalorimeter bestimmt.

Für die Wärmeleitfähigkeitsmessungen wurde das Wärmeleitfähigkeitsmessgerät Tk04 der Firma TeKa (Berlin) verwendet. Die Halbraumsonde ist eine Nadelsonde, die in einen Zylinder aus Plexiglas eingelassen ist. Die Nadel dient als Wärmequelle mit definierter Energie. Ein Temperatursensor in der Mitte misst die Temperatur als Funktion der Zeit. Nadel und Zylinder werden mit konstantem Druck (15 bar) auf die Probe gepresst. Für einen optimalen Wärmefluss, wird ein Kontaktmittel zwischen Probe und Sonde aufgebracht. Um ein Temperaturgleichgewicht vor der Messung zu erreichen werden die Proben einen Tag im Labor gelagert.

Während des Messvorganges wird die Halbraumsonde mit definierter Heizleistung (3 Wm-1) erwärmt. Der Zeitraum der Aufheizung beträgt 80 Sekunden. Der daraus resultierende Aufheizzyklus wird aufgenommen und analysiert. Die Wärmeleitfähigkeit wird danach aus der Aufheizkurve berechnet. Es werden 10 Messungen pro Probe durchgeführt, wobei nach 5 Messungen die Nadel um 45° gedreht wird umso einen Anisotropie Effekt zu erkennen.

Die Reproduzierbarkeit liegt bei ±1.5 % in Relation zur Wärmeleitfähigkeit. Aus den Messungen wurde das gewichtetes Mittel sowie die Standardabweichung berechnet.

Die Messung der spezifischen Wärmekapazität erfolgte mit Hilfe eines selbst gebauten Flüssigkeitskalorimeters. Die Probe wird in kochendem Wasser aufgeheizt. Nach einer halben Stunde wird die aufgeheizte Probe in eine Dewar Gefäß mit definierter Menge (200ml) von destilliertem kalten Wassers gegeben. Die Probe gibt eine bestimmte Menge an Wärme an das Wasser ab und führt zu einem Temperaturanstieg im Dewar Gefäß. Über den Temperaturanstieg, die Masse der Probe, die Masse des Wassers, die Wärmekapazität des Wassers und des Kalorimeters kann die Wärmekapazität berechnet werden.

Die Messung der radiogenen Wärmeproduktionsrate erfolgte an Proben mit glatten Oberflächen (z.B. Quader aus Großproben oder Bohrkernen). Eine Bleiummantelung als Abschirmung während der Messung und wiederholte Hintergrundmessungen gewährleisten ein bestmögliches Ergebnis. Je nach Probengröße und -beschaffenheit wird die Messdauer zwischen 300 und 600 s und die Anzahl der Wiederholungen festgelegt. Die erzielte Reproduzierbarkeit beträgt 3% bis 4 % Streuung, wobei in seltenen Ausnahmen jedoch auch Streuungen bis zu 10 % beobachtet worden sind.

Die Bestimmung der radiogenen Wärmeproduktionsrate erfolgte indirekt über die Messung der Gammastrahlungsintensität mittels 256 Kanal Spektrometer (Gerät Fa. Geofyzika Brno). Für die Auswertung wurden die in den jeweiligen Spektren registrierten Werte des kosmischen und anthropogen verursachten Hintergrundstrahlung sowie der unkorrigierten Messungen mit Probe in eine Exceltabelle aufgenommen. Aus den um den Hintergrund korrigierten Probenwerten wird ein Mittelwert der Anzahl der Impulse pro Minute berechnet. Sensitvitätsfaktoren, die an chemisch analysierten Proben unterschiedlicher Geometrie bestimmt wurden und die Probengeometrie berücksichtigen, dienten zur Ermittlung der nicht direkt messbaren Konzentration der Nuklide ⁴⁰K [in %], ²³⁸U [in ppm] und ²³²Th [in ppm]. Aus den Konzentrationen wurde in einem letzten Bearbeitungsschritt die radiogene Wärmeproduktion nach RYBACH (1976) berechnet:

$$A = 0.317 \cdot \rho \cdot (0.718 \cdot c_U + 0.193 \cdot c_{Th} + 0.262 \cdot c_K)$$
3.3

Mit A... radiogene Wärmeproduktion [HGU=10-13 cal/cm³], ρ ... die Dichte [g/cm³] und cu, cTh sowie ck ... Konzentrationen von Uran, Thorium und Kalium.

Die Dichte wurde über das Gesamtvolumen der Probe und deren Masse bestimmt. Für die Porositätsberechnung wurde das Prinzip von Archimedes (Masse der trockenen, gesättigten und unter Auftrieb) verwendet. Als weitere Methode für die Porositätsbestimmung wurde ein Helium-Pyknometer verwendet. Dieses bestimmt die Korndichte und das Kornvolumen, wobei über die gesamt Dichte und die Korndichte eine effektive Porosität berechnet werden kann.

Im Rahmen der Studie THERMTEC wurden in Summe 137 Messreihen durchgeführt. Sämtliche in der Einleitung zu diesem Kapitel angeführten thermischen Gesteinsparameter konnten nur an 103 Probenstücke ermittelt werden. Unter Berücksichtigung der jeweiligen Parameter wurden Messreihen im folgenden Umfang durchgeführt:

- Wärmeleitfähigkeit: 129 Probenstücke
- Spezifische Wärmekapazität: 125 Probenstücke
- Radiogene Wärmeproduktionsrate: 129 Pobenstücke
- Gebirgsdichte: 132 Probenstücke
- Porosität: 128 Probenstücke.

Die ermittelten Gesteinskennwerte gelten für Laborbedingungen. Messreihen zu variierenden Druck- und Temperaturbedingungen konnten nicht durchgeführt werden (in erste Linie für Wärmeleitfähigkeit und spezifische Wärmekapazität von Bedeutung).

Für eine detaillierte Übersicht der erzielten Ergebnisse sei auf das Kapitel 4.2 verwiesen.

Ein weiterer Aspekt der im Rahmen von THERMTEC an der MU Leoben durchgeführten Arbeiten bestand im Aufbau einer bundesweiten Kenndatenbank von Gesteinsparametern, welche unter dem Akronym "Petrobase" geführt wird:

Petrobase stellt eine Datenbank für petrophysikalische Daten mit besonderem Augenmerk auf thermische Daten dar. Diese Datenbank ist gegenwärtig noch aufgrund von Nutzungs-, Stabilitäts- und Sicherheitstests nur von der Montanuniversität aus erreichbar, soll aber in naher Zukunft auch externen Experten zur Verfügung gestellt werden.

Die Datenbank befindet sich physikalisch gesehen auf der Festplatte eines LAMP (Linux-Apache-MySQL-PHP) Servers des Instituts für Geophysik an der Montanuniversität Leoben. Nach Abschluss der Entwicklungsphase wird diese Datenbank dann auf einen öffentlich zugänglichen Server verlegt werden. Über diesen Server ist die Datenbank dann von jedem beliebigen Rechner mithilfe eines Browsers über das Internet erreichbar. Auf dem Server läuft ein Apache Web Server, der PHP Skripten ausführen kann. Zudem läuft ein MySQL Server, der die Datenbank PETROBASE, sowie kleinere Datenbanken zur Zugriffssteuerung beinhaltet.

Prinzipiell sind vier Hauptkomponenten zur Datenbank-Steuerung vorhanden:

- (1) die Zugriffssteuerung über eine Login-Seite mit Registrierungsmöglichkeit
- (2) die PHP-Skripten zur Definition von Suchkriterien
- (3) das Ausgabeskript
- (4) die PHP-Eingabeskripten um die Datenbank zu erweitern (benötigt besondere Privilegien).

Die Startkomponente (1) überprüft und ermöglicht die Vergabe von Zugangsberechtigungen. Zur Registrierung wird ein Eingabefeld geöffnet, bei dem Angaben zur Nutzung gemacht werden müssen. Nach Bestätigung der Daten wird ein Datenbankeintrag in die Zugangskontrolle durchgeführt und eine E-Mail an den Administrator geschickt.

Die Suchanfrage (2) wird mithilfe einer Webseite (siehe Abbildung 33), die von einem Eingabeskript dynamisch erstellt wird, durchgeführt.

		THEDMTEC
		THERIVITED
UERY THE PETROPHYSICAL DATA	ABASE	
) LOCALITY		
© All		
C Region	All 💌 All	•
C Latitude/Longitude Window		
	Latitude: from to	o N
	Longitude: from	to C
All		
) ROCK PHYSICAL PROPERTY		
Elastic prop.		
Electric prop.		
Thermal prop.		
Magnetic prop.		
Radiometric prop.		
C Porespace prop.		
Mineralogical prop.		
) PROJECT		
• All		
C Project:		
) OUTPUT OF RESULTS		
Level of detail:		
C Specimen level		
Sample level		
C Site level		
Additional contents:		
L Site info		
Lithology		
Project info		
I reatment into		

Abbildung 33: PETROBASE Datenbank – Eingabefelder mit den Suchkriterien.

Die Ausgabe (3) erfolgt dann mithilfe eines Ausgabeskripts. Dieses Skript übersetzt die Suchanfragen in SQL-Befehlsroutinen, wendet diese Routinen auf die Datenbank an und erzeugt dann dynamisch eine Web-Seite mit den Anfrageergebnissen.

Mithilfe von Eingaberoutinen (4), die ebenfalls dynamisch über Web-Seiten generiert werden, ist es bei entsprechenden Privilegien auch möglich, neue Daten und Kommentare zur Datenbank hinzuzufügen.

3.3.3 Aufbau petrophysikalischer Modelle

Um die räumlich variablen Umgebungsbedingungen in der avisierten thermischen Simulation möglichst realistisch abbilden zu können, wurden Prognosemodelle der relevanten thermischen Gesteinsmerkmale definiert, die auf den zur Verfügung stehenden Messdaten basieren. Die diesbezüglichen Konzepte sind an nachfolgender Stelle in diesem Kapitel erläutert.

Unter Bezugnahme auf die Homogenbereiche der jeweiligen geologischen Modelle (Regionalmodell bzw. Lokalmodelle) und das damit verbundene räumliche Auflösungsvermögen setzen sich die petrophysikalischen Prognosemodelle der thermischen Gesteinseigenschaften aus folgenden Bearbeitungsschritten zusammen:

 Modellierung der Matrixeigenschaften (Reduktion der Porenanteile) bei Laborbedingungen [Parameter (λ) und (cp)].

- Der Zusammenfassung der effektiven Materialeigenschaften an der Erdoberfläche auf Grundlage empirischer Messungen für die Parameter (A) und (ρ).
- Der Definition von effektiven Gesteinsmodellen (Matrix und Porenanteile) der Parameter (λ) und (cp) durch Verknüpfung mit den oben angeführten Porenmodellen.
- Der Definition von Tiefen- bzw. Druck abhängigen Extrapolationsmodellen der effektiven Gesteinseigenschaften für alle Hauptparameter. Die Kalibrierung dieser Modelle wird entweder aufgrund von Literaturdaten bzw. experimentell durch Verknüpfung mit seismischen Messdaten (z.B. Studie ALPASS) realisiert.
- Der Definition von synthetischen Gesteinsmodellen, die sich aus der mineralischen Zusammensetzung der Proben ergibt, f
 ür die Parameter (λ) und (cp), sodass ein Vergleich mit gemessenen Daten m
 öglich ist.

Im Nachfolgenden werden die wichtigsten Gesteinsmodelle für die Bemessung der terrestrischen Wärmestromdichte, die im Rahmen von Literaturstudien erhoben worden sind, zusammengefasst:

Wärmeleitfähigkeit und spezifische Wärmekapazität

Grundsätzlich ist zwischen spezifischen und effektiven Kennwerten dieser petrophysikalischen Parameter zu unterscheiden. Die effektiven Gesteinseigenschaften, die die tatsächlichen Gebirgseigenschaften unter Berücksichtigung der mit Formationsfluid gefüllten Gesteinsporen und Klüfte repräsentieren, wurden bei Raumtemperatur (25 °C) mittels Labormessungen an der Montanuniversität Leoben bestimmt. Neben der Porosität werden diese effektiven Gesteinseigenschaften von der Temperatur beeinflusst.

Temperaturabhängigkeit der Wärmeleitfähigkeit:

Empirische Untersuchungen (KAPPELMEYER & HAENEL, 1974) belegen, dass sich die effektive Wärmeleitfähigkeit bei einer Umgebungstemperatur von 200 °C um ca. 30 % im Vergleich zur Wärmeleitfähigkeit bei Raumtemperatur verringert. Die thermische Korrektur der Wärmeleitfähigkeit kann mit Hilfe des empirischen Ansatzes nach SASS ET AL (1992) bzw. nach KUTASOV (1999) erfolgen, wobei der gemittelte Prognosefehler im Temperaturintervall von 0 °C bis 200 °C bei ca. 5,5 % liegt. Im Rahmen des TRANSALP Projektes ist jedoch der Ansatz von SASS ET AL. (1992) für einen größeren Temperaturbereich und vor allem für Proben ähnlicher Gesteinsarten unseres Untersuchungsgebiets überarbeitet worden (Abbildung 34; VOSTEEN, 2003). Dieser Korrekturansatz gilt im Temperaturbereich von 0 °C bis 500 °C für magmatisches und metamorphes Gestein (CLAUSER & HUENGES, 1995):

$$\lambda(T) = \frac{\lambda(0)}{0.99 + T_{Form}(0.0030 - \frac{0.0042}{\lambda(0)})}$$
 3.4

Die für die Berechnung notwendige hypothetische Wärmeleitfähigkeit des jeweiligen Gesteins bei 0 °C ergibt sich aus:

$$\lambda(0) = 0.53\lambda(25) + \frac{1}{2}\sqrt{1.13(\lambda(25))^2 - 0.42\lambda(25)}$$
3.5

Die thermische Korrektur für Sedimentgesteine im Temperaturbereich 0 – 300 °C wurde ebenfalls von VOSTEEN (2003) berechnet:

$$\lambda(T) = \frac{\lambda(0)}{0.99 + T_{Form}(0.0034 - \frac{0.0039}{\lambda(0)})}$$
 3.6

Für die hypothetische Wärmeleitfähigkeit des jeweiligen Gesteins bei 0 °C gilt in diesem Fall:

$$\lambda(0) = 0.54\lambda(25) + \frac{1}{2}\sqrt{1.16(\lambda(25))^2 - 0.39\lambda(25)}$$
3.7

Abbildung 34: Gemittelte Werte (Symbole) und Spannweite der temperaturabhängigen Wärmeleitfähigkeit für (a) magmatisches und metamorphes und (b) sedimentäres Gestein, entnommen aus VOSTEEN, 2003.

Temperaturabhängigkeit der spezifischen Wärmekapazität

Wie im Fall der Wärmeleitfähigkeit liegt auch bei der spezifischen Wärmekapazität eine Temperaturabhängigkeit vor. In diesem Fall führt eine Erhöhung der Gesteinstemperatur zu einer Zunahme der spezifischen Wärmekapazität. Laut BUNTEBARTH (1980) erhöht sich die spezifische Wärmekapazität bei einer Temperatur von 300 °C um ca. 18 % im Gegensatz zur spezifischen Wärmekapazität bei Raumtemperatur. Gemäß VOSTEEN (2003) führte eine Temperaturerhöhung bis 300 °C zu einer Zunahme von 740 - 850 J kg⁻¹K⁻¹ auf maximal 1050 J kg⁻¹K⁻¹. Demzufolge ist es für die Betrachtung der thermischen Gegebenheiten der Erdkruste ausreichend lediglich die isobare spezifische Wärmekapazität zu betrachten. Die Berücksichtigung des oberen Erdmantels macht ein Heranziehen der isochoren (volumenkonstanten) spezifischen Wärmekapazität jedoch auch notwendig.

Die Temperaturabhängigkeit dieser Gesteinseigenschaften kann direkt in COMSOL Multiphysics[™] eingebaut werden bzw. besteht die Möglichkeit ein MATLAB-Script zu schreiben und mittels des LiveLink[™] mit COMSOL Multiphysics[™] zu verknüpfen.

Anisotropie der Wärmeleitfähigkeit und Wärmekapazität

Die Wärmeleitfähigkeit ist für viele vulkanische und plutonische Gesteine eine annähernd isotrope Gesteinseigenschaft (CLAUSER & HUENGES, 1995). Viele metamorphe und sedimentäre Gesteine sind im Gegensatz dazu stark anisotrop. Die Anisotropie kann im Idealfall im Labor an Proben durch Messungen der Wärmeleitfähigkeit in verschiedenen Orientierungen bestimmt werden. Im Rahmen der petrophysikalischen Labormessungen konnte nur bei ca. 20 % der Gesamtproben eine Anisotropie bestimmt werden. Aus diesem Grund wird für das Startmodell der thermischen Simulation des Tauernfensters die vereinfachte Annahme einer isotropen Wärmeleitfähigkeit getroffen.

Druckabhängigkeit der thermischen Gesteinseigenschaften

Bisherige Literaturrecherchen ergaben, dass die Wärmeleitfähigkeit in größeren Tiefen (untere Kruste & Mantel) sich aus zwei verschiedenen Komponenten, der Wärmeleitfähigkeit aufgrund von Gitterschwingungen (Phononen) und aufgrund der Wärmeübertragung durch Strahlung, zusammensetzt (KAPPELMEYER & HAENEL, 1974):

$$\lambda = \lambda_l + \lambda_r = \frac{b f(p)}{T} + \frac{16}{3} \cdot \frac{n^2 \sigma T^3}{\varepsilon_1}$$
 3.8

wobei *b/T* der Wärmeleitfähigkeit unter p-T Bedingungen an der Erdoberfläche, f(p) = 1 auf der Erdoberfläche und 23 an der Erdmantel-Kern Grenze, σ der Stefan-Boltzmann Konstante, *n* dem Brechungsindex und ε_1 der Opazität entspricht. Die letzten beiden Parameter sind sowohl von der Zusammensetzung des Materials als auch von Temperatur und Druck abhängig. Laut KAPPELMEYER & HAENEL (1974) sind die Änderungen dieser Parameter aufgrund von Druck und Temperatur für den Mantel noch nicht experimentell untersucht worden. Innerhalb der Kruste wird ein linearer Zusammenhang zwischen Wärmeleitfähigkeit und Druck angenommen (KAPPELMEYER & HAENEL, 1974).

Beide Anteile der Wärmeleitfähigkeit in Gleichung (3.6) sind von Temperatur und Druck abhängig, wobei die Temperaturabhängigkeit eine bedeutendere Rolle im zweiten Term spielt (siehe auch HOFMEISTER, 1999) und im ersten Term die Druckabhängigkeit (VILLINGER ET AL, 1994; VAN DEN BERG ET AL, 2005; HOFMEISTER, 1999) wichtig ist. Des Weiteren ist der Zusammenhang zwischen Druck/Temperatur und Wärmeleitfähigkeit für größere Tiefen (Mantel) etwas komplexer, da kaum Daten vorhanden sind. Aus diesem Grund werden weitere Literaturrecherchen zu diesen Effekten durchgeführt, sodass eine Druck- und Temperaturabhängigkeit der Wärmeleitfähigkeit für größere Tiefen (untere Kruste & oberer Mantel) bei der thermischen Simulation mitberücksichtigt werden können.

Die spezifische Wärmekapazität für den festen und geschmolzenen Zustand der Tiefengesteine variiert im Temperaturbereich von 0 – 800 °C nur sehr gering (KAPPELMEYER & HAENEL, 1974).

Radiogene Wärmeproduktion

Ein Großteil des terrestrischen Wärmestroms (ca. 70%) in der Erdkruste ergibt sich aus der durch den radioaktiven Zerfall produzierten Wärme, wobei die Isotope ²³⁸U, ²³⁵U, ²³²Th und ⁴⁰K hauptsächlich dazu beitragen. Aufgrund der Exhumierung basischer Tiefengesteine im Untersuchungsgebiet hat das Fehlen von radiogenen Wärmequellen in basischen Magmatiten einen reduzierten Wärmefluss zur Folge. Folglich ist die Kenntnis der Verteilung der radiogenen Wärmeproduktion mit der Tiefe von großer Bedeutung.

Oberflächennahe Daten der radiogenen Wärmeproduktion werden in die Tiefe extrapoliert, da direkte Hinweise auf die radiogene Wärmeproduktion der tieferen Kruste und des oberen Mantels begrenzt sind. Die Literaturrecherchen zeigten, dass verschiedene Methoden für die Extrapolation zur Verfügung stehen.

Vom linearen Zusammenhang zwischen terrestrischem Wärmestrom und oberflächennaher radiogener Wärmeproduktion (LACHENBRUCH, 1968; ROY ET AL, 1968) können Stufen- und/oder exponentielle Tiefenmodelle abgeleitet werden. Das exponentielle Modell ist die am häufigsten verwendete Methode. Komplexere exponentielle Modelle wurden von BODRI & ČERMÁK (1993) für poröses Medium (mit eventueller Zirkulation) hergeleitet. Von ČERMÁK ET AL (1991) wurde zusätzlich ein hyperbolisches Modell hergeleitet. Des Weiteren besteht die Möglichkeit aus der "in-situ" P-Wellengeschwindigkeit die Wärmeproduktion abzuleiten (ČERMÁK, 1989). Die verschiedenen Modelle werden im nachfolgenden kurz erläutert:

Der terrestrische Wärmestrom setzt sich im Allgemeinen aus zwei Komponenten zusammen: der Wärme aus dem Mantel (Konduktion, Konvektion von Magma, Konvektion durch tektonische Deformation) und der Wärme aus der Kruste (radiogene Wärmeproduktion). Es besteht die Möglichkeit diese zwei Anteile mit Hilfe eines linearen Zusammenhangs zwischen Wärmestrom und radiogener Wärmeproduktion zu trennen (LACHENBRUCH, 1968; ROY ET AL, 1968):

 $q_s = q_r + DA_0 \tag{3.9}$

wobei q_s dem terrestrischen Wärmestrom, q_r dem reduzierten Wärmestrom (Mantelanteil), D der Mächtigkeit der Wärme produzierenden Schicht (Steigung der Regressionsgeraden, siehe Abbildung 35) und A₀ der radiogenen Wärmeproduktion an der Oberfläche entspricht.

Es wird die Annahme getroffen, dass die radiogene Wärmeproduktion bis zur Tiefe D konstant bleibt. Auch der reduzierte Wärmestrom (Anteil aus Mantel und unterer Kruste) wird als konstant angenommen, sodass die variable radiogene Wärmeproduktion den variablen terrestrischen Wärmestrom verursacht.

Dieser Zusammenhang, zuerst von LACHENBRUCH (1968) und ROY ET AL. (1968) formuliert, galt für plutonische Gesteine. In der Folge wurde jedoch auch für metamorphe Gesteine diese Korrelation festgestellt (SASS & LACHENBRUCH, 1979; JAUPART ET AL., 1982)

Stufenmodell der radiogenen Wärmeproduktion

Das Stufenmodell ist ein sehr einfaches und idealisiertes Tiefenmodell. In ROY ET AL. (1968) wurde es für den Sierra Nevada Batholith (Tiefengesteinskörper) herangezogen. Das Ziel der Studie war den linearen Zusammenhang zwischen terrestrischen Wärmestrom und radiogener Wärmeproduktion mit Hilfe eines einfachen Tiefenmodells der Wärmeproduktion zu erklären. Das Ergebnis waren zwei Modelle, die eine zufriedenstellende erste Annäherung repräsentieren (Abbildung 35). Aus der Darstellung ist die gute Übereinstimmung zwischen berechneter (offene und volle Kreise) und gemessener radiogener Wärmeproduktion (durchgezogene Linie) ersichtlich.

Abbildung 35: Stufenmodell der radiogenen Wärmeproduktion für den Sierra Nevada Batholith (entnommen aus ROY ET AL, 1968).

> <u>Oben:</u> beobachtete lineare Zusammenhang zwischen terrestrischem Wärmestrom Q und radiogene Wärmeproduktion A (durchgezogene Linie).

> <u>Mitte:</u> Model 1 – 11 km tiefer Batholith mit konstanten Werten für die Wärmeproduktion (lateral variabel) innerhalb der Blöcke. Daraus berechnete Wärmeströme sind oberhalb mit offenen Kreisen dargestellt.

<u>Unten:</u> Model 2 – 11 km mächtiger Batholith mit abnehmender Wärmeproduktion (mit der Tiefe). Daraus resultierende Wärmeströme sind oberhalb mit vollen Kreisen dargestellt.

Exponentielles und Hyperbolisches Modell

Das exponentielle Tiefenmodell wird am häufigsten verwendet, da es in vernünftiger Weise die Verteilung der radiogenen Wärmeproduktion beschreibt. SINGH & NEGI (1980) haben auf Basis

ausschließlich mathematischer Modellierung gezeigt, dass das exponentielle Modell optimal die Verteilung der radiogenen Wärmeproduktion mit der Tiefe darstellt. Diese Modellvariante wurde zum ersten Mal von LACHENBRUCH (1968) vorgeschlagen:

$$A(z) = A_0 e^{-z/D} \tag{3.10}$$

Die exponentielle Verteilung kann auch bei teilweiser Erosion der Erdkruste angewendet werden (LACHENBRUCH, 1970).

Das hyperbolische Modell wurde in der Studie VON ČERMÁK ET AL. (1991) für die Bestimmung der Verteilung der radiogenen Wärmeproduktion der Kruste zusätzlich zum linearen und exponentiellen Ansatz verwendet:

$$A(z) = A_0 / (1 + \frac{x}{p})$$
 $x = z - 10 \ km$ 3.11

In diesem Fall wurden die obersten 10 km der Kruste nicht berücksichtigt, da aufgrund der komplexen geologischen Strukturen und eventuell auftretenden Fluidbewegungen eine Umverteilung der radioaktiven Isotope (hauptsächlich Uranium und Thorium) möglich ist.

Der Vergleich der drei Verteilungsformen (Abbildung 36) IN ČERMÁK ET AL. (1991) ergab, dass das exponentielle Modell sich den Daten am besten annäherte.

Abbildung 36: Einfache Modelle für die radiogene Wärmeproduktion in der Kruste, entnommen aus ČERMÁK ET AL. (1991).

Es ist jedoch zu beachten, dass das einfache exponentielle Modell für thermisch stationäre Bedingungen nur in einem homogenen Medium gültig ist. Aus diesem Grund wurde von BODRI & ČERMÁK (1993) eine modifizierte Form des exponentiellen Modells eingeführt, welches die

radiogene Wärmeproduktionsverteilung bei auftretenden Fluidbewegungen in einem porösen Medium darstellt:

$$A(z) = A_0 e^{-z/D} + a 3.12$$

wobei a ein konstanter Term (genaue Definition siehe BODRI & ČERMÁK, 1993) ist und je nach Bewegungsrichtung des Fluids (aufwärts/abwärts) ein positives oder negatives Vorzeichen aufweist.

Des Weiteren besteht die Möglichkeit das exponentielle Modell etwas komplizierter zu gestalten, indem der Parameter D nicht mehr vereinfacht als ein konstanter Wert für die jeweiligen geologischen Einheiten angenommen wird, sondern tiefenabhängig dargestellt wird. Außerdem kann das exponentielle Modell in mehrere Komponenten – entsprechend den Konzentrationen der radioaktiven Isotope – aufgeteilt werden (BODRI & ČERMÁK, 1993).

3.4 AP4: Geologische Untersuchungen

Die im Rahmen von THERMTEC durchgeführten geologischen Untersuchungen dienten der Auswahl und Erhebung von Gesteinsproben für die Bestimmung der thermischen Gesteinseigenschaften (Arbeitspaket AP3) sowie dem Aufbau eines geologischen 3D Modells für den Bereich des Tauernfensters. Dieses Modell sollte gemäß der ursprünglichen Projektplanung als geometrische Grundlage der thermischen Modellrechnungen dienen (Arbeitspaket AP1). Ergänzend hierzu wurden im Zeitraum März 2008 bis Oktober 2010 drei Exkursionen zu verschiedenen Regionen des Tauernfensters durchgeführt. Im Rahmen dieser Exkursionen wurden auch Gesteinsproben gesammelt. Die im Rahmen von Arbeitspaket AP3 petrophysikalisch untersuchten Proben wurden im Rahmen des Arbeitspakets AP4 auch mineralogisch analysiert. Die in den beiden Arbeitspaketen ermittelten probenspezifischen Ergebnisse wurden in gemeinsamen Probenkennblättern zusammengefasst.

3.4.1 Durchführung geologischer Exkursionen

Die unter Beteiligung des Projektkonsortiums durchgeführten geologischen Exkursionen dienten dazu sich mit der Geologie des Tauernfensters vertraut zu machen und Gesteinsproben für mineralogische, geochronologische und petrophysikalische Untersuchungen zu sammeln. Im Zeitraum März 2008 bis Oktober 2010 wurden drei Exkursionen zu östlichen, westlichen und zentralen Bereichen des Tauernfensters durchgeführt.

Exkursion #1: Tauerntunnel – Hintermuhr (26.03.2008)

Exkursionsleiter: Andreas Schindlmayr

Exkursionsteilnehmer: Nina Maria Gegenhuber, Johann Genser, Gregor Götzl, Roman Leonhardt, Manfred Rockenschaub, Andreas Schindlmayr

Das Exkursionsprogramm umfasste folgende Stationen:

 Tauerntunnel 2. Röhre A10: Befahrung des Nordvortriebes; lokale Führung von Bruno Haunschmid (Baugeologie, bf:gh zt-gmbh) und Alexander Gebhardi (Bauleiter Porr Tunnelbau GmbH);

- **Kraftwerk Hintermuhr**: Begehung des Kavernenausbruches und des Lotschacht-Ansatzpunktes; lokale Führung von Eberhard Kirchner (örtliche Bauaufsicht, bhm-ingenieure);
- **Kabelstollen**: Begehung des südlichen Stollenabschnittes; genehmigt durch Herrn Hohenwarter (Kraftwerksleiter Hintermuhr);

Zum Exkursionszeitpunkt bot sich die besondere Gelegenheit, die Untertagearbeiten der Bauvorhaben Tauerntunnel und Kraftwerk Hintermuhr zu begehen und frisches Ausbruchsmaterial zu beproben (siehe auch Abbildung 37). Weiters wurde ein Teilstück des Kabelstollens zwischen Hintermuhr und Zederhaus begangen und beprobt. Für detaillierte Informationen zur Exkursion #1 sei auf den "Zwischenbericht – Projektjahr 1" der Studie THERMTEC verwiesen.

Abbildung 37: Tektonische Übersichtskarte der Geologischen Karte 1:50.000, Blatt 156 Muhr (Häusler 1995) mit der Lage der im Rahmen der Exkursion #1 besuchten Hohlraumbauten.

Exkursion #2: Westliches Tauernfenster und Brennerabschiebung (07.10. bis 10.10.2008)

Exkursionsleiter: Manfred Rockenschaub

Exkursionsteilnehmer: Johann Genser, Gregor Götzl, Bruno Haunschmid, Roman Leonhardt, Christoph Janda, Andreas Schindlmayr, Bernhard Fügenschuh.

Die Exkursion hatte das Ziel, den geologisch-tektonischen Aufbau des westlichen Tauernfensters und dessen Rahmen vorzustellen und zu diskutieren. Die durchgeführte Exkursion gliedert sich in folgende Exkursionspunkte (EP), die ein Nord – Süd Profil durch den Bereich des westlichen Tauernfensters und der Brenner Abschiebung bilden:

• EP 1 – 3: Innsbrucker Quarzphyllitdecke

- EP 4: Tarntaler Permomesozoikum
- EP 5: Basis Glocknerdecke Subpenninikum (hinteres Schmirntal)
- EP 6: Subpenninische Einheiten Metasedimente auf dem Zentralgneis und Wolfendorndecke (Venntal)
- EP 7: Pfitschtal Muldenstruktur zwischen Tuxer- und Zillertaler Zentralgneiskern, Großstrukturen und Aufbau der permomesozoischen Metersedimente

Für detaillierte Informationen zur Exkursion #1 sei wiederum auf den "Zwischenbericht – Projektjahr 1" der Studie THERMTEC verwiesen.

Abbildung 38: Geologische Übersicht des westlichen Tauernfensters und seines Rahmens und dessen Lage im Ostalpin sowie die Lage der einzelnen Exkursionspunkte zur Exkursion #2.

Exkursion #3: Zentrale Regionen des Tauernfensters – Pinzgau / Pongau (18.10. bis 20.10.2010)

Exkursionsleiter: Manfred Rockenschaub, Andreas Schindlmayr

Exkursionsteilnehmer: Manfred Rockenschaub, Gregor Götzl, Andreas Schindlmayr, Rudi Berka, Fatime Zekiri, Anna Brüstle, Magda Bottig, Gerhard Schubert, Franz Mayringer.

Im Rahmen dieser Exkursion wurden neue Gesteinsproben erhoben, thermische Messungen durchgeführt und ein projektinterner Workshop über die konzeptionelle Gestaltung des geologischen 3D Modells für den Westrand des Tauernfensters abgehalten.

Es wurden folgende Exkursionspunkte gewählt:

- Kraftwerk Tauernmoos mit Kabelstollen
- Befahrung Scheelitbergbau im Felbertal (Erhebung von Gesteinsproben, thermische Messungen)
- Diverse Aufschlüsse im Gasteiner Tal (Erhebung von Gesteinsproben)
- Thermalstollen in Bad Gastein (thermische Messungen).

3.4.2 Probenauswahl und Probenbearbeitung

Die im Rahmen von THERMTEC untersuchten Gesteinsproben stammen aus sowohl Untertage- als auch Obertageaufschlüssen sowie aus Bohrkernen. Die Untertageaufschlüsse wurden im Rahmen der thermischen Untersuchungen in den Tunnel- und Stollenvortrieben beprobt. Die Obertageproben wurden vorrangig im Rahmen der geologischen Exkursionen gesammelt. Darüber hinaus wurden Bohrkerne aus diversen Trassenerkundungsbohrungen zu Tunnelprojekten (z.B. Brenner Basistunnel und S37 Neumarkt – Wildbad Einöd) erhoben.

Die Auswahl der zu beprobenden lithologischen Einheiten wurde dem geologischen 3D Modell des Tauernfensters sowie den erhobenen Temperaturmessdaten angepasst. Hierbei galt die Prämisse zu beachten, dass am jeden Standort, an welchem Temperaturmessungen durchgeführt worden sind Gesteinsproben für die Bestimmung der Wärmeleitfähigkeit zu erheben sind, damit die terrestrische Wärmestromdichte berechnet werden kann.

In Summe wurden im Rahmen von THERMTEC 167 Gesteinsproben aus 19 Standorten zu gesammelt. Hierdurch konnten Proben zu 20 tektonische Einheiten des Penninikums sowie dessen berandenden ostalpinen Einheiten gewonnen werden. Die Lage der erhobenen Gesteinsproben ist den nachfolgenden Abbildungen zu entnehmen. Die dazu gehörige Probenliste befindet sich in Beilage 1.

Abbildung 39: Übersicht der im Rahmen von THERMTEC erhobenen Gesteinsproben.

Abbildung 40: Lageplan der Probenpunkte, Ausschnitt "Ost".

Abbildung 41: Lageplan der Probenpunkte, Ausschnitt "Neumarkt – Wildbad Einöd".

Abbildung 42: Lageplan der Probenpunkte, Ausschnitt "Mittersill - Tauernmoos".

Abbildung 43: Lageplan der Probenpunkte, Ausschnitt "Brenner Basistunnel". Die angeführten Probennummern wurden nur exemplarisch für die Standorte der beprobten Bohrungen dargestellt: 61 entspricht Intervall 61 – 74; 75 entspricht Intervall 75 – 83; 84 entspricht Intervall 84 – 86; 87 entspricht Intervall 87 – 119; 120 entspricht Intervall 120 – 131; 134 entspricht Proben 134 und 135; 136 entspricht Proben 136 und 137; 139 entspricht Intervall 139 – 147; 148 entspricht Intervall 148 – 153.

Abbildung 44: Lageplan der Probenpunkte Ausschnitt "Arlberg - Silvretta".

Die Aufbereitung der erhobenen Proben setzt sich aus folgenden Arbeitsschritten zusammen:

- i. Zusammenschnitt der Proben zu Würfel mit einer Kantenlänge von ca. 15 cm für petrophysikalische Untersuchungen an der MU Leoben (aktuelle Proben).
- ii. Erstellen von Dünnschliffen (ausgewählte Proben)
- iii. Aufbereitung von Proben für geochronologische Untersuchungen an der Uni Salzburg (ausgewählte Proben).

Besonderes Augenmerk wurde in der gegenwärtigen Projektphase auf die Verknüpfung der erhobenen petrophysikalischen Messdaten mit geochemischen und mineralogischen Analysen gelegt. Dies dient primär zur Kalibrierung bzw. Validierung der gemessen petrothermischen Gesteinskennwerten (Wärmeleitfähigkeit, Wärmekapazität), indem synthetische petrothermische Modelle auf Grundlage geochemischer Kenndaten erstellt werden. Die gegenwärtig durchgeführten Untersuchungen umfassen:

- Hauptelementanalysen
- Spurenelementanalysen
- Untersuchung des Mineralbestands und Mikrotexturen an Dünnschliffen

Abschließend wurden zu allen erhobenen Proben Kenndatenblätter erstellt, welche sämtliche Labormesswerte beinhalten und der Beilage 1 entnommen werden können.

3.4.3 Aufbau geologisches 3D Modell

Im Zuge des ersten Projektjahres wurde im Rahmen des Arbeitspakets AP 4 ein Grobkonzept der geologischen Modellierungsstrategie entwickelt.

Abbildung 45: Räumliches Grobkonzept der geologischen 3D Modellierung.

Das geologische 3D Modell des Tauernfensters wurde zu Beginn der Arbeiten in ein Ostrandund Westrand Modell untergliedert und separat erstellt. Erst in der finalen Phase der Modellierung wurden beide Detailmodelle in ein Regionalmodell des gesamten Tauernfensters zu kombinieren.

Die geologische 3D Modellierung wurde mit Hilfe der Softwarepakete GeoModeller™ (Intrepid) und GOCAD™ (Paradigm) durchgeführt und gliederte sich in folgende Hauptarbeitsschritte:

- 1. Erhebung und Digitalisierung bestehender Karten und Schnitte.
- 2. Festlegung eines konzeptionellen geologischen Modells (Modelleinheiten, Berandung etc.).
- 3. Aufbau des geologischen Modells durch Interpolation und Triangulierung der unter Punkt 1. erhobenen Stützstellen.
- 4. Iterative Modellanpassung und Qualitätskontrolle durch nicht berücksichtigte geologische Stützstellen und Review durch Experten der Geologischen Bundesanstalt.
- 5. Export des geologischen Modells für eine Weiterverarbeitung in der thermischen Simulation.

Ad Erhebung und Aufbereitung der geologischen Stützstellen:

Die Grundlage des Modells basiert auf dem Verschnitt von diversen geologischen Karten (Österreichische Anteile im Maßstab 1:50.000, Italienische Gebiete 1:100.000) mit einem Höhenmodell. Im ersten Schritt erfolgte die Georeferenzierung der Kartenblätter mittels Esri GIS[™], anschließend werden die Grenzen der zur Modellierung gewählten Einheiten digitalisiert. Durch Verschnitt der konstruierten Linien mit dem Höhenmodell kann ein generelles Schichteinfallen für jeden beliebigen Abschnitt ermittelt werden. Mit Hilfe des Programmes Geomodeller[™] wurde aus den resultierenden Fallwerten, zusammen mit der vereinfachten geologischen Karte und den Grenzlinien ein erstes 3D Modell gerechnet. Abbildung 30 zeigt die dem Modell zu Grunde gelegenen Stützstellen.

Abbildung 46: Übersicht der verwendeten Profilschnitte im Projektgebiet. Hintergrund: Geologische Karte 1:1.5 Mio, Geologische Bundesanstalt.

Die Basisdaten der Modellierung repräsentieren im Wesentlichen:

a) Geologische Karten des Tauernfensters und seines unmittelbaren Rahmens (Kompilierte geologische Karte im Maßstab 1:200.000 Salzburg, diverse geologische Karten aus den Archiven der GBA im Maßstab von 1: 10.000 bis 1:50 000, unveröffentlicht und publiziert)

b) Ergebnisse der Studien "Transalp" (seismisches Profil durch das zentrale Tauernfenster), "ALPASS" (MOHO-Tiefenkarte, BEHM ET AL. 2007) und "Brenner Basistunnel" (Bohrungen und konstruierte Profilschnitte)

c) Geologisch-tektonische Karte des Tauernfensters samt einer Serie von zehn Profilschnitten (SCHMID ET AL., 2013) die erstmals die Geologie des Tauernfensters bis in eine Tiefe von 5 km darstellen.

d) Diverse publizierte Profilschnitte

e) Im Rahmen des Projektes neu konstruierte Profilschnitte durch das gesamte Tauernfenster und seinen Rahmen

f) Im Rahmen des Projektes neu kompilierte geologische Karte des gesamten Tauernfensters

Ad Festlegung des konzeptionellen geologischen Modells:

Die Gliederung der Modelleinheiten erfolgte einerseits aufgrund der Oberflächengeologie und Tektonik sowie den lithologischen- und petrophysikalischen Eigenschaften der Gesteine, die für die weiteren geothermischen Modellierungen entscheidend sind. Das Modell des Tauernfensters in folgende Einheiten (ohne Umrahmung) untergliedert:

• 8 Untergliederungen der subpenninischen Zentralgneis Decken (Zillertal-, Sonnblick- und Romate Decke; Tux-, Granatspitz- und Hochalm Decke; Ahorn- und Göss- Decke)

• 5 Untergliederungen des "Alten Daches" (allgemein in Gneise und Amphibolite, weiters die Storzdecke, Habachgruppe, Altes Dach Hochalmdecke)

4 Untergliederungen des Penninikums (Glocknerdecke s.str, Raurisdecke, Deckensystem der Matreier- und Nordrahmenzone mit Sandsteinbrekzienzone)

• 3 Untergliederungen der Bündnerschiefer (im Allgemeinen, Wolfendorndecke, Seidlwinkldecke – zu den betreffenden Decken gehörend)

- Jungpaläozoische Gesteine zu den betreffenden Decken gehörend
- Karbonatische Perm/Trias zu den betreffenden Decken gehörend
- Hochstegenzone zu den betreffenden Decken gehörend
- Porphyrmaterialschiefer zu den betreffenden Decken gehörend
- Seidlwinkel-Modereckdecke
- Rote Wand Decke

Es sei angemerkt, dass es sich bei den obigen Gliederungen keiner definierten Nomenklatur handelt, weil sie auf die Zwecke der geothermischen Modellierung abgestimmt sind.

Die Festlegung der Modellberandung (horizontal und vertikal) erfolgte nach folgenden Gesichtspunkten:

Die gewählten Begrenzungslinien verlaufen exakt in W-E und N-S Richtung.

- Die Nordgrenze wurde in etwa auf der Höhe von Innsbruck gezogen,
- die östliche etwas östlich des seismischen "Transalp"-Profils,
- die südliche knapp nördlich des Rieserfernerplutons und
- die Westgrenze etwas westlich der Brenner Abschiebung.

In der Teufe wird das Modell bis zur MOHO – Diskontinuität generiert und die Obergrenze definiert ein topographisches Höhenmodell.

Ad lithologische Unterteilung des geologischen Modells:

Gebiet um die Granatspitz Decke

Die Gesteine um die Granatspitz Decke stellen im Wesentlichen prävariszische Sedimente dar, welche alpidisch und prä-alpidisch metamorph überprägt wurden (SCHUSTER ET AL.

2006). Dieses "*Alte Dach*" wird für das Modell lithologisch in drei Serien untergliedert, jene Bereiche mit vorwiegend *Amphiboliten (Basisamphibolit Zug)*, jene mit überwiegend *Gneisen* und jene mit überwiegend *Prasiniten (Habach FM)*.

Schuppenzone zwischen Glockner- und Venedigerdecke östlich der Granatspitz Decke. Die nördlichen Anteile (in der Gegend um den Tauernmoossee bestehen vorwiegend aus Bündner Schiefern (GK50 Blatt 153 Nr. 60, 62), die südlichen Anteile in der Umgebung der Pasterze werden hauptsächlich durch Paragneise und Glimmerschiefer (GK50 153 Nr. 58) repräsentiert. Da die Bündner Schiefer vorkommen hier sehr geringmächtig sind werden diese Einheiten den **Gneisen** des **Alten Daches** zugerechnet.

Gebiet um die Hochalm Decke

Entsprechend der "Schichtfolge der zentralalpinen tektonischen Einheiten auf dem Blatt 156 Muhr" wurden folgende Schichtpakete zusammengefasst:

Schlohttelge	n dor zontra	dalpinon tei	tonischen Einheiter	out Blatt 156 Muhr															Educt	anungen 158 Male
GR0557 TEKTON, STELLUNG	G	AS	TEINE	R DE	ске		PERIPHE	RE SCHIE	FERHÜL	LE	ZONE	U	N T E	RO	S T	A L P	1 N		MITTEL = OSTALPIN	
TEKTON EINHEIT	ALTES DACH DES GOSS- GNE ISK.	TONALIT: DNEIS- DECKE	ZENTRALGNEIS	SILBERECKSERIE	MURECK- GNEIS - D	STORZ-DECKE	MURTÖRL- SCHUPPE	SCHROVIN- SCHUPPE	MARISLWAND- SCHUPPE	SUNHREOBS	NORD: RAHMENI ZONE	HUCHFEIND - D.	LANTSCHPELD-D.	HOFALM	RAUH- WACKEN= SCHUPPE	PLEISLING-D.	RESSELSPITZ-D	DECKE	ALT= KRISTALLIN	
JURA				Bindnetschiefer Gruppe 12 Brünschiefer 18 Schwarzschiefer 16 Bioth KorbJul 16 Bioth KorbJul 16 Karbehalquarzit 17 Delomitareccie		Bindnersch4 Grunne N Schwarzsehf	Blindnerschf, Groppe us Serpentinit 51 Schwarzschf,	<u>Rüntnerschi</u> - <u>Gruppe</u> 67 Schwarzschf. 68 Kalkschiefer	Blindnerschil-Gro es Grünschiefer is Ophicalcit es Serbentinit es Schwarzschil es Kalkschiefer es Kalkschiefer 20 Delemitbresc	Bunde sch-Ge os Grünschf 68 Kalkschf 98 Kalkschf 98 Karsonal- guarzit	Bündn sch-Gr 50 Grünphyll 51 Schw schf 52 Mehsqual 53 Breccis	22 Schwärzerkbrecc 23 Grüner Phylit 24 Metarodiolorit 25 Tonschiefer 26 Türkenig briecle 27 Tonschiefer 28 Kolkmanner	27 Tonschiefer			27 Tonschiefer 26 Kolknormer	28 Kol knormor			JURA
PERMD: TRIAS				ss Kalkmarmor (Silberetism) ss Dolamitmormor 90 Routwacke ss Lontschfeldgart		sa Kalkmornor (Silberetkm.)	Schrovin-Gra 11 Kalknamer 22 Delommermor 14 Lantschfidquet	Schrowin-Brp H Kolkmormsr 72 Dolom.moteor 73 Routiwacke rklantschfldgut	Schrovin-Orp 74 Kolkmannor 72 Dolominarthor 73 Rouhwacke 74 Lentschfldquat		sa RoiblerSch 55 Dolmarmor 55 Kölkingrim 57 Kön Jensch 58 Routwecke 59 Arkese Janburger	29 Kassen-Format 30 Naustadomin 34 Kristaldetmit 34 Dolanitmamor 37 Wettersteindet 36 Dolanitmamor 38 Kalkmannot	20 Houptdelanit 31 Kristalleolomit 33 Tonschlefer 34 Dolomitmorner 39 Wettersteinder 39 Wettersteinder 39 Kalkmarner 39 Routworke 21 anstehleferunt	27 Wetterstid 36 Doronim 36 Knikmerm	41 Rouby	29 Nossen-Form, 30 Hauptdolamit 32 Kristolidalamit 33 Jonschiefer 34 Dolonimelmo 35 Mergelachiefer 36 Kalkmarmat 39 Wethersbeindol 39 Delonetmomot 39 Kalkmarmat 40 Tonschiefer 41 Bunhworke 51 Jonér Miteuzet	20 Houpidolom In Kristotidol (Korn) 24 Dol.maimor 27 Wefferstdol 38 Dol.maimor 39 Kalikingimor 41 Raishuarka 42 Janikorfazi	29 Kulkesreer		PERMO* TRIAS
RRISTAD	Zentrale ts Grophili guzt ss Gronat- gl scht ta Gronit- gn i.c. tim Migman tifge.	Schthulle 96 Grenat- glashf 97 Tondit- gire s	Boranstyl schiefel 16 Met Langrophyr 19 Tonaitgraes 18 Schiefennigana'i 19 Forallen pas 19 Forallen pas 19 Mit körn Brenitgh 19 Mit körn Brenitgh 19 Grothynes La 19 Grothynes La 11 Granstyl schiefer 11 Boolitschiefer 11 Boolitschiefer 11 Mignalit grees	92 Geröllquarzıt 93 Gruphilquarzit 989 Grunitgneisi a	100 Granil Çrin	36 Met Lamproph Koreck-Komel rou Portopolis, etc. <u>Storz-Komelek</u> ros Birot-Blostauth ros Birot-Blostauth ros Grobkarrangh ros Grobkarrangh ros Orthognes rob Parognesis	75 Geröllquarzit 77 Arkosequarzit <u>Nertöri-Gruppa</u> 78 Amphabiti 79 Kalkschefer 60 Grephitgiorzit 81 Schwarzschief.	75 Gerällquarzit 77 Arkosequarzit <u>Murteit-Grueze</u> 86 Graphitquarzit 81 Schwarzschief	76 Graphitguarai 77 Arkoseguarai <u>Merteri-Greppe</u> 78 Amphibait 40 Graphitguarait et Schwarzschief		Twenger Kri to Oti-Projili si Orthogn. 52 Paragn.	as Twenger Kristoll	sa Twenger Kristollin	43 Twenger Kristonn		48 TwengerKrist	49 Twenger Krisfallin	43 Eisendalon (Silur) 44 Gradii kalk (Silur) 45 Quarzit 45 Serizibbyll 47 Katschoeg Doorzphyll 49 Twenger Kristalin	va Silminara schiefer 20 Amphia bola 21 Paragneis	KRISTAL

Abbildung 47: Schichtfolge der zentralalpinen tektonischen Einheiten auf dem Blatt 156 Muhr (Erläuterungen 156 Muhr, Tafel 1).

Die <u>Storzdecke</u> mit vorwiegend Gneisen und Amphiboliten repräsentiert einen Teil des von der südlichen Hochalm Decke abgescherten Alten Daches (ROCKENSCHAUB ET AL., 2003).

Gebiet um die Sonnblick Decke

Die <u>Seidlwinkeldecke</u> (Nordwesten) setzt sich aus *triassischen Karbonaten* (GK 200 Salzburg Nr. 199/200) und *Bündnerschiefern* (GK 200 Salzburg Nr. 198 Graphitische Schiefer, Nr. 195 Phyllite, Kalkschiefer und Karbonatquarzite; laut GK50 153 Nr. 60/62 Phyllite und Quarzite) zusammen.

Der auf der GK200 Salzburg ausgewiesene Murtörl / Draxl setzt sich aus jungpaläozoischen Gesteinen zusammen und zwar hauptsächlich aus Schwarzschiefern (Nr. 208) – demnach zählen diese Gesteine lithologisch zu der Serie der **jungpaläozoischen Schiefer.**

Die Mallnitzer repräsentiert eine duktil stark deformierte Synform und Scherzone mit einem Stapel von Schieferhülldecken (inkl. Glocknerdecke) und Gneislamellen in ihrem Kern (Ro-CKENSCHAUB ET AL, 2003). Die Gesteine der Mallnitzer Mulde werden entsprechend in

Bündnerschiefer (GK 200 Salzburg Nr. 188 kalkfreie und kalkige dunkle Phyllite der Kreide) und *Glocknerdecke* (Nr. 189 Glimmermarmor; Kreide) gegliedert.

Schuppenzone am nordöstlichsten Rand des Tauernfensters – Murtörl- und Schrovin Schuppen

Diese beiden Elemente besitzen einen ähnlichen lithologischen Aufbau. Beginnend mit paläozoischen Schiefern und Quarziten folgt eine vorwiegend karbonatische Entwicklung der Perm/Trias (entspricht der Schrovin Gruppe) und endet mit Schwarz- und Kalkschiefern der Bündnerschiefergruppe (Jura/Kreide) (Abbildung 66).

Unterschieden wurden im Modell daher nicht die einzelnen Schuppen sondern ihre lithologische Entwicklung, die Permotrias der Schrovingruppe (GK50 156 Nr. 71) zählt demnach zu der *Triaskarbonatischen Gruppe* und die vorwiegend Schwarzschiefer der Paläozoischen Murtörl-Gruppe zu den *Jungpaläozoischen Schiefern*.

Die Gesteine der Marislwandschuppe werden zum **Glocknerdecken/Nordrahmen** System gezählt.

Die Silbereckserie führt permomesozoische (postvariszische) Gesteinseinheiten, welche der Hochalm Decke in transgressivem Verband aufliegen und die Liegendgrenze zur Storz Decke bilden. Lithologisch entsprechen die Gesteine folgender Schichtfolge (PESTAL 2005):

- Die jüngsten Gesteine (Jura/Kreide) liegen in Bündnerschieferentwicklung vor und entsprechen der Kaserer Serie;
- Die karbonatischen Gesteine der Oberjura sind vergleichbar mit dem Hochstegenmarmor;
- o Die karbonatische Mitteltrias entspricht der Seidlwinkeltrias
- Eine Quarzitische Serie im Perm/U. Trias entspricht der Wustkogelserie

Die Silbereckserie wird ebenfalls nicht tektonisch, sondern lithologisch in das Modell integriert – unterteilt in die *karbonatische Trias* und die *Bündnerschiefer.*

Die <u>Mureckgneisdecke</u> besteht aus geringmächtigen mesozoischen Metasedimenten welche vom Zentralgneis und dem Alten Dach abgeschert wurden und auf benachbarte Zentralgneise bzw. Hüllgesteine aufgeschoben wurden (PESTAL 2005).

Ad Aufbau des geologischen Modells mittels GeomodellerTM

Zu Beginn des Projekts THERMTEC war vorgesehen das geologische 3D Modell mit Hilfe der Software Geomodeller™ (Intrepid) zu erstellen. Dieses Programm wurde speziell für die geologische Modellierung tektonisch stark gestörter und verfalteter Strukturen entwickelt. Es war im Rahmen von THERMTEC auch vorgesehen das Programm Geomodeller™ einen Leistungstest zu unterziehen. Nach dem Abschluss des Westrandmodells fiel die Entscheidung auf einen weiteren Einsatz des Softwarepakets Geomodeller™ in der verbleibenden Projektlaufzeit zu verzichten. Alle weiteren Modellierungsarbeiten wurden mittels Softwarepaket Gocad™ durchgeführt. Diese Software wurde anfangs nur zur Unterstützung des Programms

Geomodeller™ eingesetzt. Die Gründe für einen Verzicht von Geomodeller™ werden nachfolgend angeführt:

Mit dem Softwarepaket Geomodeller[™] wurde die eigentliche Modellierung durchgeführt. Diverse digitalisierte Punktinformationen über Oberflächengeologie, Fallwerte, Schichtgrenzen etc. liefern die Eingangsdaten und werden mittels der Potentialfeld-Methode, basierend auf dem Co-Kriging-Verfahren, zu geologischen Flächen interpoliert. Verwendet werden halbautomatische Interpolationsalgorithmen. Dies bringt den Vorteil, dass Inkonsistenzen und Fehler in den Eingangsdaten aufgezeigt werden können. Die einzelnen Schichten müssen definiert, zu Formationen zusammengefasst und der stratigraphischen Abfolge zugeordnet werden. Jeder Formation wird die Eigenschaft der Ablagerung zugewiesen ("onlapping" bei sedimenären Lagen, "eroding" bei "erodierenden" Körpern wie Plutoniten).

Im Modell "Tauernfenster West" wurde der Großteil der Schichten als "eroding" eingestuft. Zwar handelt es sich vorwiegend um sedimentäre Lagen, durch die komplexe tektonische Situation funktioniert diese strikte Zweiteilung (*"onlapping"*/ *"eroding"*) jedoch nicht widerspruchsfrei.

Da auf kaum eine Formation nur eine dieser Eigenschaften zutrifft, bieten beide Wahlmöglichkeiten Potential für Fehler. Eine als *"onlapping"* definierte Schicht bedeckt generell die darunter liegenden, jüngeren Einheiten und verbreitet sich deswegen über Bereiche, welche nicht bedeckt werden sollen. Andererseits wird die Erstreckung dieser Schichten oft zu stark von den dominanteren *"eroding"* Formationen eingeschränkt. Als *"eroding"* eingestufte Schichten können flexibler gestaltet und auch leichter begrenzt werden. Mit diesem Attribut ergeben sich naturgemäß weitere Fehlerquellen wie z.B., dass Schichten nicht gleichmäßig mächtig dargestellt werden. Da diese Schichten im Prinzip behandelt werden, als würden sie plutonartig aufsteigen, können sie überall im Modellgebiet in den verschiedensten Geometrien auftauchen. Dadurch ist es zwingend notwendig, jede Schicht mit Hilfe von Fallwerten zu begrenzen.

Die korrekte Zuordnung der Einheiten in die stratigraphische Abfolge ist ebenfalls problematisch, da eine Schicht nicht im gesamten Projektgebiet immer an dieselbe Schicht grenzt (z. B. erodierte Bereiche, Sedimentationslücken, etc.). Die in Geomodeller[™] verarbeiteten bereits bestehenden Eingangsdaten aus Literaturquellen lieferten jedoch kein zufriedenstellendes Ergebnis. Aus diesem Grund war es unumgänglich, Hilfsprofilsschnitte zu konstruieren.

Unter Verwendung der Standardeinstellungen konnten die geologischen Eingangsinformationen nicht sinnvoll extrapoliert werden. Modellverbesserungen waren jedoch durch Anwendung folgender, im Programm verfügbaren Spezialoperationen möglich:

Nugget effect: Je kleiner der Wert, desto kleiner ist der Fehler beim Angleichen der Interpolierten Daten mit den Eingangsdaten.

Drift degree: 0 = kein *Drift*, 1 = linear (Trend zu planar), 2 = quadratisch (Trend zu parabolisch); Der Standardwert ist 1, also planar, dieser Wert muss im Normalfall nicht verändert werden.

Isotrop/Anisotrop: Isotrop ist der Standard und bedeutet, dass sich die Eigenschaften der Formationen in alle Richtungen gleich verhalten. Die Interpolationsfunktion ist demnach kugelförmig und wird durch einen Radius definiert, welcher dem *range* Parameter entspricht. Der Standardwert für den *Range* ist die diagonale Länge der Projektgebietsumhüllenden (*project bounding box*).

Durch Änderung der Einstellungen von Isotrop auf Anisotrop können die oben beschriebenen Werte geändert werden. Um die laterale Ausdehnung diverser Flächen zu vergrößern wurden die Werte für den X und Y *Range* (entspricht der Ost- und Nordrichtung) geändert, wodurch man die Extrapolation der Eingangsdaten entsprechend steuern kann.

3 ⁹ Model interpolation Range	parameters	m	×	Stark erhöhte X Werte, verminderte Z Werte	à
Nugget effect on Geology data Geology orientation data Drift degree	0.000001 0.01 1 •			Stark erhöhte X und Z Werte	
Anisotropic	Azimuth	0.]		
	Pitch X range	0.	m	Frhöhter <i>Range</i> , erhöhte	
	Y range Z range	86000. 86000.	m	Dip & Pitch Werte Sowie stark erhöhte X, Y und	
P Help	С ОК	Close		Z Werte	

Abbildung 48: Änderung der Interpolationsparameter von Isotrop (Kugelfunktion) auf Anisotrop; gelbe Sterne symbolisieren Eingangsdatenpunkte.

Die Werte wurden individuell für jede Formation verändert, wobei jeweils ein guter Mittelweg zwischen flächendeckender Extrapolation und dem unverändert lassen der Eingangsdaten gefunden werden muss. Liegen die geologischen Eingangsdaten räumlich sehr nah bei einander, darf z.B. der X *range* (Extrapolation in die X Richtung) nicht zu groß gewählt werden, da sie sich sonst gegenseitig beeinflussen.

Ad Aufbau des geologischen Modells mittels GocadTM:

Im Zuge des Modellierungsfortschrittes kristallisierte sich Gocad[™] als die für diese Anwendung passendere Software heraus, so fiel die Entscheidung auf einen weiteren Einsatz des Softwarepakets Geomodeller[™] zu verzichten.

Gocad[™] wurde anfangs dafür angewendet um die bereits vorhandenen Profilschnitte zu georeferenzieren und digitalisieren sowie um die Nachbearbeitung der in Geomodeller[™] berechneten Flächen durchzuführen.

Serien an für dieses Projekt neu konstruierten Profilschnitten durch Manfred Rockenschaub wurden in das Modell eingebaut. Mit dem Einbau dieser Profilschnitte und das kontinuierliche Bearbeiten der interpolierten Flächen können die bislang vorhandenen Vorstellungen und Theorien der Geologen bis zu einem gewissen Grad sowohl validiert jedoch auch für ungültig erklärt werden.

Nach Fertigstellung eines jeden Profils wurde dieses in das Gocad[™] Modell integriert und diskutiert. Die Schichtgrenzen des bestehenden Modells werden mit jenen auf dem Profil verglichen und angepasst. Oft konnten so auch geometrische Fehler in der Profilkonstruktion aufgezeigt werden. Einer dieser häufigsten Fehler liegt dabei, dass bei der Konstruktion von Profilen hauptsächlich die Oberflächengeologie interpretiert wird und jene Einheiten, welche lediglich im Untergrund verlaufen, also nicht entlang der Linie des Profilschnittes an die Oberfläche treten teils unberücksichtigt bleiben.

Die einzelnen Flächen werden sukzessive aneinander angepasst und Fehler sowie Überschneidungen bereinigt. Einheiten aus dem Westrandmodell wurden mit jenen aus dem Mitte-Ost-Modell verbunden – hierdurch waren häufig weitere strukturelle Fragen zu klären.

Die Herangehensweise, das Tauernfenster in zwei Teilen zu modellieren und im letzten Schritt zu einem Modell zusammenzubauen hat sich als wertvoll herausgestellt. Jedes Gebiet wurde getrennt betrachtet ohne die Eingangsdaten der Nachbarregion miteinzubeziehen - dadurch mussten im Vorfeld keine Kompromisse eingegangen werden. Im Zuge der Zusammenführung der beiden Modelle ergaben sich dadurch weitere Fragestellungen zur Struktur der einzelnen Formationen, was natürlich auf der einen Seite zusätzliche Arbeitsschritte mit sich führten, auf der anderen Seite jedoch in einem detailgetreueren Modell resultiert.

Ad Iterative Modellanpassung und Qualtiätskontrolle:

Bestehende Modelle wurde sukzessive durch bereits vorhandene Daten wie publizierte Profilschnitte ergänzt und verbessert werden. Die MOHO als Grenzfläche des Modells in der Tiefe, wird aus der MOHO-Tiefenkarte aus dem Projekt ALPASS (BEHM ET AL 2007) übernommen. Die bereits ausgewerteten und bearbeiteten Profilschnitte des Projektes ALP2002 (Alp 2002 01 und 02) (Behm et al. 2006) sowie jenes vom Projekt TRANSALP konnten weitere Anhaltspunkte liefern. Tiefreichende Bohrungen (über 1.000 m) sind vor allem im Trassenbereich des geplanten Brenner Basistunnels vorhanden und liefern sehr gute punktuelle Informationen über geologische Grenzflächen. Diverse Profilschnitte von Stollen, Bergwerken, Tunnels, etc. wurden zum Korrigieren des Modells verwendet.

Ad Export der erarbeiteten geologischen Modelle:

Das geologische Modell wurde in einem ersten Schritt als 2D – Schnitt und in Folge als 3D Modell zur weiteren Verarbeitung in einem numerischen Modell exportiert.

Der 2D – Schnitt wurde in etwa entlang dem Verlauf des Transalp-Profiles aus dem Gocad[™] Modell als .dxf – File exportiert. Dieser wurde in ArcGIS[™] eingelesen und dort mit kleinen Korrekturen (z.B. Überschneidungen der Schichten korrigieren) als .shp – File exportiert. Dieses File konnte ohne Probleme in die numerische Simulationssoftware FEFLOW[™] eingelesen und dort weiter verwendet werden.

In weiterer Folge wurde das geologische 3D Modell in einer vereinfachten Version für die Modellierung mittels ComsolTM vorbereitet und exportiert. Die Vereinfachung bestand darin, lediglich die Haupthorizonte für den Export auszuwählen. Dies war notwendig da die Simulationssoftware in ihrer Geometrie-Erstellung limitiert ist. Um einen weitgehend reibungslosen Ablauf

bei den Simulationen zu gewährleisten wurden komplex aufgebaute Flächen generalisiert. Die Modellflächen wurden für den Export neu trianguliert und deren Knotenpunkte in X, Y, Z – ASCII – Files exportiert. Dieses Format ist für die Simulationssoftware Comsol[™] gut bearbeitbar.

3.5 AP5: Dissemination

Im Rahmen von THERMTEC wurden folgende Disseminationstätigkeiten durchgeführt:

- Poster Präsentation der Studie am "11. Geoforum Umhausen" (15.10. 16.10.2009) (siehe hierzu auch Zwischenbericht THERMTEC 2010, zweites Projektjahr).
- Poster Präsentation im Rahmen der EGU Konferenz "sustainable earth sciences" von 07.11. – 10.11.2011 in Valencia, Spanien.
- Poster Präsentation im Rahmen der IAHS-IAPSO-IASPEI Konferenz "knowledge for the future" von 22.07. – 26.07.2013 in Göteborg, Schweden.
- Poster Präsentation im Rahmen der Konferenz "7th Congress oft he Balkan Geophysical Society" von 07.10. – 10.10.2013 in Tirana, Albanien.
- Präsentation eines Videos zum geologischen 3D Modell des Tauernfensters im Rahmen der "Langen Nacht der Forschung" an der Geologischen Bundesanstalt am 04.04.2014.
- Präsentation der Studie im Rahmen des "Geologischen Kolloquiums SS 2014" an der Universität Salzburg am 24.06.2014. Titel des Vortrags: "*Tiefe Geothermie in Öster*reich: Voraussetzungen, Anwendungen, Zukunftschancen und Barrieren".
- Präsentation der Studie im Rahmen des Workshops "Tiefengeothermie" am 01.07.2014 in Leoben. Titel des Vortrags: "Das geothermische Regime in Österreich mit Fokus auf Wärmefluss Untersuchungen im inneralpinen Raum."
- Poster Präsentation der Studie im Rahmen des "World Geothermal Congress 2015" in Melbourne, Australien vom 19.04. – 25.04.2015.

Der in der Projektplanung vorgesehene projektspezifische Workshop wurde nicht abgehalten. Stattdessen sind zwei öffentliche Vortragsveranstaltungen an der GBA im Herbst 2015 geplant. Im Rahmen eines Vortrags zur 3D Modellierung an der GBA wird das geologische Modell Tauernfenster präsentiert. Darüber hinaus werden in einer weiteren Veranstaltung die Methodik sowie die daraus erzielten Ergebnisse der untertägigen Temperaturmessungen in den Alpen vorgestellt.

4 Ergebnisse

Im nachfolgenden Kapitel werden die wichtigsten Ergebnisse des Projekt THERMTEC bezogen auf die Arbeitsschwerpunkte geothermische Feldmessungen, petrophysikalische Laboruntersuchungen, geologische Modellierung und geothermische Modellierung vorgestellt. Die Interpretation der erzielten Ergebnisse sowie die daraus abgeleiteten Schlussfolgerungen sind in Kapitel 5 zu finden.

4.1 Geothermische Felduntersuchungen

Die durchgeführten geothermischen Felduntersuchungen dienten der Erfassung des terrestrischen Wärmestroms im inneralpinen Raum mit räumlichen Fokus auf das Tauernfenster. Hierdurch sollte eine Verdichtung der bestehenden Datenlage im inneralpinen Raum erzielt werden. Im nachfolgenden Abschnitt werden die erzielten Ergebnisse folgender Kampagnen vorgestellt:

- A10-Tauerntunnel, Röhre 2
- Kabelstollen Hintermuhr
- Erkundungsbohrungen S37 Wildbad Einöd
- Bergbau Mittersill
- Franz Josef- und Rudolfstollen Badgastein
- Bergbau Schellagden.

Nicht für alle Standorte konnte die terrestrische Wärmestromdichte tatsächlich ermittelt werden. Zudem fehlen für den Standort Schellgaden noch weitere Daten um eine Interpretation der Wärmestromdichte zu ermöglichen. Die Ergebnisse der thermischen Untersuchungen im Arlberg Eisenbahn- und Straßentunnel werden im vorliegenden Bericht nicht vorgestellt, da der Fokus dieser Untersuchungen auf den Einfluss der Tunnelgebäude und des Straßen- und Eisenbahnverkehrs auf das Temperaturregime des angrenzenden Gebirges gelegt worden ist. Die Ergebnisse dieser Messungen sind für die Bewertung des rezenten Wärmestromregimes irrelevant, da an dieser Position auf publizierte Literaturdaten aus der Zeitraum des Vortrieb des Arlberg Eisenbahntunnels zurückgegriffen werden kann (vgl. CLARK, 1961).

4.1.1 A10-Tauerntunnel, Röhre 2

In Rahmen des Vortriebs der zweiten Röhre des A10 Tauerntunnels wurde die Möglichkeit geboten kombinierte Erhebungen der Fels- und Lufttemperatur zur Bestimmung der ungestörten Gebirgstemperatur durchzuführen. Die Erhebung der Felstemperatur erfolgte in ultraseichten Bohrungen, die in einem Winkel von 45° in die Seitenwand des Stollens niedergebracht worden sind. Zur Verbesserung der thermischen Ankoppelung an das Umgebungsgebirge wurden die Erkundungsbohrungen nach Einbringung des Sensors mit Wasser verfüllt und mittels Isolierbänder versiegelt. Der Sensor wurde hierbei für eine spätere Bergung durch einen Nylonfaden (Angelschnur) gesichert.

Die Untersuchungskampagne wurde im Zeitraum April 2008 bis November 2008 durchgeführt und umfasste insgesamt 22 Temperaturmessreihen, von denen 18 erfolgreich abgeschlossen werden konnten. In drei Fällen wurde die Erkundungsbohrung bzw. der Sensor leider im Zuge von Tunnelarbeiten (Schuttablagerungen, Auftragen einer zweiten Spritzbetonlage) zerstört. Die Messung der Wassertemperatur erfolgte mittel automatisch registrierenden Sensor iButton™ über einen Zeitraum von mehreren Wochen. An einigen Stationen wurde zusätzlich die Lufttemperatur des Stollens registriert. Für eine detaillierte Beschreibung der Messkonfiguration sei auf den Jahresbericht zum ersten Projektjahr der Studie hingewiesen.

Tabelle 11: Geologische Situation und Gebirgsüberlagerung an den Standorten der

Erkundungsbohrungen.

Morring Nr	Relative Position			Geologie	Gebirgsüberlagerung [m] ab Eirst	
Wessung Wr.	Portal	Tunnelmeter	Tektonische Einheit	Gesteinsabfolge	Oebilgsuberiagerung [m] ab First	
2	Süd	3072.3	Penninische Schieferhülle	Schwarze, karbonatische Phyllite, untergeordnet graugrüne Chloritphyllite	554	
3	Süd	3072.3	siehe Pos. 2	siehe Pos. 2	554	
4	Nord	1135	Penninische Schieferhülle	Graugrüne Serizit-Chlorit-Quarzphyllite	654	
5	Nord	1791	Penninische Schieferhülle	Mischserie: Schwarz-, Quarz- und Kalkphyllit mit Einschlatungen von Serpentin,, Anhydrit, Kalk und Chlorit	902	
6	Nord	1871.45	siehe Pos. 5	siehe Pos. 5	901	
7	Nord	1871.45	siehe Pos. 5	siehe Pos. 5	901	
8	Nord	1957	siehe Pos. 5	siehe Pos. 5	900	
9	Nord	2098	Penninische Schieferhülle	Schwarze, karbonatische Phyllite, untergeordnet graugrüne Chloritphyllite	922	
11	Süd	2916.8	siehe Pos. 2	siehe Pos. 2	583	
12	Süd	3261	siehe Pos. 2	siehe Pos. 2	554	
13	Nord	1135	siehe Pos. 4	siehe Pos. 4	654	
14	Nord	1871.45	siehe Pos. 5	siehe Pos. 5	901	
15	Nord	2098	siehe Pos. 9	siehe Pos. 9	922	
16	Nord	1791	siehe Pos. 5	siehe Pos. 5	902	
18	Nord	2283	siehe Pos. 2	siehe Pos. 2	973	
19	Nord	2283	siehe Pos. 2	siehe Pos. 2	973	
20	Nord	2470	siehe Pos. 2	siehe Pos. 2	859	
21	Nord	2470	siehe Pos. 2	siehe Pos. 2	859	

Nach Abschluss der Datenerhebung wurden die Rohdaten einer Plausibilitätskontrolle unterzogen und anschließend hinsichtlich der ungestörten Gebirgstemperatur ausgewertet. Die Abschätzung der ungestörten Gebirgstemperatur erfolgte unter Zuhilfenahme von Modellrechnungen, die mit der Software Comsol[™] durchgeführt worden sind und unter Annahme der mittleren Lufttemperatur den thermischen Ausgleichsprozess zwischen Gebirge und Stollen abbildeten. Ergänzend hierzu wurden auch analytische Auswerteverfahren beruhend auf dem Horner Verfahren (siehe z.B. Kappelmayer & Haenel, 1974) angewendet.

Messung	Fertigstellung	Mes	sung	Stillstandsz	eit Bohrung	Mängel	Saustian Annarkuna
Nr.	Bohrung	Beginn	Ende	ca. [d]	ca. [s]	Wanger	Sonstige Anmerkung
1	27.03.2008	18.04.2008	16.05.2008	22	1.901E+06	Sensor Befestigung gerissen	Keine Messung möglich
2	03.04.2008	18.04.2008	02.05.2008	15	1.296E+06		Vergleichsmessung mit doppelter zeitlicher Abtastrate
3	03.04.2008	18.04.2008	16.05.2008	15	1.296E+06		Messung Gebirgstemperatur
4	08.04.2008	18.04.2008	16.05.2008	10	8.640E+05		Messung Gebirgstemperatur
5	08.03.2008	18.04.2008	16.05.2008	41	3.542E+06		Messung Gebirgstemperatur
6	08.03.2008	18.04.2008	16.05.2008	41	3.542E+06		Messung Gebirgstemperatur
7	08.03.2008	19.05.2008	17.06.2008	72	6.221E+06		Wiederholungsmessun: Messung Gebirgstemperatur
8	25.04.2008	19.05.2008	17.06.2008	24	2.074E+06		Messung Gebirgstemperatur
9	10.05.2008	19.05.2008	17.06.2008	9	7.776E+05		Messung Gebirgstemperatur
10		19.05.2008	17.06.2008			Sensor defekt	Keine Messung möglich
11	27.03.2008	19.05.2008	17.06.2008	53	4.579E+06		Wiederholungsmessung (vgl. #1)
12	19.05.2008	19.05.2008	17.06.2008	0	0.000E+00		Messung Gebirgstemperatur
13	777 X	02.07.2008	16.08.2008	43			Messung Lufttemperatur Stollen
14	2223	02.07.2008	16.08.2008				Messung Lufttemperatur Stollen
15		02.07.2008	16.08.2008				Messung Lufttemperatur Stollen
16		02.07.2008	16.08.2008				Messung Lufttemperatur Stollen
17		02.07.2008	16.08.2008			Sensor bei Schuttablagerung zerstört	Keine Messung möglich
18	29.07.2008	19.08.2008	03.10.2008	21	1.814E+06		Messung Gebirgstemperatur
19		19.08.2008	03.10.2008				Messung Lufttemperatur Stollen
20	22.08.2008	22.08.2008	03.10.2008	0	0.000E+00		Abschluss Bohrung ca. 14:00
21	575	22.08.2008	03.10.2008				Messung Lufttemperatur Stollen
22		13.10.2008	13.11.2008			Bohrung wurde mit Beton verspritzt	Keine Messung möglich

Tabelle 12: Übersicht der durchgeführten Messreihen im A10 Tauerntunnel.

Die nachfolgende Tabelle 13 zeigt die ermittelten ungestörten Gebirgstemperaturen.

Tabelle 13:	Übersicht der	berechneten	Gebirgstemperaturwerte.
-------------	---------------	-------------	-------------------------

Station	Geb	irgstemperatu	r [°C]	Ergobniswort Eo	Fabler (abcolut)
Station	Methode 1	Methode 2	Methode 3	ElBenniswert	renier (absolut)
N 1135	13.40	14.36	9.11	12.29	2.282
N 1791	13.92	13.12	13.69	13.58	0.336
N 1871	13.32	12.57	13.33	13.07	0.355
N 1957	14.59	14.12	14.79	14.50	0.281
N 2098	12.40	12.19	12.60	12.40	0.167
N2283	12.73	12.32	12.79	12.61	0.209
N2470	12.84	12.20	12.78	12.61	0.289
S 2917	14.27	12.59	14.52	13.79	0.857
S 3072	12.63	12.64	12.71	12.66	0.035
S 3261	12.82	12.72	12.90	12.81	0.074

Erläuterungen

Methode 1 Empirische Auswertung

Methode 2 Analytische Auswertung

Methode 3 Numerische Simulation (Comsole Multiphysics)

Die ausgewerteten Gebirgstemperaturen wurden anschließend als Stützstellen einer thermischen 2D Modellierung benutzt. Die numerische Simulation erfolgte auf Grundlage eines Vertikalschnitts entlang der Tunneltrasse. Hierbei wurde die Temperaturverteilung eines stationären ausschließlich konduktiven Wärmeregimes modelliert, um dein Einfluss des Reliefs auf das erhobene Temperaturprofil berücksichtigen zu können. Die Parametrisierung des Modells erfolgte auf Grundlage der erhobenen Gesteinsproben, die an der MU Leoben untersucht worden sind. Die Simulation erfolgte wiederum mit Comsol™, wobei die Wärmestromdichte als

Randbedingung an der Basis des Modells so lange variiert worden ist, bis eine möglichst gut Anpassung an die ausgewerteten Gebirgstemperaturen erzielt wurde.

Wie anhand der Abbildung 49 zu erkennen ist, konnte das 2D Modell nicht die ermittelten Gebirgstemperaturen an allen Stationen anpassen. Der Restfehler ergibt sich aus Unschärfen in der Auswertung der beobachteten Felstemperaturen. Die Simulation ergab eine Wärmestromdichte von 80 mW/m². Dieser Wert liegt deutlich über die von HAHN & HAENEL (1974) ermittelte Wärmestromdichte von 70 mW/m² (unkorrigiert) bzw. 64mW/m². Zu Vergleichszwecken wurde in der Darstellung des modellierten Temperaturprofils (Abbildung 49) auch die Temperatur auf Tunnelhöhe in der Bohrung Tauerntunnel (HAHN & HAENEL, 1974) dargestellt. Es ist deutlich zu erkennen, dass die initial gemessene Gebirgstemperatur deutlich unter dem Temperaturniveau des Gebirges zum Zeitpunkt des Tunnelvortriebs liegt.

Aus Sicht des Verfassers liegt die Ursache dieser Temperaturdifferenz in der thermischen Einwirkung der seit über 25 Jahren in Betrieb befindlichen Röhre 1 (Distanz zu Röhre 2 ca. 20 bis 30 Meter). Es war geplant die thermische Auswirkung der Röhre 1 auf Röhre 2 mittels Vorgabe eines Regeljahres für den Betriebszeitraum bis zum Vortrieb der Röhre 2 zu simulieren. Leider standen von Seiten der Asfinag keine Beobachtungsdaten zur Verfügung.

Aufgrund dieser vermuteten Störquelle wird die ermittelte Wärmestromdichte entlang der Röhre 2 nicht in der Bewertung des rezenten geothermischen Regimes berücksichtigt.

Abbildung 49: A10 – Tauerntunnel: Kombinierte Darstellung der prozessierten Bohrlochtemperaturen und Literaturdaten (Bohrung Tauerntunnel) und des modellierten Temperaturverlaufs gemäß einem konduktiven Modell.

<u>Oben:</u> Geometrisches Ausgangsmodell (2D) der geothermischen Simulation mit Comsol Multiphysics™.

Unten: Vergleich der prozessierten und modellierten Gebirgstemperaturen.

4.1.2 Kabelstollen Hintermuhr

Im Zeitraum 18.April 2008 bis 29. Mai 2009 wurden Messungen der Stollenlufttemperatur zur Abschätzung der ungestörten Gebirgstemperatur durchgeführt. Aufgrund des langen Zeitraums zwischen Inbetriebnahme des Stollens und Zeitpunkt der thermischen Messungen sowie aus logistischen Überlegungen (geringer Tunneldurchmesser, keine Spannungsversorgung) wurde von der Niederbringung von ultraseichten Erkundungsbohrungen abgesehen. Die Aufzeichnung der Lufttemperatur erfolgte in unmittelbarer Umgebung der Stollenwand in einem Abstand von 500 Metern entlang des Tunnelverlaufs.

Nachfolgende Tabelle 14 fasst Kennwerte der erzielten Messergebnisse zusammen:

Ct. 1	Anzahl	Pachashtungszaitzaum	Erhobene Lufttemperaturen [°C]						
Station	Messwerte	Beobachtungszeitraum	Mittelwert	Stdabw.	Median	5. Perzentil	95. Perzentil		
50m	1224	18.04.2008 - 29.05.2009	7.11	3.667	7.93	0.23	11.14		
1000m	1224	18.04.2008 - 29.05.2009	17.05	0.706	17.06	15.74	18.18		
2000m	1223	18.04.2008 - 29.05.2009	20.11	0.215	20.17	19.61	20.36		
3000m	1223	18.04.2008 - 29.05.2009	19.05	0.330	19.18	18.43	19.43		
4000m	8096	18.04.2008 - 11.11.2008	14.74	0.730	14.86	13.49	15.80		
5000m	12193	18.04.2008 - 29.05.2009	9.08	0.795	9.18	7.55	10.19		

Tabelle 14:Kabelstollen Hintermuhr: Statistische Übersicht der aufgenommenen Lufttemperaturen.
Der Nullpunkt der Kilometrierung befindet sich im Portal Hintermuhr.

Im Bereich zwischen den Stationen 2.000 Meter und 3.000 Meter beträgt die Standardabweichung der aufgenommenen Zeitreihe weniger als 0.5°C. In diesem Bereich herrscht ein nahezu vollständiges thermisches Gelichgewicht zwischen der Stollenluft und dem Gebirge. Zudem ist bei einer maximalen Lufttemperatur von 20.36°C bei Station 2.000 Meter der Einfluss des geothermischen Gradienten sichtbar.

Unter der Annahme, dass die Bewetterung des Stollens nur eine gegenüber dem Gebirge vernachlässigbar geringe Wärmesenke darstellt – diese Annahme ist unter Umständen in den zentralen Abschnitten des Stollens erfüllt – wurde ein Wärmestrommodell (2D) beruhend auf einen geologischen Schnitt berechnet, der im Rahmen des Projekts durch A. Schindlmayr neu kompiliert worden ist. Unter der Vorgabe eines terrestrischen Wärmeflusses von 70 mW/m² konnte unter Benutzung der in Abbildung 50 dargestellten Wärmeleitfähigkeitskennwerte eine mittlere Abweichung von 0.56°C (Absolutwert der Abweichung zwischen modellierten Gesteinstemperaturen und gemessenen Lufttemperaturen an den jeweiligen Messpositionen) erreicht werden.

Aufgrund der guten Anpassung des 2D Modells an die gemessenen Lufttemperaturen wurde die ermittelte Wärmestromdichte in der Bewertung des rezenten geothermischen Regimes berücksichtigt.

Abbildung 50: Kabelstollen KW - Hintermuhr: Kombinierte Darstellung der prozessierten Bohrlochtemperaturen und des modellierten Temperaturverlaufs gemäß einem konduktiven Modell. <u>Oben:</u> Geometrisches Ausgangsmodell (2D) der geothermischen Simulation mit Comsol Multiphysics™.

Unten: Vergleich der prozessierten und modellierten Gebirgstemperaturen.

4.1.3 Erkundungsbohrungen S37 – Wildbad Einöd

Das Untersuchungsgebiet "Wildbad Einöd" befindet sich ca. 70 km südöstlich des Tauerntunnels und ca. 10 km südlich des Murtals. Aus geologischer Sicht befindet sich das Messgebiet an der tektonischen Grenze zwischen Ostalpinem Kristallin und Ostalpinem Paläozoikum (siehe Abbildung 51).

Im Zuge der Vorerkundung der geplanten Trasse der S37 – Schnellstraße bestand die Möglichkeit, Temperaturmessungen in Erkundungsbohrungen durchzuführen. Hierbei handelt es sich um kontinuierliche Bohrlochmessungen die mit Hilfe der Bohrlochsonde "Cond 197i" in Form von Stichtagsmessungen durchgeführt worden sind. Es erfolgte eine simultane Registrierung der Bohrlochtemperatur sowie der elektrischen Leitfähigkeit des Bohrlochfluids. Die Messung der elektrischen Leitfähigkeit wurde in weiterer Folge für eine Plausibilitätskontrolle der Temperaturmesswerte herangezogen, etwa zur Identifizierung von Grundwasserzuflüssen. Die Messkampagne wurde im Zeitraum August 2008 bis Juli 2009 durchgeführt, wobei 2 Erkundungsbohrungen zur Qualitätskontrolle wiederholt untersucht worden sind.

Abbildung 51: Lageplan der geothermisch auswertbaren Untersuchungsbohrungen im Bereich Wildbad Einöd.

Nachfolgende Tabelle 15 zeigt eine Zusammenfassung der ermittelten geothermischen Gradienten in den Erkundungsbohrungen der S37 im Bereich Wildbad Einöd.

Bohrung	Berechnungsin- tervall	Gesteinsserie	Temperatur Gradient	Anmerkung
	[m u GOK]		[°C/100m]	
E-KB 51/2008	13.0 - 57.0	Glimmerschiefer, Phyl lit	2.73	
E-KB 05/2008	22.0 - 59.0	Phyllit	1.89	
E-KB 07/2008	40.0 - 99.6	Phyllit, Migmatit	2.50/2.54	Wiederholungsmessung
E-KB 20/2008	21.0 - 50.0	Graphitphyllit	3.79	
W-KB 04/08	5.5 - 58.5	Talfüllung?	8.04*	*Thermalwasser beeinflusst
W-KB 07/08	6.0 - 77.0	Talfüllung?	11.03*	
E-KB 26/2008	0.4 - 13.6	Talfüllung	7.14*	
E-KB 28/2008	0.0 - 14.8	Talfüllung	-2.67*	Arteser
E-KB 31/2008	2.3 - 6.8	Talfüllung	-55*	
E-KB 35/2008	4.6 - 14.7	Talfüllung	7.14*	

Tabelle 15:	Messkampagne Wildbad Einöd – mittlere	Temperaturgradienten

Wie zu erkennen ist, standen einige Erkundungsbohrungen, die im Nahbereich der Therme Wildbad Einöd in der quartären Talfüllung niedergebracht worden sind unter Beeinflussung thermaler bzw. auffällig mineralisierter Wässer. Neben auffällig hohen bzw. sogar inversen Temperaturgradienten weisen die offensichtlich Thermalwasser beeinflussten Bohrungen auch eine deutlich erhöhte elektrische Leitfähigkeit des Bohrlochfluids von mehr als 1000 μ S/cm auf. Eine geothermische Auswertung dieser Bohrungen ist nicht möglich, zumal der rein konduktiv verursachte geothermische Gradient durch lokale Konvektionsphänomene infolge des Grundwasserzutritts maskiert worden ist.

Die ermittelten geothermischen Gradienten der Bohrungen E-KB 51/2008, E-KB 05/2008, E-KB 07/2008 und E-KB 20/2008 wurden anschließend topografisch korrigiert und mit Hilfe der zur Verfügung stehenden lithologischen Profilen und den vor Ort erhobenen thermischen Gesteinsparameter gemäß dem Fourier Gesetz der Wärmeleitung in Wärmestromdichten umgerechnet. Die ermittelten Wärmestromdichten sind in der nachfolgenden Tabelle 16 zusammengefasst.

		
Bohrung	Interpretiertes Liefenintervall	Wärmestromdichte
	(m u. GOK)	(mW/m²)
E-KB 51/2008	10.0 – 59.0	80.83
E-KB 05/2008	10.5 – 61.7	47.97
E-KB 07/2008	10.5 – 99.6	80.88
E-KB 20/2008	11.8 – 49.7	98.03

Tabelle 16: Übersicht der ermittelten Wärmestromdichten im Bereich Wildbad Einöd.

Die ermittelten Wärmestromdichte zeigen mit Ausnahme der Bohrung E-KB 05/2008 Wärmestromdichten im Bereich zwischen 81 mW/m² und 98 mW/m². Die besagte Bohrung weist hingegen sehr geringe Wärmestromdichten in der Höhe von 48 mW/m² auf. Inwieweit die Messwerte durch zirkulierende Tiefenwässer beeinflusst werden, ist aus den vorliegenden Messdaten sind ableitbar. Es sei jedoch darauf hingewiesen, dass die Bohrung E-KB 07/2008 das größte Messintervall (bis ca. 100 Meter Tiefe) aufweist und die ermittelte Wärmestromdichte von 80.88 mW/m² nahezu ident mit dem Ergebnis der Bohrung E-KB 51/2008 ist. Es wird daher angenommen, dass die lokale bis regionale Wärmestromdichte im Bereich Wildbad Einöd ca. 81 mW/m² beträgt und sich somit deutlich über dem Mittel der Ostalpen (60 – 70 mW/m² befindet.

4.1.4 Bergbau Mittersill

Die thermischen Untersuchungen im Bergbau Mittersill stellen eine Kombination von thermischen Profilmessungen in unkonventionellen untertägigen Erkundungsbohrungen mittels faseroptischer Messysteme (DTS – Distributed Thermal Sensing) und der Langzeitbeobachtung der Stollenluft Temperatur dar. Zusätzlich wurden in einer finalen Phase auch Langzeitmessungen der Lufttemperatur im Zulauf und Ablauf der Hauptwetterstollen zur Bemessung der Wärmeaufnahme im Bergbau durchgeführt. Zu Vergleichszwecken stand aus der Literatur eine Profilmessungen aus dem Jahr 1975 zur Verfügung (siehe HÄNEL & ZOTH, 1975).

Station	Rechtswert	Hochwert	Höhe ü. Adria	Überlagerung ¹			
Nr.	m	m	m	m			
Station 1	384318	230094	725	957			
Station 2	384491	230240	800	795			
Station 3	384630	230140	1000	460			
Station 4	384628	229782	1150	241			
¹ Vertikale Gebirgsüberlagerung (aus Karte geschätzt)							

 Tabelle 17:
 Lage der Stationen zur Beobachtung der Lufttemperatur im Bergbau Mittersill.

Ab September 2009 wurde die Stollenlufttemperatur in der Nähe der Bohrlöcher bis April 2010 kontinuierlich aufgezeichnet. Die Stationen 1-4 liegen im Gebirge in unterschiedlichen Seehöhen und sollen als Basis für die Auswertung der folgenden Bohrlochtemperaturmessungen dienen (Tabelle 17). Die Lagekoordinaten sind in der Karte in Abbildung 52 eingezeichnet.

In der Abbildung 53 sind die Messwerte der Stollenlufttemperatur und die Mittleren Temperaturen für 200 Messtage aufgetragen. Der Temperatursensor in Station 3 auf 1000 m Seehöhe ist leider ausgefallen, weshalb keine Daten dieser Station zur Verfügung stehen. Die konstante Stollenlufttemperatur von 12 °C bei 1156 m weist auf eine von Stollenbelüftung und Klima unbeeinflussten Standort hin. Die Lufttemperatur der unteren Station (725 m) schwankt am stärksten und ist durchschnittlich um 2.7 °C kühler al die Luft in 800 m. Dies deutet auf einen stärkeren Einfluss der Belüftung hin.

Abbildung 52: Lage der Stationen zur Beobachtung der Stollenluft Temperatur im Bergbau Mittersill.

Abbildung 53: Zeitreihe der aufgezeichneten Stollenluft Temperatur im Bergbau Mittersill.

Vom 21.09.2010 bis 22.09.2010 wurden im Bergbau Mittersill Temperaturmessungen in untertägigen Erkundungsbohrungen mit Hilfe eines faseroptischen Messsystems (DTS – Messverfahren) durchgeführt. Aufgrund des schmalen Kalibers der Bohrungen (Durchmesser 1 Zoll) 106

sowie der teilweise deutlichen Neigung der Bohrungen waren Temperaturmessungen mit konventionellen Sonden nicht möglich. Aus diesem Grund wurde ein nachfolgend beschriebenes faseroptisches Messsystem zur Durchführung von Temperatur- und Gradientenmessungen eingesetzt. Die Messungen selbst wurde durch das Austrian Institute of Technology (AIT, Mitarbeiter: R. Niederbrucker) in Subbeauftragung unter Mitwirkung von G. Götzl durchgeführt. Für die gegenständlichen Messungen wurde das Gerät DTS 5100 P der Firma Sensortran verwendet. Hierbei handelt es sich um ein opto-elektronisches Messinstrument, das in der Lage ist die Temperatur exakt und schnell über die gesamte Länge eines Lichtwellenleiters zu messen. DTS steht für Distributed Temperature Sensing und beruht darauf, dass Laserlicht, sobald es auf eine Probe trifft, gestreut wird. Hierbei wird Laserlicht in kurzen Pulsen in einen Lichtwellenleiter eingekoppelt und anschließend die Intensitäten des gestreuten Lichts zu bestimmten Frequenzen gemessen. Aufgrund der im Messkabel integrierten Sensorik eignet sich das DTS 5100 P für Messungen in schmalkalibrigen Bohrlöchern. Mit Hilfe einer Führungsschiene konnten zudem Temperaturmessungen in Schräg- bzw. Horizontalbohrungen durchgeführt werden.

Abbildung 54: Ergebnisse der Temperaturprofilmessungen in untertägigen Erkundungsbohrungen im Bergbau Mittersill.

Gemäß der zu Grunde liegenden Messhypothese sollte sich die Gebirgstemperatur im Bohrloch, ausgehend von der Stollenlufttemperatur an der Stollenwand, mit wachsender Bohrtiefe exponentiell an die Gebirgstemperatur anpassen. Durch den Einfluss der Stollenbewetterung ist die Lufttemperatur im Stollensystem des oberen Bergwerksbereich im Vergleich zur wahren Gebirgstemperatur erwärmt und die im unteren Bereich abgekühlt. Dies kommt dadurch zustande, dass die (kalte) Außenluft über einen ca. 2 km langen Unterfahrungsstollen angesaugt und in ca. 800 m eingeblasen wird. Die Luft wird nach und nach erwärmt und durch erzwungene und natürliche Konvektion in den oberen Bergwerksbereich gebracht.

Dieser Effekt ist in Abbildung 54 gut zu erkennen. Im unteren Bergwerksbereich (UB 276, UB 252 und UB 253) ist die Stollenluft kühler als die Gebirgstemperatur, die bei UB 276 in der Nähe von Station 1 (725 m ü. A) auf beinahe 29°C im Bohrlochtiefsten ansteigt. Die beiden

Bohrungen bei Station 2 (800 m ü. A.) steigen von ca. 20°C Lufttemperatur bei der Bohrlochwand auf maximal ca. 24°C. Bei den Bohrungen in der Nähe von Station 3 ist die Stollenluft jedenfalls wärmer als die Gebirgstemperatur. Diese fällt bei UB1000 von ca. 20.4°C auf 17°C.

In einer abschließenden Messkampagne wurden weitere Temperatursensoren in den Zu- und Abluftstollen des Bergbaus für Langzeitbeobachtungen installiert. Vier selbstregistrierende Temperatursensoren wurden eingesetzt, um die Lufttemperatur am Anfang und Ende des Unterfahrungsstollens von November 2010 bis Februar 2012 zu messen

Abbildung 55: Lageplan der Temperatursensoren im Bereich der Zu- und Abluftstollen im Bergbau Mittersill.

In einem ersten Auswerteschritt wurden die ermittelten Luft- und Felstemperaturen ein-dimensional ausgewertet. Zu diesem Zweck wurde zuerst die wahre Gebirgstemperatur aus den in thermischen Gleichgewicht befindlichen Stationen der Stollenluft sowie aus den Temperaturprofilen der Erkundungsbohrungen abgeleitet. Anschließend wurde hieraus der geothermische Gradient unter Berücksichtigung der Tiefenlage der einzelnen Temperaturmesspunkte berechnet (siehe hierzu Abbildung 56). Die ermittelten Gebirgstemperaturen zeigen eine geothermischen Gradienten von 2.19°C/100m. Bei Anwendung einer topografischen Korrektur nach Jeffreys und Bullard (vgl. Kapitel 3.1.3) wäre dieser Gradient in 600 m Tiefe unter GOK um -2.3 °C/km zu korrigieren. Demnach liegt der topografisch korrigierte Temperaturgradient bei 19.6 °C/km. Diese Korrektur dient als erste Näherung, da sie streng genommen bei starker Topografie nicht anwendbar ist, da sie auf dem Potentialverfahren beruht und dadurch die lateralen Wärmeflüsse nicht berücksichtigt. Mit dem Mittelwert der gemessenen Wärmeleitfähigkeiten von 2.83 W/(mK) ergibt dies eine Wärmestromdichte von 55 mW/m². Dieser Wert wird als Ausgangspunkt für eine dreidimensionale Modellierung verwendet.

Zur Berücksichtigung des Relief Einflusses wurde ein drei dimensionales geometrisches Modell der Umgebung des Bergbaus erstellt und einer stationären konduktiven thermischen Simulation mittels Software FEFLOW™ unterzogen.

Abbildung 56: Gegenüberstellung der ermittelten Gebirgstemperatur mit der Überlagerungshöhe im Bergbau Mittersill.

Das 3D Modell wurde aus dem digitalen Geländemodell mit 10 m Auflösung erstellt. An der unteren Basis auf einer Höhe von 500 m über Adria wurde ein konstanter Wärmestrom von 0.055 W/m² als Randbedingung gesetzt. Die stofflichen Materialeigenschaften des Gebirges wurden als homogen angenommen und beruhen auf Laboruntersuchungen von vor Ort erhobenen Gesteinsproben. An der topografischen Oberfläche wurde eine höhenabhängige Temperatur nach GÖTZL ET AL, 2010 als Randbedingung angenommen. Als Ergebnis wurde das dreidimensionale Temperaturfeld im Untergrund berechnet (siehe Abbildung 57), wobei der vertikale Gradient an den Temperaturmessstationen 1-4 als Vergleich herangezogen wurde.

Die gemessenen Felstemperaturen konnten mittels numerischen 3D Modell unter Annahme einer terrestrischen Wärmestromdichte von 48.5 mW/m² ausreichend genau angenähert werden. Für Vergleichszwecke liegen geothermische Auswertungen von HÄNEL & ZOTH (1975) vor. In Rahmen dieser Messkampagne wurden Temperaturmessungen in den Bohrungen UB 10, UB 11, UB 12, UB 13 und UB 14 durchgeführt und mit dem ermittelten Temperaturgradienten auf eine Wärmestromdichte geschlossen. Die Daten wurden damals einer topografischen Korrektur unterzogen. Hänel & Zoth (1975) ermittelten einen topografisch korrigierten geothermischen Gradienten von 1.86°C/100m und eine daraus abgeleitete Wärmestromdichte von 38.7 mW/m². Die von Hänel & Zoth ermittelten Werte liegen etwa 20% unter den Ergebnissen der im Rahmen von THERMTEC durchgeführten Messkampagne. Es sei an dieser Stelle angemerkt, dass das damalige Grubengebäude noch nicht im heutigen Umfang bestand und die aktuell vorliegenden Messdaten auch tiefere Abschnitte umfassen. Aus diesem Grund wird die aktuell ermittelte terrestrische Wärmestromdichte im Bereich des Bergbau Mittersill für die Interpretation des geothermischen Regimes herangezogen.

Abbildung 57: Thermisches 3D Modell der Umgebung des Bergbau Mittersills.

4.1.5 Badgastein: Franz Josef- und Rudolfstollen

Die Gemeinde Badgastein ermöglichte geothermische Untersuchungen in den für die Thermalwasser Gewinnung errichteten Stollen Franz Josef und Rudolf im Gemeindegebiet von Bad Gastein. Die Messkampagne wurde im Zeitraum Oktober 2010 bis Februar 2012 durchgeführt. Das Ziel der Messkampagne lag in einer räumlich differenzierten Erfassung der Lufttemperatur, um den Einfluss der Außenwitterung sowie des Wärmeinhalts des geförderten Thermalwassers zu untersuchen. Aufgrund des starken Einflusses des geförderten Thermalwassers konnten die ermittelten Daten nicht für eine Beurteilung des lokalen bis regionalen Wärmeflussregimes herangezogen werden.

Stollen	Station Nr.	Lage Station	Start Messung	Ende Messung	Anmerkung
Franz Josef	1	Bei Portal	20.10.2010 15:47	24.02.2012 11:47	
Franz Josef	2	ca. 40m von Portal entfernt			Sensor defekt
Franz Josef	3	Distanz ca. 120m von Portal	20.10.2010 15:45	24.02.2012 11:45	

 Tabelle 18:
 Übersicht der in Badgastein installierten Temperatursensoren.

Franz Josef	4	Quellstube 1			Sensor defekt
Franz Josef	5	Quellstube 2	20.10.2010 15:44	24.02.2012 11:44	
Franz Josef	6	Quellstube, Station "9a" (ca. 300 Meter vom Portal entfernt)			Sensor defekt
Rudolf	1	Portal	20.10.2010 16:14	24.02.2012 09:14	
Rudolf	2	Ca. 15m von Portal entfernt			Sensor defekt
Rudolf	3	Quellfassung (ca.40 Meter vom Portal entfernt)	20.10.2010 16:13	03.06.2011 04:13	Messung nach ca. 1800 Mess- werten abgebro- chen (Sensor ev. defekt)

Die Erfassung der Stollenluft Temperatur erfolgte wiederum mittels iButton[™] Sensoren. Aufgrund des Alters der benutzten Sensoren konnten nur Daten von 5 der ursprünglich 9 positionierten Sensoren geborgen werden.

Messung der Lufttemperatur in Badgastein, Franz Josef- und Rudolfstollen

Abbildung 58: Verlauf der Lufttemperaturen in verschiedenen Positionen im Franz Josef- und Rudolfstollen, Badgastein.

Die Aufnahme der Stollenluft Temperatur ergab erwartungsgemäß eine Verschiebung des Einflusses von der äußeren Witterung (Portalsnähe) hin zur Quelltemperatur des Thermalwassers (Quellstuben). Beim Vergleich der beiden Stollen ist zu beobachten, dass der Einfluss der Quelltemperatur auf die Stollentemperatur lediglich von der Gesamtlänge der jeweiligen Stollen abhängt. So zeigt der Temperaturverlauf am Portal des deutlich kürzeren Rudolfstollens eine wesentlich geringere Beeinflussung durch die atmosphärischen Bedingungen als das Portal des ca. 300 Meter langen Franz Josef Stollens.

Im Rahmen von THERMTEC wurden keine weiteren Analysen an den erhobenen Daten vollzogen. Es ist aber geplant die lokalen geothermischen Verhältnisse, insbesondere die Beeinflussung der terrestrischen Wärmestromdichte durch das austretende Thermalwasser im Raum Badgastein im Rahmen nachfolgender Studien zu untersuchen.

4.1.6 Bergbau Schellgaden

Im Zeitraum Oktober 2013 bis Juli 2015 wurden Langzeitmessungen der Grubentemperatur (Stollenluft) an insgesamt 13 verschiedenen Stellen des Bergbau Schellgadens durchgeführt. Der Bergbau befindet sich am Südostrand des Tauernfensters und stellt eine wichtige Informationsquelle über das rezente geothermische Regime dar. Da die Daten erst kurz vor Redaktionsschluss dieses Berichts erhoben werden konnten und die exakten Lagehöhen der Messpunkte noch erhoben werden müssen, erfolgte keine Berechnung der Wärmestromdichte im Rahmen des Projekts THERMTEC. Im gegenständlichen Bericht werden nur die erhobenen Rohdaten (Zeitreihen der Grubentemperatur) vorgestellt.

Die Stollen des Goldbergbaus liegen auf ungefähr 1800 m Seehöhe und reichen bis ca. 600 m in die Bergflanke unter den 2481 m hohen Gipfel "Kareck" hinein. Die erste Abbauphase fand vom 14. Jahrhundert bis 1815 statt, wonach die Einstellung wegen mangelnder Rentabilität erfolgte. Ab 1938 wurde das Bergwerk neu vermessen und ein neuer Stollen gegraben, wonach es 1941 erneut stillgelegt wurde.

In den Stollen findet keine künstliche Bewetterung statt und die Sensoren wurden meist in Nischen und Sackgassen an der Stollenwand installiert, sodass die Lufttemperatur mit der Gesteinstemperatur übereinstimmen sollte. Lediglich im Querschlag "Hangend-Nord" könnte der Quellwassereinbruch temperatursenkend wirken. Ein Messsensor wurde am Stolleneingang (Sensor-Nr. 7) angebracht um die Außenlufttemperatur mit aufzunehmen. Dadurch soll auf den topografischen Einfluss rückgeschlossen bzw. die Kopplung der Gebirgstemperatur an die Lufttemperatur im Bergwerk dargestellt werden.

Abbildung 59 führt alle installierten Temperatursensoren an, inklusive der Beschreibung des Ortes an dem sie angebracht wurden, um ihre Bergung sicherzustellen. Das Ziel war eine möglichst flächige Verbreitung ebenso wie eine Installation an schlecht bewetterten Gebieten, um eine möglichst gute Datenqualität zu erzielen.

Tabelle 19:	Lagebeschreibung	g der installierten Sensoren im Bergbau Schellgaden.	

Sensor-Nr.	Lagebeschreibung
1	Linker Parallelschlag (nach Quellfassung)
2	Steiler Aufbruch neben ""Scheelitkaverne""
3	Querschlag Hangend-Nord
4	Hinterster Schnedizeni, Leiter Mausefalle
5	Westl. Fortsetzung d. Kreuzkluft
6	Kreuzkluft, kurzer Parallelschlag
8	Vordere Barbara bei hölzernem Waschtrog
9	mittlere Barbara
10	Ortsbrust hinterste Barbara
11	Abstieg v. Barbara zum Schnedizeni (Kriechstrecke)
12	Unmittelbarer Abstieg Schnedizeni (Leiter)
13	Leonhardistrecke
7	Außensensor, Mauer nahe Mundloch

Zusätzlich zum Einbau der Temperatursonden wurden während dieser Messkampagne 8 Gesteinsproben aus dem Bergwerk genommen. Diese wurden für die Bestimmung der petrophysikalischen und chemischen Eigenschaften des Gebirges herangezogen.

Abbildung 60 zeigt den Verlauf der Lufttemperatur an den verschiedenen Positionen des Grubengebäudes. Abgesehen von dem Außensensor (S7) und dem Sensor S5 zeigt die Grubentemperatur keine zeitliche Variation, sodass von einem thermischen Gleichgewicht zwischen Grube und umliegenden Gebirge ausgegangen werden kann. Die mittleren Grubentemperaturen variieren je nach Position zwischen 3.05°C (Position S-9) und 4.9°C (Position S-1). Eine endgültige Bewertung der Gebirgstemperaturen und der terrestrischen Wärmestromdichte wird jedoch erst nach Erhebung der Lagehöhen der Messpunkte möglich sein. Es ist geplant die Lagehöhen der Messpunkte barometrisch im Rahmen der nächsten Begehung des Bergbaus zu erfassen.

Abbildung 59: Lageplan der installierten Sensoren im Bergbau Schellgaden.

Abbildung 60: Verlauf der Lufttemperatur im Bergbau Schellgaden. Die Lage der angeführten Stationen können der Abbildung 59 entnommen werden.

4.1.7 Zusammenfassung

Im Rahmen der Studie THERMTEC wurden geothermische Untersuchungen an 6 verschiedenen Standorten innerhalb und außerhalb des Tauernfensters durchgeführt. Nachfolgende Tabelle 20 zeigt eine Zusammenfassung der erzielten Ergebnisse:

Standort	Ergebnis	Ermittelte terrestrische
		Wärmestromdichte (mW/m²)
A10-Tauerntunnel, Röhre 2	Erhebung eines Temperatur-	(80)
	profils entlang der Röhre 2. Die	
	Simulation der terrestrischen	
	Wärmestromdichte ergab einen	
	gegenüber einer Bohrlochmes-	
	sung aus dem Jahr 1975 er-	
	höhten Wärmefluss.	
	Die erzielten Ergebnisse wer-	
	den nicht für die Bewertung des	
	geothermischen Regimes her-	
	angezogen.	
Kabelstollen Hintermuhr	Erhebung eines Temperatur-	70
	profils (Lufttemperatur) entlang	
	des Stollens.	

Tabelle 20: Ergebnisse der durchgeführten geothermischen Untersuchungskampagnen.

Trassenerkundungsbohrun-	Auswertung des geothermi-	80.8 (Modalwert), Intervall:
gen S-37 Wildbad Einöd	schen Gradienten in 4 Erkun-	47.9 bis 98.0
	dungsbohrungen. Aufgrund der	
	Spannweite der erzielten Er-	
	gebnisse ist eine Beeinflussung	
	durch zirkulierende Wässer in	
	den ausgewerteten Bohrungen	
	nicht ausgeschlossen.	
Bergbau Mittersill	Kombinierte Auswertung von	48.4
	Lufttemperaturmessungen und	
	Erhebung von Temperaturprofi-	
	len in untertägigen Bohrungen.	
	Analyse der Wärmestromdichte	
	mittels 3D Modell.	
	Die Ergebnisse liegen ca. 20%	
	über den Ergebnissen einer	
	Messkampagne aus dem Jahr	
	1975.	
Badgastein, Franz Josef- und	Erhebung der Lufttemperatur in	Keine Auswertung
Rudolfstollen	verschiedenen Positionen in	
	den Stollen.	
Bergbau Schellgaden	Messung der Lufttemperatur an	Keine Auswertung.
	13 verschiedenen Positionen	
	im Grubengebäude. Auswer-	
	tung der Wärmestromdichte	
	erst nach Erhebung der Lage-	
	höhen möglich.	

Zusammenfassend kann festgehalten werden, dass das Konzept untertägiger Temperaturmesskampagnen auf Grundlage von Langzeitbeobachtungen der Fels- und Lufttemperatur in Stollen zu plausiblen und verwertbaren Ergebnissen führte. Im Rahmen von THERMTEC wurde die Wärmestromdichte an 4 Positionen ermittelt und somit die Datenlage im inneralpinen Raum verdichtet. Aufbauend auf der Studie THERMTEC ist geplant die untertägigen geothermischen Messkampagnen an der Geologischen Bundesanstalt im Rahmen einer "geothermischen Landesaufnahme" fortzusetzen und somit die Datenlage im inneralpinen Raum sukzessive zu verbessern.

4.2 Thermische Gesteinsparameter

Die im Rahmen von THERMTEC untersuchten thermischen Gesteinsparameter dienten der Durchführung geothermischer Modellrechnungen und der Berechnung der terrestrischen Wärmestromdichte. Die erhobenen Kenndaten sind in **Beilage 1** zusammengefasst. Die nun folgende Diskussion der erzielten Ergebnisse beschränkt sich jedoch nur auf die für die Berechnung und Interpretation des Wärmeflusses wichtigen Parameter *Wärmeleitfähigkeit, radiogene Wärmeproduktionsrate* und *spezifische Wärmekapazität*.

In einem ersten Schritt wurden die erhobenen thermischen Gesteinsparameter lithotektonischen Einheiten des inneralpinen Raums zugeordnet (siehe Tabelle 21).

Klasse	Gesteinsgruppe	Gesteinsgruppe Tektonische Einheit				
2	Granit	n.b.	n.b.			
14	Phyllit	Ostalpin, Grauwackenzone				
15	Gneis	Ostalpin, Gurktaler Decke	Ostalpin, Paläozoikum			
16	Kalk-Chloritschiefer	Ostalpin, Quarzphyllitzone				
17	Quarz- Glimmerschiefer	Ostalpin, Quarzphyllitzone				
18	Phyllit	Ostalpin, Quarzphyllitzone				
19	Graphitphyllite	Ostalpin, Quarzphyllitzone				
30	Metabasite	Silvretta Kristallin				
31	Gneis	Silvretta Kristallin				
32	Quarz- Glimmerschiefer	Silvretta Kristallin	Ostalpin, Paläozoikum			
33	Phyllit	Silvretta Kristallin				
5	Metabasite	Bündner Schiefer				
6	Rauhwacke	Bündner Schiefer				
7	Kalkphyllite, Kalk- Glimmerschiefer	Bündner Schiefer				
8	Quarz- Glimmerschiefer	Bündner Schiefer				
9	Marmor	Bündner Schiefer				
10	Phyllit	Bündner Schiefer				
11	Metabasite	Glockner Decke				
12	Kalk-Chloritschiefer	Glockner Decke	Peoninikum			
13	Graphitphyllite	Glockner Decke	Penninikum			
22	Anthropogen	Penninikum, Nordrahmenzone				
23	Metabasite	Penninikum, Nordrahmenzone				
24	Rauhwacke	Penninikum, Nordrahmenzone				
25	Kalk-Chloritschiefer	Penninikum, Nordrahmenzone				
26	Quarz- Glimmerschiefer	Penninikum, Nordrahmenzone				
27	Karbonate	Penninikum, Nordrahmenzone				
28	Marmor	Penninikum, Nordrahmenzone				
29	Graphitphyllite	Penninikum, Nordrahmenzone				
3	Metasandsteine und Metakonglomerate	Hochstegener Zone				
4	Marmor	Hochstegener Zone				
20	Gneis	Seidlwinkl-Modereck Decke				
21	Quarz- Glimmerschiefer	Seidlwinkl-Modereck Decke	Subpenninikum			
34	Granit	Storzdecke				
35	Metabasite	Habachgruppe				
36	Quarz- Glimmerschiefer	Habachgruppe				
37	Gneis	Hochalm-, Granatspitz- Tuxer Decke	Zentralgneisdecken			
38	Gneis	Zentralgneise				

Tabelle 21: Lithotektonische Übersicht der petrophysikalisch untersuchten Gesteinsproben.

Die Gliederung erfolgte nach Gesteinstypen und tektonischen Haupteinheiten. In Summe wurden 36 lithotektonische Klassen identifiziert. Eine Gesteinsprobe konnte keiner spezifischen tektonischen Einheit zugewiesen werden.

Abbildung 61: Häufigkeitsverteilung der Parameter Wärmeleitfähigkeit (inkl. Anisotropie), radiogene Wärmeproduktionsrate und spezifische Wärmekapazität.

Bei Betrachtung aller erhobenen Kenndaten ohne Berücksichtigung der lithotektonischen Klassifizierung können folgende Aussagen für die in Abbildung 61 dargestellten Parameter getroffen werden:

Die Verteilung der Wärmeleitfähigkeit zeigt einen Wertebereich von 2 bis 7.5 W/m/K. Der Schwerpunkt der Verteilung befindet sich im Wertebereich von 3.7 W/m/K. Der Wertebereich jenseits der 90. Perzentil (5.23 W/m/K) wird als nicht mehr repräsentativ aufgrund der Beeinflussung durch lokale Lagen (vorrangig Quarzlagen) eingestuft. Die ermittelte scheinbare Anisotropie der Wärmeleitfähigkeit zeigt eine überraschend kleine Spannweite im Bereich zwischen 1.0 und 1.25. Es sei an dieser Stelle einschränkend festgehalten, dass eine scheinbare Anisotropie überhaupt nur an 28 Proben nachgewiesen werden konnte. Da ein exaktes Zuschneiden der Proben entlang von Textur und Schieferungsflächen aufgrund der benötigten

Probenvolumina von mindestens einem dm³ in den meisten Fällen nicht durchgeführt werden konnte, liegen keine Messwerte der absoluten Anisotropie vor. Es gilt hierbei, dass die scheinbare Anisotropie ≤ der absoluten Anisotropie ist.

Überraschend ist auch die geringe Streubreite der radiogenen Wärmeproduktionsrate zwischen 0.2 und 2.7 μ W/m³. Der Modalwert der radiogenen Wärmeproduktionsrate befindet sich bei 0.9 μ W/m³.

Die Verteilung der spezifischen Wärmekapazität weist eine symmetrische Verteilung mit geringer Streubreite auf. Hieraus wird gefolgert, dass die spezifische Wärmekapazität die geringste Sensitivität hinsichtlich der Prognose der terrestrischen Wärmestromdichte besitzt.

Abbildung 62: Verteilung der Wärmeleitfähigkeit unter Berücksichtigung der lithotektonischen Gliederung. Die Zuordnung der jeweiligen Klasse ist Tabelle 21 zu entnehmen. Im Diagramm abgebildet ist auch die Anzahl der jeweiligen Proben pro Klasse.

In einem nächsten Schritt wurde die Verteilung der thermischen Gesteinsparameter unter Berücksichtigung der in Tabelle 21 definierten lithotektonischen Klassen untersucht.

Abbildung 62 zeigt die Verteilung der Wärmeleitfähigkeiten:

Vorab ist anzumerken, dass die statistische Überdeckung durch Messwerte noch sehr gering ist. So stehen nur zu vier Klassen (Marmore der Bündner Schiefer, Kalk- Chloritschiefer und Quarz- Glimmerschiefer des Ostalpins sowie für Kalk- Chloritschiefer des Penninikums) mehr als 10 Messwerte zur Verfügung. Die Heterogenität der Wärmeleitfähigkeit ist deutlich in der Verteilung der Schiefergesteine sowohl des Penninikums als auch des Ostalpins zu erkennen.

Relativ homogene Messwerte konnten nur für die Marmore der Hochstegener Zone, der Metabsite (vorrangig Amphibolite) der Habach Gruppe sowie für die Gneise der Zentralgneisdecken ermittelt werden. Diese drei lithotektonischen Klassen weisen auch die geringsten Mittelwerte der Wärmeleitfähigkeit der festen Gesteinsmatrix auf (≤ 3W/m/K). Die höchsten Mittelwerte (>4.5 W/m/K) sind Quarz- und Glimmerschiefern des ostalpinen Paläozoikums sowie in den Kalk- Chloritschiefern des Penninikums zu beobachten. Beide Klassen weisen zudem auch eine große Messwertstreuung ist. Die Ursache dieser Streuung ist in der Heterogenität der untersuchten Großproben, insbesondere durch Quarzitlagen, begründet.

Abbildung 63: Verteilung der radiogenen Wärmeproduktionsrate unter Berücksichtigung der lithotektonischen Gliederung. Die Zuordnung der jeweiligen Klasse ist Tabelle 21 zu entnehmen. Im Diagramm abgebildet ist auch die Anzahl der jeweiligen Proben pro Klasse.

Die Verteilung der radiogenen Wärmeproduktionsrate (siehe Abbildung 63) zeigt erwartungsgemäß die höchsten Messwerte in den Gneisen der Zentralgneisdecken. Erhöhte Wärmeproduktion ist jedoch auch in Amphiboliten der Habachgruppe, den Graphitphylliten der ostalpinen Quarzphyllitzone sowie in den Metakonglomeraten der Hochstegener Zone zu beobachten. Die niedrigste radiogene Wärmeproduktionsrate wurde hingegen in den Marmoren der Hochstegener Zone ermittelt. Generell weisen Klassen mit erhöhten Wärmeproduktionsraten auch stark streuende Wertebereiche auf. Besonders deutlich ist dies an den Metabasiten der Habachgruppe (Klasse 35) zu beobachten. Vermutlich ist die starke Streuung der Messwerte wiederum in der Heterogenität der untersuchten Proben begründet. Zudem liegt die Vermutung nahe, dass es sich bei dem Ausgangsmaterial der Amphibolite nicht um basische Vulkanite sondern um tonig mergelige Ausgangsmaterialen handelt, die eine erhöhte Wärmeproduktion infolge der erhöhten Konzentration an ⁴⁰K aufweisen können (Para-Amphibolite).

Abbildung 64: Verteilung der spezifischen Wärmekapazität der festen Gesteinsmatrix unter Berücksichtigung der lithotektonischen Gliederung. Die Zuordnung der jeweiligen Klasse ist Tabelle 21 zu entnehmen. Im Diagramm abgebildet ist auch die Anzahl der jeweiligen Proben pro Klasse.

Die Verteilung der spezifischen Wärmekapazitäten der festen Gesteinsmatrix (Abbildung 64) zeigt eine wesentlich geringere Streuung als die zuvor dargestellten thermischen Gesteinsparameter. Generell lassen sich zwei unterschiedliche Niveaus der spezifischen Wärmekapazität erkennen. Karbonate und Rauhwacken, Metabasite, Gneise und karbonatische Schiefer sowie Marmore weisen eine um ca. 20% erhöhte spezifische gegenüber den übrigen Schiefergesteinen auf. Sehr geringe Wärmekapazitäten zeigen vor Allem Quarz- und Glimmerschiefer.

In einem abschließenden Analyseschritt wurde die getätigte lithotektonische Klassifizierung in einem Streudiagramm der thermischen Materialparameter Wärmeleitfähigkeit (feste Gesteinsmatrix) und radiogene Wärmeproduktionsrate) visualisiert. Dies hatte zum Ziel weitere potenzielle Cluster und verallgemeinerbare Merkmale der lithotektonischen Klassen zu identifizieren. Die Gegenüberstellung mittels Streudiagramm wird in Abbildung 65 gezeigt.

Eine eindeutige Clusterung ist nur bei den Marmoren des Subpenninikums sowie bei den Marmoren des Penninikums feststellbar. Große Streubreiten weisen Quarz- und Glimmerschiefer (Wärmeleitfähigkeit) sowie die Gneise der Zentralgneisdecken auf (radiogene Wärmeproduktiosnrate). Darüber hinaus zeigen die untersuchten Metabasite des Subpenninikums und des Penninikums große Streubreiten sowohl in der Wärmeleitfähigkeit als auch in der radiogenen Wärmeproduktion auf. Die Ursache hierfür dürfte, wie bereits zuvor angesprochen, ind er außerordentlichen Heterogenität der untersuchten Proben liegen. Bei Betrachtung der radiogenen Wärmeproduktionsrate kann festgestellt werden, dass die Wärmeproduktion in den pen-

ninischen Einheiten generell etwa 20 bis 30% unter der Wärmeproduktion des ostalpinen Paläozoikums liegt. Dieser Trend erweist sich sogar relativ unabhängig von der Art der Gesteinstypen.

Abbildung 65: Gegenüberstellung der Wärmeleitfähigkeit (feste Gesteinsmatrix) mit der radiogenen Wärmeproduktion unter Berücksichtigung der lithotektonischen Klassifizierung.

Generell reicht die im Rahmen von THERMTEC erzielte statistische Abdeckung der ausgewiesenen lithotektonischen Einheiten noch nicht aus, um klar abgrenzbare Modele der thermischen Gesteinsparameter abzuleiten. Die zu Beginn der Studie erwartete klare Unterscheidung der radiogenen Wärmeproduktion zwischen den verschiedenen lithotektonischen Einheiten des Penninikums und des Ostalpins konnte noch nicht identifiziert werden. Eine Fortsetzung der petrophysikalischen Datenerhebung im Rahmen einer "geothermischen Landesaufnahme" wird daher von der Geologischen Bundesanstalt angestrebt.

4.3 Geologisches 3D Modell Tauernfenster

Gebiet um die Granatspitz Decke

untergliedert, jene Bereiche mit vorwiegend *Amphiboliten (Basisamphibolit Zug)*, jene mit überwiegend *Gneisen* und jene mit überwiegend *Prasiniten (Habach FM)*.

 <u>Schuppenzone zwischen Glockner- und Venedigerdecke östlich der Granatspitz De-</u> cke

Die nördlichen Anteile (in der Gegend um den Tauernmoossee bestehen vorwiegend aus Bündner Schiefern (GK50 Blatt 153 Nr. 60, 62), die südlichen Anteile in der Umgebung der Pasterze werden hauptsächlich durch Paragneise und Glimmerschiefer (GK50 153 Nr. 58) repräsentiert. Da die Bündner Schiefer vorkommen hier sehr geringmächtig sind werden diese Einheiten den **Gneisen** des **Alten Daches** zugerechnet.

Gebiet um die Hochalm Decke

Entsprechend der "Schichtfolge der zentralalpinen tektonischen Einheiten auf dem Blatt 156 Muhr" wurden folgende Schichtpakete zusammengefasst:

Schlohttelge	n dar zantra	Alpinon to	tonischen Einheiten	out Blatt 156 Muhr															Edaut	enurgen 158 Mai
GROSST TEKTON. STELLUNG	G	AS	TEINE	ER DE	ск	:	PERIPHE	RE SCHI	FERHÜL	LΕ	ZONE	U	N T E	R O	s t	A L P	I N		MITTEL= OSTALPIN	
TEKTON EINHEIT	ALTES DACH DES GOSS- GNE ISK.	TONALIT: DNEIS- DECKE	ZENTRALGNEIS» KERNE	SILBERECKSERIE	MURECK- GNEIS - D	STORZ-DECKE	MURTÖRL- SCHUPPE	SCHROVIN- SCHUPPE	MARISLWAND- SCHUPPE	2UAHRE035	NORD: RAHMEN: ZONE	HOCHFEIND - D.	LANTSCHPELD-D.	HOFALM- SCHUPPE	RAUH+ WACKEN+ SCHUPPE	PLEISUNG-D	RESSELSPITZ-D	DECKE	ALT= KRISTALLIN	
, KREIDE				Bindnerschiefer Gruppe 3 Grünschiefer 33 Schworzschiefer 35 Schworzschiefer 35 Schworzschiefer 35 Boohrt Karb-ou 35 Gabbabatquarzit 37 Delonitoreccie		Bindnerscht Grunne 13 Schwarzschf	Bündnarschf, Groppe 66 Serpentinit 67 Schwarzschf.	Rüntnerschf- Gruppe 63 Schwarzschf, 68 Kalkschiefer	Blindnerschl-Grg es Grünschiefer ss Ophicalcif es Serbentinit er Schwarzscht. 68 Kalkschiefer 69 Karbenatquat 20 Delemitbretc	67 Schwischf 68 Grünschf 68 Kalkschf 98 Karbond- gearzit	Bündnisch-Gr so Grünphytt st Schwischt sz Metequat sa Breccie	22 Schwärzerkbrecz 23 Grüner Phyllit 24 Metaradiolorit 25 Tanschiefer 26 Türkening braccia 27 Tanschiefer 28 Kolkmanner	27 Tonschiefer			27 Tonschiefer 26 Kglknormer	28 Kalkmarmo			JURA
PERMO: TRIAS				se Kolkmarmor (Silberetiem) se Dolomitmormor 30 Rouhvacke sh Lontschfeldgaat		sa Kalkmormor (Silbereckm.)	Schrevin-Gro 14 Kalkmanmer 14 Delommanmer 14 Delommanmer	Schrevin-Brg. 14 Kolkmermar 72 Dolam.matmar 73 Rouhwacke 74 Lantschfldgut	Schrovin - Orp 74 Kolkmanmor 72 Dolom.marmor 73 Roshwacke 74 Lentschfidiquat		sa RoibierScy 55 Dolmannor 55 Kolkmarn 51 Kikm Jensch 56 Rusimecka 18 Jahonfer	29 Kossen - romot 30 Houptolomit 34 Kristaldelmit 35 Dolomitmamor 37 Wettersteindol, 80 Dolomitmamor 36 Kolkmarmor 4 42 Lonherbfeldoupt	20 Houptdelanit 31 Kristelleolomit 33 Tonschiefer 34 Ocionitmornar 39 Wettersteindet 39 Kalkmarnot 98 Kalkmarnot 11 Routworke 21 Janschleindurt	27 Welfersto 36 Doornin 36 Kolkmore 42 Lantschio	21 Reuhw	29 Kössen-Form, 30 Hauptdolamil 31 Kristölledismi 32 Dalahitschiefer 33 Dorschiefer 35 Kolkmasmat 39 Weherstendo 38 Delohitmamo 39 Kehrstendo 39 Kalkmasmat 40 Tonschiefer 41 Bruhwecke 20 Janter/Ideuz/	30 Houptdolom In Knistottdol. (Korn) 34 Dol maimor 39 Dol marmor 39 Kalkingimorki 41 Lonkschazt	29 Kalkingrinar 47 Lantschfazt		PERMO: TRIAS
KRISTA2	Zentrale ts Grophili guzt ss Gronat- gl scht ta Gronit- gn i.c. tim Migman tifge.	96 Grenat- gi schf 37 Tondit- gitters	25 Granstyl schuefer 16 Met Lamprophyr 10 Conairganets 18 Schellenningant 19 Schellenningant 10 Mit kärn Branityn 10 Mit kärn Branityn 10 Granhyneis La 11 Granstyl chwefer 11 Granstyl chwefer 11 Abhilt Schiefer 14 Migmalit gnets	92 Gerölquarzit 95 Gruphitquarzit 985 Grunitgneis i a	100 Granil gn i n	36 Met Lamprooh. Koreck: Konel, ro. Portspielk, etc. <u>Storz-Komplex</u> , ros Secontrin I ros Biot-Blostadin ros Groskarnamph ros Angeladin ros Orthognes	75 Geröllquarzit 77 Arkosequarzit <u>Murtöri-Gruppe</u> 78 Amphibabit 79 Kalkschiefer 80 Grephitgiornit 81 Schwarzschief	25 Gerällquarzit 27 Arkosequarzit <u>Hurteit-Gruese</u> 40 Gesphitquarzit 81 Schwarzschief	76 Graphitguorzi 177 Arkoseguorzit <u>Mertéri Grupor</u> 78 Amphibosi 40 Graphitguorzit al Schworzschief		Twenger Kri to Oil-Phylli IS Orthogn. 52 Amahib 53 Paragn.	as Twenger Kristol L	st Twenger Knistellin	43 Twenger Kristolia	0	49 Twenger Krist	49 Twenger Kristolin	43 Eisendaloh (Silur) 44 Gualithali (Silur) 45 Quarzit 45 Seiziphyll 47 Katscheig Guarzphyll 49 Twenger Kristalin	va filminari: schiefer 20 Amphi- bolit 21 Paragneis	RRISTAL

Abbildung 66: Schichtfolge der zentralalpinen tektonischen Einheiten auf dem Blatt 156 Muhr (aus Erläuterungen zu ÖK Blatt 156 Muhr, Tafel 1)

Die <u>Storzdecke</u> mit vorwiegend Gneisen und Amphiboliten repräsentiert einen Teil des von der südlichen Hochalm Decke abgescherten Alten Daches (ROCKENSCHAUB ET AL., 2003).

Gebiet um die Sonnblick Decke

Die <u>Seidlwinkeldecke</u> (Nordwesten) setzt sich aus *triassischen Karbonaten* (GK 200 Salzburg Nr. 199/200) und *Bündnerschiefern* (GK 200 Salzburg Nr. 198 Graphitische Schiefer, Nr. 195 Phyllite, Kalkschiefer und Karbonatquarzite; laut GK50 153 Nr. 60/62 Phyllite und Quarzite) zusammen.

Der auf der GK200 Salzburg ausgewiesene <u>Murtörl / Draxl Komplex</u> setzt sich aus jungpaläozoischen Gesteinen zusammen und zwar hauptsächlich aus Schwarzschiefern (Nr. 208) – demnach zählen diese Gesteine lithologisch zu der Serie der **jungpaläozoischen Schiefer.**

Die Mallnitzer Mulde repräsentiert eine duktil stark deformierte Synform und Scherzone mit einem Stapel von Schieferhülldecken (inkl. Glocknerdecke) und Gneislamellen in ihrem

Kern (ROCKENSCHAUB ET AL, 2003). Die Gesteine der Mallnitzer Mulde werden entsprechend in *Bündnerschiefer* (GK 200 Salzburg Nr. 188 kalkfreie und kalkige dunkle Phyllite der Kreide) und *Glocknerdecke* (Nr. 189 Glimmermarmor; Kreide) gegliedert.

Schuppenzone am nordöstlichsten Rand des Tauernfensters – Murtörl- und Schrovin Schuppen

Diese beiden Elemente besitzen einen ähnlichen lithologischen Aufbau. Beginnend mit paläozoischen Schiefern und Quarziten folgt eine vorwiegend karbonatische Entwicklung der Perm/Trias (entspricht der Schrovin Gruppe) und endet mit Schwarz- und Kalkschiefern der Bündnerschiefergruppe (Jura/Kreide) (Abbildung 66).

Unterschieden wurden im Modell daher nicht die einzelnen Schuppen sondern ihre lithologische Entwicklung, die Permotrias der Schrovingruppe (GK50 156 Nr. 71) zählt demnach zu der *Triaskarbonatischen Gruppe* und die vorwiegend Schwarzschiefer der Paläozoischen Murtörl-Gruppe zu den *Jungpaläozoischen Schiefern*.

Die Gesteine der <u>Marislwandschuppe</u> werden zum **Glocknerdecken/Nordrahmen** System gezählt. Die <u>Silbereckserie</u> führt permomesozoische (postvariszische) Gesteinseinheiten, welche der Hochalm Decke in transgressivem Verband aufliegen und die Liegendgrenze zur Storz Decke bilden. Lithologisch entsprechen die Gesteine folgender Schichtfolge (PESTAL 2005):

- Die jüngsten Gesteine (Jura/Kreide) liegen in Bündnerschieferentwicklung vor und entsprechen der Kaserer Serie;
- Die karbonatischen Gesteine der Oberjura sind vergleichbar mit dem Hochstegenmarmor;
- o Die karbonatische Mitteltrias entspricht der Seidlwinkeltrias
- Eine Quarzitische Serie im Perm/U. Trias entspricht der Wustkogelserie

Die Silbereckserie wird ebenfalls nicht tektonisch, sondern lithologisch in das Modell integriert, unterteilt in die *karbonatische Trias* und die *Bündnerschiefer.*

Die <u>Mureckgneisdecke</u> besteht aus geringmächtigen mesozoischen Metasedimenten welche vom Zentralgneis und dem Alten Dach abgeschert wurden und auf benachbarte Zentralgneise bzw. Hüllgesteine aufgeschoben wurden (PESTAL 2005).

Die nachfolgenden Abbildungen zeigen Serienschnitte durch das erarbeitete geologische 3D Modell. Die Lage der Schnitte ist in Abbildung 67 dargestellt.

Abbildung 67: Übersichtskarte des Tauernfensters kombiniert mit dem Lageplan der Serienschnitte.

Abbildung 69: Profil B durch das geologische 3D Modell.

Abbildung 70: Profil C durch das geologische 3D Modell.

Abbildung 71: Profil D durch das geologische 3D Modell.

Abbildung 72: Profil E durch das geologische 3D Modell.

Abbildung 73: Profil F durch das geologische 3D Modell.

Abbildung 74: Profil G durch das geologische 3D Modell.

4.4 Thermische Modellierung im Bereich des Tauernfensters

Im nachfolgenden Kapitel werden die Ergebnisse der im Bereich des Tauernfensters durchgeführten Ergebnisse vorgestellt. Die Darstellung der Resultate wird gegliedert in:

- Parameterstudien zu Evaluierung des Einflusses von Paläoklima und Relief auf das rezente geothermische Regime.
- Drei- dimensionale Modellierung der Entwicklung des geothermischen Regimes f
 ür den Zeitraum der vergangenen 16 Mio. Jahre mit Fokus auf den Einfluss der Gebirgshebung (Exhumierung).

Anderen Einflussgrößen, wie etwa der radiogenen Wärmeproduktion oder einer veränderlichen Geometrie der tektonischen Elemente (variables Reliefmodell) konnte aus zeitlichen Gründen keine Aufmerksamkeit gewidmet werden. Der Einfluss der radiogenen Wärmeproduktion wurde jedoch in der Interpretation der erzielten Ergebnisse qualitativ anhand der durchgeführten petrophysikalischen Untersuchungen berücksichtigt. Lokale Einflussparameter, wie zum Beispiel Tiefenwasserzirkulation, wurden aufgrund des regionalen Maßstabs der numerischen Modelle nicht berücksichtigt (siehe auch Kapitel 5.1).

4.4.1 Parameterstudie über den Einfluss von Paläoklima und Relief

Für die Abschätzung des Einflusses des Reliefs und des Paläoklimas auf das geothermische Regime im Untergrund des Tauernfenstergebietes wurden, wie in Kapitel 3.1.4 bereits beschrieben, vier verschiedene Szenarien modelliert. Diese werden im Folgenden miteinander verglichen um den Einfluss des Reliefs sowie des Paläoklimas miteinander zu vergleichen.

Einfluss des Reliefs

Die folgenden Schnitte in Abbildung 75 zeigen den Temperaturunterschied dT zwischen Szenario 1 und 2 in verschiedenen Tiefen. In Szenario 1 wurde die Topografie über 400 m Seehöhe quasi weggeschnitten und eine konstante Oberflächentemperatur von 10,88 °C (entsprechend dem Höhengradienten) für z = 400 m) als Randbedingung gesetzt. Es ist klar, dass in dieser Ebene in Szenario 2, wo ein bis zu 3200 m hohes Gebirge darüber liegt, die Temperaturen viel höher sind (bis zu 35°C). Dies liegt an dem, im Vergleich zum Luftgradienten von 0.41°C/100m, viel höheren geothermischen Gradienten (z.B. 2.08°C/100m bei Szenario 1). Interessant ist die Streuung der Temperaturdifferenz dT, der den Einfluss des Reliefs bis in große Tiefen zeigt (Temperaturunterschied bis zu 4.6°C in 30 km Tiefe). In der realen Erdkruste ist dieses Ergebnis jedoch kritisch zu betrachten, da die zeitliche und tektonische Entwicklung des Gebirges (Hebung, Überfaltung und Erosion) nicht berücksichtigt sind und die Annahme eines homogenen Untergrunds nicht zutrifft. Im oberen Bereich liefert die Simulation jedoch eine gute Approximation.

Abbildung 75: Einfluss des Reliefs auf das Temperaturregime entlang von verschiedenen Tiefenschnitten.

Einfluss des Paläoklimas im Bereich des Tauernfensters

Der paläoklimatische Effekt kann für ein ebenes Modell ohne Relief analytisch berechnet werden (vgl. POWELL ET AL., 1988). Die Differenz aus Szenario 4 und Szenario 1 zeigt diesen Effekt auf Basis der numerischen Simulation (siehe Abbildung 76). Die Temperaturstörung steigt bis in eine Tiefe von ca. 2 km rasch auf bis zu -5.9 °C an und klingt dann wieder ab. In 25 km Tiefe ist das Signal praktisch verschwunden. Dieses Ergebnis ist dem von VOSTEEN ET AL (2006) sehr ähnlich.

Abbildung 76: Störung des Temperaturregimes durch das Paläoklima für ein ebenes Modellgebiet ohne Relief.

Um zu untersuchen wie sich das Klima der letzten 1 Million Jahre auf das topografische Modell des Tauernfenstergebietes auswirkt, wurde Szenario 2 mit Szenario 3 verglichen. Die Kälteperioden der Eiszeiten wirken auf die Topografie und versuchen sich teilweise lateral wieder auszugleichen.

Die nachfolgende Abbildung zeigt die Temperaturdifferenz auf einem Schnitt durch das Gebiet des Tauerntunnels (Böcksteintunnels zwischen Badgastein und Mallnitz). In diesem Beispiel beträgt die maximale Störung des Temperaturfeldes ca. -4.2 °C unterhalb der Täler - im Vergleich zur Simulation ohne Rücksicht des Paläoklimas (Szenario 3 minus Szenario 2).

Abbildung 77: Einfluss des Paläoklimas am Beispiel eines Schnittes durch das Ankogelmassiv. Der Eisenbahntauerntunnel durchquert hier auf ca. 1200 m vom Norportal (links) zum Südportal (rechts). Die maximale Temperaturstörung beträgt hier -4.2 °C auf Meeresspiegelhöhe.

Die nachfolgenden Horizontalschnitte (Abbildung 78) zeigen die paläoklimatische Störung des Temperaturfeldes. Im zuvor angeführten Abschnitt über den Einfluss des Reliefs auf das geothermische Regime ist ersichtlich, dass die maximale Störamplitude in ca. 2 km Tiefe unter der Oberfläche liegt. Auf dem Slice in 400 m Seehöhe ist die Störamplitude unterhalb der tiefen Täler minimal (-0.9°C), da sie von nur 100 m mächtigen Schichten überlagert werden. Auf dem Slice 1000 m unterhalb des Meeresspiegels ist die Störamplitude hingegen maximal (-5.4°C).

Abbildung 78 Einfluss des Klimas der letzten 1 Million Jahre auf das Temperaturfeld im Untergrund.

Zusammenfassend kann festgehalten werden, dass im Projektgebiet der Einfluss der Topografie auf das geothermische Regime, aufgrund der ausgeprägten Topografie sehr stark ist. Der Störeinfluss ist bis in große Tiefen nachweisbar. Der paläoklimatische Einfluss der letzten

Eiszeiten ist ebenfalls beträchtlich, jedoch viel geringer als der topografische Effekt. Die maximale Störamplitude von 5,9 °C liegt in 2 km unterhalb der Oberfläche.

4.4.2 <u>Drei-dimensionale Modellierung der thermischen Entwicklungsgeschichte des Tauern-</u><u>fensters</u>

Im Rahmen der transienten 3D Modellierung des gekoppelt konduktiv – advektiven Wärmetransports wurde die thermische Entwicklungsgeschichte im Bereich des Tauernfensters für den Zeitraum der vergangenen 16 Mio. Jahre abgebildet. Die Modellierung erfolgte iterativ um sich schrittweise an die Nebenbedingungen bestehend aus publizierten geochronologischen Daten und den daraus abgeleiteten, zeitabhängigen Hebungsmodellen anzunähern. Das erarbeitete geothermische 3D Modell berücksichtigt zudem die paläoklimatische Entwicklung der vergangenen 100.000 Jahre. Aus Gründen der Vereinfachung wurde das Relief im Betrachtungszeitraum als konstant angenommen.

Die nachfolgende Abbildung 79 zeigt das Ergebnis der numerischen Modellierung anhand des Parameters terrestrische Wärmestromdichte für die Zeitpunkte – 16 Mio. Jahre, -8. Mio. Jahre, -1 Mio. Jahre und -0.1 Mio. Jahre. Abbildung 80 zeigt zudem die Entwicklung der tektonisch mittels Massenadvektion bedingten Temperaturanomalie entlang virtueller Bohrpfade durch das Tauernfenster zu den Zeitpunkten -8.5 Mio. Jahre (angenommenes Maximum der Hebung) und -1.0 Mio. Jahre.

Zum Zeitpunkt der maximalen Hebungsrate (-8.5 Mio Jahre) ist auch die thermische Anomalie mit etwa + 50°C in 15 km Tiefe maximal ausgebildet. Mit der folgenden Verringerung der Exhumationsrate klingt auch die thermische Anomalie ab, wobei sich ihr Maximum auf eine Tiefe von ca. 20 km verlagert (Temperaturanomalie ca. +20°C). Die paläoklimatisch induzierte Temperatur Anomalie (im Modell ab -0.1 Mio. Jahre berücksichtigt) besitzt mit einer Amplitude von etwa -5°C im Vergleich zur tektonisch induzierten Anomalie eine untergeordnete Rolle. Jedoch liegt ihr Maximum in einer Tiefe von unter 2 km und damit viel seichter als die tektonisch induzierte Anomalie.

Wie bereits im vorangegangenen Kapitel angesprochen besitzt das Oberflächenrelief einen signifikanten Einfluss auf das geothermische Regime. Dies zeigt sich auch deutlich am Beispiel der mittels Modellrechnung bestimmten Paläo-Wärmestromdichten (Abbildung 79): Aufgrund der Annahme eines konstanten Reliefs zeigen die Wärmeflusskarten zu allen Zeitpunkten positive Anomalien der terrestrischen Wärmestromdichte im Bereich der großen alpinen Täler. Diese Bereiche besitzen aufgrund der Geometrie der Erdoberfläche Wärmeflusserhöhungen von bis zu 20 mW/m² gegenüber den umliegenden Bergrücken. Die Berechnung des Temperaturmodells vor 16 Mio. Jahren erbrachte reduzierte Wärmeflüsse (< 60 MW/m²) im Bereich der nördlichen Abschnitte des Tauernfensters, die vor Allem durch eine reduzierte radiogenen Wärmeproduktionsrate verursacht werden. Im Westen des Modells zeigt sich auch der Einfluss der Topographie. Lediglich zum Zeitpunkt vor 8 Mio. Jahren wird die geringe Wärmeproduktion durch die Exhumierung überprägt, sodass in weiten Arealen des Tauernfensters Wärmestromdichten von über 80 mW/m² zu beobachten sind. Der Einfluss der Exhumierung reduziert sich daraufhin drastisch, sodass zum Zeitpunkt des Starts des paläoklimatischen Signals (vor 0.1 Mio. Jahren) nur mehr Restanomalien zu beobachten sind. Beachtenswert ist auch, dass sich gemäß der Simulation in der nördlichen des Tauernfensters anschließenden Grauwackenzone erhöhte Wärmeflüsse aufgrund der erhöhten Wärmeproduktion abbilden.

Abbildung 79: Paläogeothermisches Regime im Bereich des Tauernfensters für den Zeitraum -8 Mio. Jahre bis -0.1 Mio. Jahre. Darstellung des resultierenden Wärmeflusses auf einer ebenen Bezugsfläche (Meereshöhe).

Abbildung 80: Einfluss der tektonischen Hebung auf das Temperaturregime am Beispiel virtueller Bohrpfade durch das Tauernfenster (export aus Comsol[™] Modell). Die blaue Linie repräsentiert den Temperaturverlauf des ausschließlich konduktiven Modells ohne Massenadvektion.

Die rezente Wärmestromdichte wird in Abbildung 81 projiziert auf eine ebene Bezugsfläche (Meeresnievau), entlang der Moho Diskontinuität sowie entlang der Erdoberfläche dargestellt. Sowohl die Projektion auf Meeresniveau als auch die Projektion auf die tatsächliche Erdoberfläche zeigen einen starken Einfluss des Reliefs auf die rezente Wärmestromdichte. Gemäß den vorliegenden Simulationsergebnissen sind Wärmeüberschüsse aus der Exhumierung des Tauernfensters nur mehr im Bereich des südöstlichen Teils des Modellgebiets (Südtirol, Bereich Pustertal) vorhanden. Die mittlere Wärmeflussdichte liegt im Bereich des Tauernfensters in dem für den Ostalpenbereich typischen Intervall von 50 bis 60 mW/m². Lokale Anomalien von Amplituden bis zu 40 mW/m² ergeben sich vor Allem aus der Dynamik des Reliefs. So sind positive Wärmeflussanomalien im Bereich alpiner Täler und Becken zu finden. Die Verteilung der terrestrischen Wärmestromdichte entlang der Moho Diskontinuität reflektiert das geologische Modell und deckt sich mit dem Modell entlang des Transalp Profils (VOSTEEN ET AL, 2006). Die geringe Wärmestromdichte von bis zu <10mW/m² ergibt sich aus dem Fehlen interner radiogener Wärmequellen und der erhöhten Distanz zwischen Moho und Asthenosphäre im Bereich der Wurzel des Tauernfensters.

Abbildung 81: Darstellung des rezenten Wärmeflusses auf Meereshöhe (oben), entlang der Moho (mitte) und auf Relief (unten).

In Hinblick auf eine praktische Verwertung der Ergebnisse der thermischen Simulation ist in der nachfolgenden Abbildung 82 die Tiefenlage der 100°C Isotherme im Bereich des Tauernfensters dargestellt:

Abbildung 82: Verteilung der 100°C Isotherme im Bereich des Tauernfensters. Oben: Tiefenlage der 100°C Isotherme bezogen auf NN. Unten: Tiefenlage bezogen auf Geländeoberkante.

Gemäß den Ergebnissen der Modellrechnung sind die Bereiche der Gesteinstemperatur im Bereich des Tauernfensters und dessen Berandung im Tiefen von mindestens 3.300 Meter unter Geländeoberkante (GOK) zu erwarten. Die geothermisch günstigere Region stellt der südliche Bereich des Tauernfensters bzw. die südlich daran anschließenden inneralpinen Täler und Becken (z.B. Drautal) dar. Abgesehen von den Gebirgszügen ergab die numerische Modellrechnung auch ungünstige Areale im Bereich des Nordwestens des Modells. Hierbei handelt es sich um die Region des unteren Inntals nahe Innsbruck.

4.5 Zusammenfassung

Die durchgeführten Datenerhebungen und Modellrechnungen konnten die zu Beginn der Studie THERMTEC getätigte Hypothese einer rezent vorhandenen Restwärme infolge der Exhumierung im Tauernfenster nicht bestätigen, obgleich die getätigten Modellrechnungen Restwärmeanteile im südwestlichen Randbereich des Tauernfensters im Raum Pustertal (Italien) ergab, die sich auch in den erhobenen Wärmestromdaten abzeichnet. Auf das rezente Wärmestromregime wird noch detailliert in Kapitel 5.1 eingegangen. Neben der thermischen Modellrechnung ist die Erstellung eines geologischen 3D Modells für das gesamte Tauernfenster ein wesentliches Resultat der Studie. Das vorliegende Modell fasst alle relevanten geologischen Karten und Schnitte zusammen. Die Zusammenfassung der erhobenen thermischen

noch eine sehr heterogene Datenverteilung. Es zeigt sich, dass noch weitere Untersuchungen zur Datenverdichtung notwendig sind. Speziell die Verteilung der radiogenen Wärmeproduktion ergibt noch keine schlüssige Korrelation mit den ausgewiesenen lithotektonischen Einheiten.

5 Interpretation und Schlussfolgerungen

Im nun folgenden Kapitel wird auf die Interpretation der erzielten Projektergebnisse hinsichtlich der Verteilung der rezenten Wärmestromdichte im Bereich des Tauernfensters und dessen umgrenzenden Regionen eingegangen. Hierbei wird zu Beginn des Projekts formulierte Hypothese über das Vorhandensein einer wirtschaftlich nutzbaren Restwärme im Bereich des Tauernfensters kritisch überprüft.

Anschließend werden die wichtigsten Erkenntnisse aus dem Projekt THERMTEC zusammengefasst und hieraus Forschungsansätze für zukünftige Projekte abgeleitet.

5.1 Das rezente Wärmestromregime im Bereich des Tauernfensters

Die Erhebung und Bewertung der rezenten terrestrischen Wärmestromdichte stellt die zentrale Zielsetzung der Studie THERMTEC dar. Im nun folgenden Kapitel wird das geothermische Regime im Bereich des Tauernfensters anhand folgender Datengrundlagen diskutiert:

- Verteilung der Wärmestromdichte in Europa (CERNAK & HURTIG, 1979)
- Konzeptionelle Wärmestromkarte Österreichs (Götzl, 2007)
- Erhobene Literatur- und Messdaten der Studie THERMTEC
- Ergebnisse der geothermischen 3D Modellierung im Rahmen der Studie THERMTEC.

Die Interpretation der terrestrischen Wärmestromdichte erfolgt hinsichtlich des Einflusses des Krustenaufbaus, der Hebungsgeschichte und lokaler Einflüsse, insbesondere der Zirkulation von Tiefenwasser.

In einem ersten Auswerteschritt werden die Ergebnisse der geothermischen 3D Modellierung (Datensatz terrestrische Wärmestromdichte auf Niveau NN) mit den ausgewerteten Messdaten verglichen (siehe Abbildung 83). Beide Datensätze können unmittelbar miteinander verglichen werden, da der Einfluss des Reliefs in beiden Ansätzen berücksichtigt worden ist. Am Ostrand des Tauernfensters im Bereich des A10-Tauerntunnels und des Kabelstollens Hintermuhr stimmen beide Datensätze gut überein. Im dieser Region herrschen gemäßigte Wärmestromdichten im Bereich von 60 bis 70 mW/m² vor. Im Bereich Badgastein – Mallnitz ist der Datenpunkt Mallnitz noch in guter Übereinstimmung mit dem geothermischen Modell. Die im Rahmen der thermischen Untersuchungen im Tauerntunnel festgestellt erhöhte Wärmestromdichte im Tauerntunnel in einem Zusammenhang mit dem Thermalwassersystem von Badgastein steht. Eine andere Erklärung ist in der erhöhten Modell berücksichtigt, wodurch sich erhöhte Wärmeflüsse im nördlich anschließenden Gasteiner Tal ergeben,

die durch die Reliefwirkung des Tals noch verstärkt werden. Es sei an dieser Stelle darauf hingewiesen, dass der Einfluss lokaler Thermalwassersysteme im geothermischen Modell nicht abgebildet worden sind.

Abbildung 83: Vergleich der erhobenen Wärmestromdichten mit den Ergebnissen der geothermischen Modellierung. Der dargestellte Datensatz des geothermischen Modells repräsentiert die Wärmestromdichte projiziert auf NN.

Am Südwestrand des Tauernfensters weist das geothermische Modell erhöhte Wärmestromdichten von bis zu 110 mW/m², die jedoch bei der tektonischen Grenze zwischen Penninikum und Südalpin im Bereich der Periadriatischen Naht enden. Die erhobenen Wärmestromdichten entlang der Trasse des geplanten Brenner Basistunnels wiesen jedoch auch im Penninikum deutlich erhöhte Wärmestromdichten von bis zu 93 mW/m² auf, die nicht durch das Modell erklärt werden können. Am Nordwestlichen Rand des Tauernfensters, im Bereich der Innsbrucker Quarzphyllitserie ist jedoch wieder eine gute Übereinstimmung zwischen Modell und Messdaten gegeben. Am Nordrand des Tauernfensters liegt eine gute Übereinstimmung zwischen dem Modell und den Messdaten im Bereich Mittersill und St. Johann / Pomgau vor. Die Bohrung Kapruin TH1 weist aufgrund der Beeinflussung durch Thermalwasser deutliche Differenzen zum Modell auf. Abschließend ist anzumerken, dass weiterführende Untersuchungen am südwestliche Rand des Tauernfensters sowie eine Detailbetrachtung des Raums Badgastein – Mallnitz – Rauris zielführend wären.

Nachfolgende Abbildung 84 zeigt den Vergleich der publizierten Wärmestromkarten mit den erhobenen Wärmestromdaten für den Bereich des inneralpinen Raums.

Abbildung 84: Vergleich der Wärmestromkarten von CERNAK & HURTIG (1979) sowie Götzl (2007) mit den Ergebnissen der geothermischen Modellierung.

Die Wärmestromkarte von Cernak & Hurtig (CERNAK & HURTIG, 1979) weist den östlichen Bereich des Tauernfensters als gemäßigt aus (Wärmestromdichte 60 – 70mW/m²). Dies deckt sich, abgesehen von den Thermalwasser beeinflussten Gebieten ganz gut mit erhobenen Kenndaten. Eine weitere gute Übereinstimmung ergibt sich am westlichen Rand des Tauernfensters. Die deutlich erhöhte Wärmestromdichte im südlichen Abschnitt der geplanten Trasse des Brenner Basistunnels wird auch in der Karte von Cernak & Hurtig als Anomaliebereich ausgewiesen. Interessanterweise weist diese Karte auch eine positive geothermische Anomalie im südöstlichen Abschnitt der Ostalpen auf, die eine Fortsetzung des erhöhten Wärmeflusses im Steirischen Becken darstellt. Die westliche Berandung dieser Struktur deckt sich räumlich sehr gut mit den beobachteten Wärmestromdichten im Raum Wildbad Einöd.

Die konzeptionelle Karte von Götzl (GÖTZL, 2007) weist die östliche Berandung des Tauernfensters, genauer gesagt das Gebiet um Badgastein als Zone erhöhter Wärmeflüsse aus (80 – 90 mW/m²). Die erhobenen Daten im Bereich Tauerntunnel und Mallnitz bestätigen diese Struktur. Für den verbleibenden Bereich des Tauernfensters wurde ein moderat erhöhter Wärmefluss von 70 – 80 mW/m² angenommen. Die erhobenen Wärmestromdichten zeigen jedoch eine stärkere geothermische Gliederung dieses Bereiches. Insbesondere wurde die positive geothermische Anomalie am Südwestrand des Tauernfensters nicht berücksichtigt.

Abbildung 85: Wärmestromkarte für den inneralpinen Raum mit Fokus auf dem Tauernfenster auf Grundlage der interpolierten Messdaten. Die Darstellung der Wärmestromdichte ist kombiniert mit einer großtektonischen Übersicht der Ostalpen (Quelle: Metallogenetische Karte Österreichs, 1:500.000).

In einem abschließenden Auswerteschritt wurden die aus den erhobenen Messdaten errechneten Wärmestromdaten zu einem regelmäßigen Raster interpoliert. Die Raster Interpolation erfolgte auf Grundlage der Inverse Distance to a Power Methode mit Hilfe der Software Surfer[™] (Golden Software). Der Inverse Distance to a Power Ansatz versucht die Messdaten möglichst unverfälscht abzubilden, neigt jedoch zur Berechnung lokaler Anomalien (Bull Eyes). Da viele der beobachteten lokal begrenzten Anomalien auf Thermalwasser- bzw. Tiefenwässer Einfluss zurückzuführen sind, scheint diese Methode den Wärmefluss im inneralpinen Raum am besten anzunähern.

Die Raster Interpolation ergibt sowohl am östlichen als auch am westlichen Rand es Tauernfensters erhöhten Wärmefluss. Es ist jedoch einschränkend festzuhalten, dass die Raster Interpolation für den Ostrand auch von Messwerten beeinflusst wird, die durch lokale Einflüsse maskiert sind: Der Messpunkt Vortrieb A10 - Tauerntunnel, Röhre 2 ist vermutlich durch die thermische Auswirkung der Röhre 1 überprägt. Die erhöhten Wärmestromdichten im Bereich Tauerntunnel (Bahn) ist durch die untertägigen Messungen und durch die Bohrung Mallnitz TH1 gestützt. Die zu Grunde liegenden Kampagnen wurden zu sehr unterschiedlichen Zeitpinkten durchgeführt und beruhen auf unterschiedlichen Methoden. Dennoch liefern sie nahezu identische Ergebnisse. Auf Grundlage der zur Verfügung gestandenen Unterlagen kann eine lokale Beeinflussung durch Thermalwasser ausgeschlossen werden. Der lokale bis regionale Einfluss der erhöhten Wärmeflussdichte könnte auch auf die erhöhte Wärmeproduktion im Bereich der Zentralgneiskerne zurückzuführen sein. Bei einer Mächtigkeit der Zentralgneise im Bereich Badgastein gemäß dem geologischen 3D Modell von ca. 9 km (Romategneis und Hochalmdecke) ergibt sich auf Grundlage der gemessenen radiogenen Wärmeproduktionsraten ein zusätzlicher Anteil der Wärmestromdichte in der Höhe von ca. 10 mW/m². Dies entspricht etwa dem Kontrast zu den umliegenden Regionen. Für den zentralen Bereich des Tauernfesters ergibt die Interpolation eine moderate Wärmestromdichte im Bereich von 60 mW/m² bis 70 mW/m². In diesem Bereich liegen jedoch mit Ausnahme des Standorts Mittersill keine Messdaten vor. Die reduzierte Wärmestromdichte im Bereich Mittersill kann vorerst nicht schlüssig argumentiert werden. Der kühlende Einfluss von zirkulierenden Oberflächenwasser kann aufgrund der bekannten Bergwasserverhältnisse ausgeschlossen werden. Eine Reduktion infolge fehlender radiogener Wärmeproduktion wird durch die durchgeführten petrophysikalischen Untersuchungen nicht bestätigt. Es konnte jedoch nicht geklärt wie repräsentativ die erhobenen Proben tatsächlich sind. Der Westrand des Tauernfensters zeigt erwartungsgemäß eine deutliche Erhöhung der Wärmestromdichte. Dieser Trend setzt sich auch über das Tauernfenster hinweg nach Westen in die Ostalpinen Einheiten fort. Hier zeichnet sich eine Korrelation mit der fortschreitenden Verjüngung der Denudation in westlicher Richtung ab.

Zusammenfassen kann festgehalten werden, dass im Bereich des Tauernfensters mit Ausnahme dessen westlichen Berandung kein Wärmeüberschuss infolge der Miozänen Denudation festzustellen ist. Lokale Anomalien resultieren aus lokalen Thermalwassersystemen sowie aus erhöhter Wärmeproduktion. Ein tektonisch noch nicht geklärte lokale bis regionale positive geothermische Anomalie ist am Südwestrand des Tauernfensters im Bereich Pustertal (Italien) zu beobachten. Der allgemeine Trend der erhobenen Daten weist im zentralalpinen Raum auf eine tendenzielle Zunahme der terrestrischen Wärmestromdichte in Richtung Westen auf.

5.2 Schlussfolgerungen

Das nun folgende Kapitel fasst die wichtigsten Erkenntnisse aus dem Projekt THERMTEC zusammen. Darauf aufbauend werden im nachfolgenden Kapitel Ansätze für zukünftige Forschungsvorhaben skizziert, die auf der Studie THERMTEC aufbauen können.

Zur Planung und Umsetzung des Projekts THERMTEC

- Das ursprünglich geplante Vorhaben zwei gegensätzliche orogenetische Prozesse (Hebung und Senkung) in zwei unterschiedlichen Untersuchungsgebieten (Tauernfenster und südliches Wiener Becken) zu untersuchen war zu ambitioniert gewählt und konnte nicht realisiert werden. Im Rahmen der zur Verfügung gestandenen finanziellen Mittel musste der Fokus ausschließlich auf das Tauernfenster gelegt werden.
- Der Aufwand zur Erstellung des geologischen 3D Modells wurde in der Planung der Studie unterschätzt. Durch die iterativ durchzuführende Harmonisierung des geologischen Modells führte zu einer deutlichen Verlängerung der Modellierungsphase. Aus diesem Grund musste der Zeitplan der Studie THERMTEC adaptiert werden, sodass die Interpretationsphase deutlich reduziert wurde. Zudem wurden ausschließlich im Rahmen der Initialphase (Datenerhebungsphase) vorgesehenen geothermischen Feldkampagnen begleitend zu den übrigen Aktivitäten bis zum Projektende durchgeführt. Auch hier wurde der Zeitaufwand in der Anbahnung der Messkampagnen unterschätzt.
- Aufgrund von Personalwechsel und Wartezeiten f
 ür die Genehmigung von geothermischen Messkampagnen wurde der urspr
 ünglich f
 ür vier Jahre ausgelegte Projektzeitplan leider deutlich
 überzogen.

Zur Erhebung und Modellierung des geothermischen Regimes:

- Die im Rahmen von THERMTEC erstmals von der Geologischen Bundesanstalt eingesetzte Methode der untertägigen Messkampagnen mittels Langzeitbeobachtung von Fels- und Stollenluft Temperatur hat sich als brauchbar erwiesen. Selbst Messkampagnen, in denen nur die Variation der Lufttemperatur beobachtet worden ist erbrachten nachvollziehbare Wärmestromdichten (z.B. Kabelstollen Hintermuhr). Aus diesem Grund wird diese Methode im Rahmen einer "geothermischen Landesaufnahme" zukünftig an der Geologischen Bundesanstalt fortgeführt.
- Die durchgeführten thermischen Modellrechnungen unter Berücksichtigung der gekoppelt thermisch- tektonischen Entwicklungsgeschichte der letzten 16 Mio. Jahre ergaben eine Bild, welches in vielen Regionen des Tauernfensters mit den erhobenen Felddaten in Einklang gebracht werden kann. Es zeigt sich, dass das tektonische Hebungsmodell, welches sich vorrangig aus Hochtemperatur Geothemometern (Apatit- und Zirkon Fission Track Daten) abgeleitet worden ist, plausibel ist. Es ist jedoch einschränkend anzumerken, dass der Zeitraum der letzten 5 Mio. Jahre nicht ausreichend durch Niedertemperatur Geothermometern (U, Th/He) abgedeckt werden konnte. Zudem

konnte der Einfluss der radiogenen Wärmeproduktion auf die Entwicklung des geothermischen Regimes in den geothermischen Modellrechnungen nur stark vereinfacht und generalisiert abgebildet werden.

Die im Rahmen von THERMTEC eingesetzten Finite Elemente Softwarepakete Comsol[™] und FEFLOW[™] waren in der Lage die projektspezifischen Anforderungen an die geothermische Modellrechnungen zur Abbildung der gekoppelt thermisch- tektonischen Entwicklungsgeschichte des Tauernfensters mittels Massenadvektion zu erfüllen. Das Softwarepaket Comsol[™] besitzt gegenüber dem Softwarepaket FEFLOW[™] den Vorteil die zu Grunde liegenden Differentialgleichungen zur Abbildung der thermischen Transportprozesse beliebig anzupassen. Der Nachteil in der Anwendung liegt in der eingeschränkten Möglichkeit unregelmäßig verlaufende drei-dimensionale Körper in die Software zu importieren. Der Import geologischer Strukturen ist im Programm FEFELOW[™] deutlich einfacher, zumal diese Software speziell für geowissenschaftliche Fragestellungen entwickelt worden ist. Der Nachteil von FEFLOW[™] liegt in der eingeschränkten Möglichkeit die zu Grunde liegenden Differentialgleichungen anzupassen, da dieses Programm speziell für hydraulisch- hydrothermische Aufgabenstellungen konzipiert worden ist.

Zur Erhebung von thermischen Gesteinsparametern und geochronologischen Daten

- Der Umstand, dass der Datenaustausch zwischen der Universität Salzburg und der Geologischen Bundesanstalt nicht zustande kam führte zu einem Defizit an Niedertemperatur Geothermometern (U,Th/He). Aus diesem Grund mussten die Hebungsmodelle für den Zeitraum der vergangenen Jahre stark vereinfacht werden. Trotz des vereinfachenden tektonischen Modells konnte jedoch, wie bereits angeführt, eine gute Übereinstimmung zwischen den geothermischen Modellen und den erhobenen rezenten Wärmeflussdaten erzielt werden.
- Die erhobenen thermischen Gesteinseigenschaften ergaben ein sehr heterogenes Bild. So wiesen etwa ähnliche Gesteinstypen in unterschiedlichen tektonischen Einheiten deutliche Unterschiede in der Wärmeleitfähigkeit auf. Als Ursache hierfür ist einerseits die generelle Heterogenität der metamorphen Schiefergesteine anzunehmen, die große Areale des Tauernfensters abdecken. Zusätzlich hierzu weisen viele Proben markoskopische Heterogenitäten, wie zum Beispiel Quarzit- oder Kalzit Lagen auf, die zu einer Streuung der Messwerte innerhalb der gleichen lithotektonischen Einheit führten. In diesem Zusammenhang ist das für die Bestimmung der Wärmeleitfähigkeit notwendige Mindestvolumen von ca. 1 dm³ als problematisch anzusehen, da lagige Ausfällungen zu Verzerrungen der Messergebnisse führen können.
- In der Planung der Studie THERMTEC war vorgesehen, Komplexe petrothermische Modelle in der geothermischen Modellrechnung anzuwenden. Dies betraf einerseits die Temperaturabhängigkeit der Materialparameter Wärmeleitfähigkeit und spezifische Wärmekapazität sowie den Aufbau von tiefenabhängigen Modellen der radiogenen Wärmeproduktion. Da die meisten dieser Modelle jedoch auf

empirischen Beobachtungen basieren und speziell Modelle der Temperaturabhängigkeit von thermischen Gesteinseigenschaften durch Labormessungen unter insitu Bedingungen kalibriert werden sollten, wurde auf die Anwendung komplexer Modelle in der Modellrechnung verzichtet.

Eine weitere Verbessrung der geothermischen Modellrechnungen würde durch die Korrelation thermischer Gesteinseigenschaften mit Ergebnissen tiefenseismischer Untersuchungen führen. Dies betrifft vor Allem die Tiefenverteilung der Parameter seismische Wellengeschwindigkeit und Dichte. Als weiteres Ergebnis einer kombinierten thermisch- petrophysikalischen Auswertung tiefenseismischer Daten würde die rezente drei-dimensionale Verteilung der Temperatur in der Lithosphäre darstellen. Diese kann wiederum als Stützstelle der geothermischen Modellrechnungen herangezogen werden. Eine Korrelation thermischer Gesteinseigenschaften mit tiefenseismischen Ergebnissen wurde zwar im Rahmen der Studie THER-MTEC ins Auge gefasst konnte jedoch aus zeitlichen und finanziellen Gründen nicht realisiert werden.

Zur drei-dimensionalen geologischen Modellierung

- Im Zuge der Planung des Projekts THERMTEC wurde der Fokus auf das geologische Modellierungsprogramm Geomodeller[™] gelegt. Dieses Programm wurde speziell für geologische Fragestellungen in tektonisch stark gestörten Festgesteinsgebieten entwickelt, in welchen vorrangig auf Oberflächeninformationen zurückgegriffen werden muss, da Aufschlüsse aus Tiefbohrungen fehlen. Geomodeller[™] arbeitet auf Grundlage von Spline Funktionen und Kriging Algorithmen. Diese Algorithmen erwiesen sich jedoch nicht in der Lage die tektonische Situation im Bereich des Tauernfensters korrekt abzubilden. Insbesondere war dieses Programm in Gebieten mit Schichtverdoppelungen nur eingeschränkt anwendbar bzw. lieferte nicht korrekte Ergebnisse. Aus diesem Grund wurde das geologische Modell schließlich in der Software Gocad[™], welche auf konventionellen Triangulierungsansätzen beruht, schließlich zufriedenstellend abgeschlossen.
- Es hat sich zudem als vorteilhast erwiesen die vorhandenen geologischen Stützstellen Stück für Stück in das geologische 3D Modell zu integrieren. Dies hat den Vorteil, dass neu implementierte Daten gleichzeitig zur Qualitätskontrolle des bereits bestehenden Modells herangezogen werden können und so Widersprüche zwischen den benutzten Daten schnell sichtbar gemacht werden können.

5.3 Ansätze für weiterführende Forschungsaktivitäten

Die im Vorkapitel zusammengefassten Schlussfolgerungen aus dem Projekt THERMTEC führen zu nachfolgend angeführten Forschungsansätzen für zukünftige weiterführende Studien:

5.3.1 Geothermische Untersuchungen

Zukünftige Forschungsansätze, die auf den Ergebnissen von THERMTEC beruhen, umfassen die Bereiche Verdichtung der geothermischen Basisdaten (terrestrische Wärmestromdichte),

Erweiterung der geothermischen Modellierung sowie die Betrachtung signifikanter Thermalwasserkonvektionssysteme.

Verdichtung der geothermischen Basisdaten

Der im Rahmen von THERMTEC angewendete Ansatz zur Ermittlung der terrestrischen Wärmestromdichte auf Grundlage von untertägigen Messkampagnen fokussierte auf Bergbaue und Verkehrstunnel. Diese Arbeiten werden an der Geologischen Bundesanstalt im Rahmen einer "geothermischen Landesaufnahme" fortgesetzt. Neben der Beobachtung der Luft- und Felstemperaturen in Bergbaugebäuden und Tunnels soll die Methode der Langzeitmessungen zukünftig auch in Triebwasserstollen angewendet werden. Der zu Grunde liegende Ansatz sieht vor, dass die Veränderung der Lufttemperatur im Zuge von Revisionsphasen in aktiv genutzten Stollen angewendet wird. Hierdurch soll der thermische Ausgleichsprozess zwischen den gefluteten Stollen und der anschließenden Regeneration mittels terrestrischen Wärmefluss aufgezeichnet und im Rahmen von Modellrechnungen somit auf die ungestörte Gebirgstemperatur geschlossen werden.

Neben zusätzlichen Messkampagnen stehen auch thermische Daten aus Trassen Erkundungsbohrungen von Verkehrstunnels zur Verfügung, die im Rahmen von THERMTEC nicht ausgewertet werden konnten. Dies betrifft vor Allem den Semmering Basistunnel. Hierdurch würde eine weitere Verdichtung der Datenlage, vor Allem am östlichen Rand der Alpen erzielt werden.

Erweiterung der geothermischen Modellrechnungen

Die im Rahmen von THERMTEC durchgeführten Modellrechnungen basierten auf einem dreidimensionalen Finite Elemente (FE-) Modell, welches eine unveränderliche Lage der tektonischen Einheiten zu Grunde gelegt worden ist (Hebung = Erosion). Dieser Ansatz ist für die Phasen mit verstärkter Exhumierung (älter als 5 Mio. Jahre) stark vereinfachend. Durch die Anwendung von FE-Modellen mit veränderlichen Netzen könnte diesem Aspekt Rechnung getragen werden. Aufgrund des enormen rechnerischen Aufwands könnten in einem ersten Schritt vertikale zwei-dimensionale Schnitte durch das Tauernfenster gelegt werden, um die thermische Entwicklungsgeschichte der letzten 25 bis 50 Mio. Jahre zu modellieren.

Eine weitere vereinfachende Annahme der thermischen Modellrechnung bestand in den Modellen der thermischen Gesteinseigenschaften, die als temperatur- und druckunabhängig betrachtet worden sind. Geeignete Modelle der thermischen Gesteinseigenschaften könnten durch Sensitivitäts- und Parameterstudien sowie durch Korrelation mit den Ergebnissen tiefenseismischer Untersuchungen erzielt werden (siehe hierzu auch Kapitel 5.3.3). Mittels Inversionsrechnung könnten verschiedene Gesteinsmodelle, die den gesamten Abschnitt der Lithosphäre umfassen, entsprechend den Rahmenbedingungen in den Ostalpen optimiert werden. Hierbei stellen die ermittelten rezenten Wärmestromdichten die Stützstellen der Inversion dar. Kritische Nebenbedingungen dieser Modellrechnungen stellen die aus tiefenseismischen Untersuchungen gewonnen drei-dimensionalen Modelle der Gesteinsparameter Dichte und seismische Wellengeschwindigkeit dar.

Dieser Ansatz könnte in weiterer Folge auch für die Ermittlung rezenter Wärmestromdichten in Gebieten ohne Stützstellen mittels probabilistischen Methoden (z.B. Monte Carlo Simulation) erweitert werden. Als weiteres Ergebnis dieser Modellrechnungen würden auch Temperaturverteilungskarten entlang der Asthenosphäre im Bereich der Ostalpen ermittelt werden können.

Thermische Detailmodelle in Gebieten mit signifikanten Thermalwasservorkommen

Die im Rahmen von THERMTEC durchgeführten geothermischen Modellrechnungen mussten aufgrund des geografischen Betrachungsmaßstabs thermische Konvektion infolge von Tiefenwasserzirkulation vernachlässigen. Die durchgeführten Datenerhebungen ergaben jedoch, dass im Bereich des Tauernfensters Gebiete mit einer signifikanten Beeinflussung durch zirkulierendes Thermalwasser existieren. Das signifikanteste Gebiet stellt hierbei Badgastein dar. In vielen dieser Gebiete sind die Mechanismen dieser Zirkulationssysteme noch nicht ausreichend geklärt. Im Rahmen fortführenden Studien könnten Detailmodelle unter Berücksichtigung der thermischen Konvektion erstellt werden. Als Stützstellen der damit verbundenen Modellrechnungen können neben Temperaturdaten auch hydrochemische Daten (z.B. Geothermometer) fungieren. Derartige Vorhaben könnten sich zum Ziel setzen die Mechanismen und Wirkungstiefen der wichtigsten Thermalwasservorkommen im zentralalpinen Raum zu beschreiben.

5.3.2 Geochronologische Untersuchungen

Wie in Kapitel 3.2 anhand der Abbildungen 27 bis 29 zu sehen ist der Bereich des Tauernfensters gut mit Hochtemperatur Geothermometern (Fission Track) Daten abgedeckt. Niedertemperatur Geothermometer (U,Th/He) liegen bislang nur für den östlichen Bereich des Tauernfensters vor. Gerade für die Abbildung der geothermischen Verhältnisse im Zeitraum der letzten 5 bis 10 Mio. Jahre ist eine Verdichtung von Niedertemperatur Geothermometern für die zentralen und westlichen Bereiche des Tauernfensters von großer Bedeutung.

5.3.3 Petropyhsikalische Untersuchungen

Im Rahmen von Thermtec wurden bereits über 150 Gesteinsproben aus dem inneralpinen Raum erhoben und petrophysikalisch untersucht. Dier erzielten Ergebnisse zeigen ein sehr heterogenes Bild der lithotektonisch klassifizierten Gesteinsproben hinsichtlich ihrer thermischen Eigenschaften. Als eine mögliche Ursache hierfür kann die bislang benötigte Größe der petrophysikalisch untersuchten Proben angenommen werden. Aufgrund des benötigten Mindestvolumens von ca. 1dm³ wurden oftmals heterogene Proben untersucht, die einzelne Ausfällungslagen (z.B. Quarzit) beinhalteten. Die Mittelung der Einzelproben zu lithotektonischen Großklassen ist somit mit einer teilweise signifikanten Unsicherheit behaftet. Durch Verbesserung der petrophysikalischen Messapparatur zur Bestimmung der Wärmeleitfähigkeit, zum Beispiel durch Anwendung optischer Methoden könnten zukünftig kleiner Probenvolumina, die homogener sind, untersucht werden. Eine Fortsetzung der Untersuchung von Gesteinsproben aus dem inneralpinen Raum ist im Rahmen der geothermischen Landesaufnahme an der Geologischen Bundesanstalt vorgesehen.

Neben der Fortsetzung der petrophysikalischen Untersuchungen könnten im Rahmen zukünftiger Untersuchungen auch Modelle zur Korrelation thermischer Gesteinsparameter mit Parametern aus seismischen Tiefenuntersuchungen für den Ostalpenraum aufgebaut werden.

Die petrophysikalischen Parameter radiogene Wärmeproduktion, P-Wellengeschwindigkeit und Dichte sind aufgrund der mineralogischen Zusammensetzung von kristallinen Gesteinen korrelierbar. Die Beziehung dieser Parameter zueinander wurde in einigen Studien (BUN-TEBARTH, 1982; RYBACH & BUNTEBARTH, 1982; RYBACH & BUNTEBARTH, 1984) diskutiert. In nachfolgender Abbildung sind die Zusammenhänge der petrophysikalischen Eigenschaften dargestellt.

Abbildung 86: Zusammenhang zwischen radiogener Wärmeproduktion und P-Wellengeschwindigkeit (links) und radiogener Wärmeproduktion und Dichte (rechts). Entnommen aus RYBACH & BUNTEBARTH (1982).

Die Wechselbeziehung kann in Form einer Matrixgleichung mathematisch ausgedrückt werden, wobei die Bestimmung der Subdeterminante in folgender Beziehungen (RYBACH & BUN-TEBARTH, 1982) resultiert:

$\ln A = 22, 5 - 8, 15 ho$		5.1
$\ln A = 16, 5 - 2, 74 v_p$	fü r 50 MPa	5.2
$\ln A = 13, 7 - 2, 17 v_p$	fü r 100 MPa	5.3
$\ln A = 12, 4 - 1, 93 v_p$	für 200 MPa	5.4

wobei (5.1) - (5.4) nur für Phanerozoische Gesteine gelten. Für Präkambrische Gesteine ist der Zusammenhang zwischen den petrophysikalischen Parametern ebenfalls bestimmt worden (siehe RYBACH & BUNTEBARTH, 1982).

Aus dem ALPASS Projekt werden von Prof. Brückl (TU Wien) die Geschwindigkeitstiefenprofile zur Verfügung gestellt. Diese Profile werden mit den P-Wellengeschwindigkeiten aus den 155

Laboruntersuchungen verglichen, wobei die Labordaten zuerst auf Druck und Temperatur korrigiert werden müssen (ČERMÁK ET AL., 1991; VERDOYA ET AL., 1998). Mit Hilfe obiger Zusammenhänge und der Profile kann die radiogene Wärmeproduktion ermittelt werden.

Im Falle des Tauernfensters wird in einer ersten Annäherung ein sehr einfaches Modell für die radiogene Wärmeverteilung angewendet. In großen Tiefen (> 20 km) wird nicht mehr mit signifikanten lithologischen Veränderungen gerechnet, sodass konstante, niedrige Werte für die radiogene Wärmeproduktion angenommen werden können. Die Validierung dieses Modells erfolgt je nach Datengrundlage mittels terrestrischen Wärmestroms, Dichteverteilung und/oder P-Wellengeschwindigkeit. Infolgedessen wird erkennbar, ob für das Tauernfenster ein komplexeres Modell erforderlich ist. Bei unzureichender Datenquantität ist jedoch eine detailliertere Betrachtung nicht möglich. Eine stark generalisierte Annahme des tatsächlichen radiogenen Wärmeproduktion–Tiefenprofils muss getroffen werden.

Ein weiterer Forschungsaspekt stellt die Bestimmung der Temperaturabhängigkeit der thermischen Gesteinsparameter Wärmeleitfähigkeit und spezifische Wärmekapazität auf Grundlage von Messreihen zu unterschiedlichen Druck- und Temperaturbedingungen (p-T) dar. Sämtliche in der Literatur verfügbaren Korrekturformeln basieren auf empirischen Beobachtungen in unterschiedlichen geologischen Regionen. Leider besitzt der Kooperationspartner MU Leoben bislang keine geeignete Messapparatur zur Erfassung von Datenreihen bei unterschiedlichen p-T Bedingungen. In zukünftigen Forschungsvorhaben wäre deshalb eine Kooperation mit internationalen Instituten, die derartige Messvorrichtungen besitzen (z.B. GFZ Potsdam) zielführend. Die Berücksichtigung der Temperaturabhängigkeit der zuvor genannten Parameter würde zu einer Verbesserung der Modellrechnung führen.

Abschließend ist auch zu erwähnen, dass für ein vertieftes Verständnis des geothermischen Regimes in den Ostalpen neben dem Bereich des Tauernfensters auch andere orogenetisch aktive Areale (z.B. das Rechnitz Fenster) untersucht werden sollten. Ebenso sollte die ursprünglich im Rahmen von THERMTEC vorgesehene modellrechnerische Abbildung des thermischen Einflusses von Subsidenz mit gleichzeitiger Ablagerung "kalter" Sedimente in weiterführenden Untersuchungen behandelt werden. Hierbei wäre jedoch nicht das südliche Wiener Becken, sondern die Depozentren des zentralen und nördlichen Wiener Beckens von Bedeutung. Eine wesentliche Voraussetzung für aussagekräftige Modellrechnungen stellt jedoch eine deutliche Verdichtung der Datenlage hinsichtlich der thermischen Gesteinseigenschaften der Beckensedimente im Wiener Becken sowie verbesserte Modelle der Tiefenabhängigkeit des Porenraums dar.

Literaturverzeichnis

BEHRMANN, J.H. & FRISCH, W., 1990

Sinistral Ductile Shearing Associated with Metamorphic Decompression in the Tauern Window, Eastern Alps:.- Jb. Geol. B.-A. Wien, 133/2, p. 135-146.

BODRI L. & ČERMÁK V., 1993

Heat production in the continental lithosphere, part II: variational approach, Tectonophysics, 225, p. 29-34.

BULLARD, E.C., 1938

The disturbance of the temperature gradient in the earth's crust by inequalities of height. Geophysical Journal International (former: Geophysical Supplement to Monthly Notices of the Royal Astronomical Society), Vol. 4, p. 360–362.

BUNTEBARTH G., 1980,

Geothermie – Eine Einführung in die allgemeine und angewandte Wärmelehre des Erdkörpers, Springer-Verlag, Berlin-Heidelberg-New York.

ČERMÁK V., 1989,

Crustal heat production and mantle heat flow in Central and Eastern Europe, Tectonophysics, 159, p. 195-215.

CERNAK V. & HURTIG E., 1979,

Heat Flow Map of Europe; Enclosure for Terrestrial Heat Flow in Europe; Ed. By Vernak V. & Rybach L., Springer Verlag Berlin Heidelberg.

ČERMÁK V., BODRI L. & RYBACH L., 1991

Radioactive Heat Production in the Continental Crust and Its Depth Dependence. In: ČERMÁK V. & RYBACH L., Terrestrial Heat Flow and the Lithosphere Structure, p. 23-69, Springer-Verlag.

CLAUSER C. & HUENGES E., 1995

Thermal conductivity of rocks and minerals. In: AGU Reference Shelf 3 Rock Physics and Phase Relations. A Handbook of Physical Constants, p. 105-125.

CLAUSER, C., LAMMERER, B., 2003

Das thermische Regime der Ostalpen aus Inversionsanalysen entlang eines Nord-Süd Krustenprofils; Abschlussbericht, DFG Projekt-Nr. CL 121/10-(1-2), Angewandte Geophysik, RWTH-Aachen.

CLARK, S. P., 1961

Heat Flow in the Austrian Alps; Geophysical Journal of the Royal Astronomical Society; Volume 6, Issue 1, pages 54–63, December 1961.

COYLE, D. A., 1994

The application of apatite fission track analysis to problems in tectonic. - La Trobe Univesity, Budoora, Victoria 3083, Australia, unpubl. Ph.D.

DUNKL, I., FRISCH, W., GRUNDMANN, G., 2003

Zircon fission track thermochronology of the southeastern part of the Tauern Window and the adjacent Austroalpine margin, Eastern Alps. – Eclogae geol. Helv. 96, S. 209 – 217, Basel.

HAHN A., HAENEL R., 1974

Bericht - Temperaturmessung Tauern-Bohrung; unveröff. Bericht, Niedersächsisches Landesamt für Bodenforschung, Hannover.

FOEKEN J.P.T., PERSANO C., STUART F.M., TER VOORDE M. ,2007

Role of topography in isotherm perturbation: Apatite (U-Th)/He and fission track results from the Malta tunnel, Tauern Window, Austria. - Tectonics, Vol. 26, 2007.

FRASL, G. & FRANK, W., 1966

Einführung in die Geologie und Petrographie des Penninikums im Tauernfenster (mit besonderer Berücksichtigung des Mittelabschnittes im Oberpinzgau, Land Salzburg).-Der Aufschluß, Heidelberg, Sonderheft 15, p. 30-58.

FRISCH, W., 1974

Die stratigraphisch-tektonische Gliederung der Schieferhülle und die Entwicklung des penninischen Raumes im westlichen Tauernfenster (Gebiet Brenner - Gerlospaß).-Mitt. österr. geol. Ges., 66-67, p. 9-20.

FRISCH, W., VAVRA, G., WINKLER, M., 1993

Evolution of the Penninic Basement of the Eastern Alps.-in J. F. Raumer & F. Neubauer: Pre-Mesozoic Geology in the Alps, Springer Berlin Heidelberg.

FRISCH, W., 1975

Ein Typ-Profil durch die Schieferhülle des Tauernfensters: Das Profil am Wolfendorn (westlicher Tuxer Hauptkamm, Tirol).- Verh. Geol. B.-A. Wien, 2-3, p. 201-221.

FRISCH, W., 1976

Ein Modell zur alpidischen Evolution und Orogenese des Tauernfensters.- Geol. Rundsch., 65, p. 375-393.

FÜGENSCHUH, B., 1995

Thermal and kinematik history of the Brenner area. - ETH Zürich, Swiss, unpubl. Ph.D., 225pp.

FÜGENSCHUH B., 2000

Cretaceous to Neogene cooling and exhumation history of the Oetztal-Stubai basement complex, eastern Alps: A structural and fission track study; Tectonics, vol. 19, No. 5, pp. 905 – 918, John Wiley & Sons.

GÖTZL G., 2007

Geothermie in Österreich, aus Geo-Atlas Österreich – Die Vielfalt des geologischen Untergrundes, T. Hofmann & H.P. Schönlaub (Hrsg.), Böhlau Verlag Wien.

GÖTZL G., OSTERMANN V., KALASEK R., HEIMRATH R., STECKLER P., ZOTTL A., NOVAK A., HAINDLMAIER G., HACKL R., SHADLAU S., REITNER H., 2010

GEO-Pot: Seichtes Geothermie Potenzial Österreichs. Überregionale, interdisziplinäre Potenzialstudie zur Erhebung und Darstellung des oberflächennahen geothermischen Anwendungspotenzials auf Grundlage eines regelmäßigen Bearbeitungsrasters, Österreichische Wasser- und Abfallwirtschaft, Bd. 60, S. 120 -129, Springer Verlag.

GRUNDMANN, G. & MORTEANI, G., 1985

The young uplift and thermal history of the central Eastern Alps (Austria/Italy), evidence from apatite fission track ages. - Jb. Geol. Bundesanst. 128: 197-216.

```
HAENEL, R., 1976
```

Die Bedeutung der terrestrischen Wärmestromdichte für die Geodynamik, Geologische Rundschau, Band 65, S. 797 – 809, Ferdinand Enke Verlag Stuttgart.

HAENEL R., ZOTH G., 1973

Heat Flow Measurements in Austria and Heat Flow Maps of Central Europe, Zeitschrift für Geophysik, Bd. 39, S. 367 – 380.

HAENEL R., ZOTH G., 1975

Bericht über geothermische Messungen in den Bohrungen Mittersill (Österreich); unveröff. Bericht Niedersächsisches Landesamt für Bodenforschung, Hannover.

HAHN A., HAENEL R., 1974

Bericht - Temperaturmessung Tauern-Bohrung; unveröff. Bericht, Niedersächsisches Landesamt für Bodenforschung, Hannover.

HÄUSLER H. ET AL., 1995

Geologische Karte der Republik Österreich 1:50000, Blatt 156 Muhr; mit Erläuterungen, Geologische Bundesanstalt Wien.

HOFMEISTER A.M., 1999

Mantle values of thermal conductivity and the geothem from phonon lifetimes, Science, 283, p. 1699-1706.

HÖCK, V., KOLLER, F., & SEEMANN, R., 1994

Geologischer Werdegang der Hohen Tauern vom Ozean zum Hochgebirge.- in Mineral und Erz in den Hohen Tauern.-Naturhistorisches Museum, Wien.

HURTER S., HAENEL R., 2002

Atlas of Geothermal Resources in Europe, Office for Official Publications of the European Communities, Luxemburg.

JAUPART C., MANN J.R., SIMMONS G., 1982

A detailed study of the distribution of the heat flow and radioactivity in New Hampshire (U.S.A.), Earth Planet. Sci. Lett., 59, p. 267-287.

JEFFREYS, H., 1938

The disturbance of the temperature gradient in the earth's crust by inequalities of height. Geophysical Journal International (former: *Geophysical Supplement to Monthly Notices of the Royal Astronomical Society*), Vol. 4, p. 309–312.

KAPPELMEYER O. & HAENEL R, 1974

Geothermics with special reference to application, Borntraeger, Berlin.

KUTASOV I.M., 1999

Applied geothermics for petroleum engineers, Development in Petroleum Science Vol. 48, Elsevier.

LACHENBRUCH A.H., 1968

Preliminary geothermal model of the Sierra Nevada, J. Geophys. Res., 73, p. 6977-6989.

LAMMERER, B., FRUTH, I., KLEMM, D.D., PROSSER, E. & WEBER-DIEFENBACH, K., 1976

Geologische und geochemische Untersuchungen in den westlichen Zillertaler Alpen.-Geol. Rundsch., 65/2, p.436-456.

LAMMERER, B., 1986

Das Autochthon im westlichen Tauernfenster.- Jb. Geol. B.-A. Wien, 129, p. 51-67.

LEDOUX, H., 1982

Die Geologie des inneren Tuxertales (Tirol, Österreich).- unveröff. Diss. Univ. Münster, pp. 224.

MILLER, CH., SATIR, M., FRANK. W., 1980

High-pressure metamorphism in the Tauern window.- Mitt. Österr. Geol. Ges., 71/72, 89-97, Wien.

Most, P., 2003

Late Alpine cooling histories of tectonic blocks along the central part of the Transalp-Traverse (Inntal_Gadertal): constraints from geochronology). – Dissertation, Geowiss. Fak. Eberhardt-Karls-Univers., Tübingen.

POWELL, W.G., CHAPMAN, D.S., BALLING, N., BECK, A.E., 1988

Continental Heat-Flow Density, pp. 167-222; In: HAENEL, R., RYBACH, L., STEGENA, L. (eds.): Handbook of terrestrial heat-flow density determination, Kluwer Academic Publishers, Dordrecht, 486 p.

Rellstab, W., 1981

Der Einfluss des Paläoklimas auf das Temperaturfeld in der Schweiz, Institut für Geophysik ETH Zürich, Archive Nr. 90, 63 p.

Rellstab, W., 1982

Der Einfluss des Paläoklimas auf das Temperaturfeld in der Schweiz, Institut für Geophysik ETH Zürich, Revised Version.

ROY F.E., DECKER E.R., BLACKWELL D.D. & BIRCH F., 1968

Heat generation of plutonic rocks and continental heat flow provinces. IN: WINDLEY B.F. & NAQVI S.M., Archean Geochemistry, p. 25-27, Elsevier.

SACHSENHOFER R., 2001

Syn- and post-collisional heat flow in the Cenozoic Eastern Alps, Earth Sciences vol. 90, p. 579-592.

SASS J.H. & LACHENBRUCH A.H., 1979

Thermal regime of the Australian continental crust. IN: MCELHINNY M.W., The Earth: Its Origin, Structure and Evolution, p. 301-3051, Academic Press, London.

SASS J.H., LACHENBRUCH A.H. & MOSES T.H., 1992

Heat flow from a scientific research well at Cajon Pass, California, J. Geophys. Res. Vol. 97, pp. 5017 – 5030.

SCHMID S.M., SCHARF A., HANDY M.R. & ROSENBERG C.L., 2013

The Tauern Window (Eastern Alps, Austria): A new tectonic map, with corss-sections and a trectonomoetamorphic synthesis; Swiss J. Sci., vol. 106, pp. 1 - 32; DOI: 10.1007/s00015-013-0123-y.

STAUFENBERG H., 1987

Apatite fission track evidence for post metamorphic uplift and cooling history for the eastern Tauern Window and surrounding Austroalpine (central eastern alps, Austria). - Jb. Geol. B.-A., Band 130, Heft 4, S.571-586, Wien.

STEENKEN ET AL., 2002

Cooling and exhumation of the Rieserferner Pluton (Eastern Alps, Italy/Austria). - Geol. Rundschau 91, S. 799-817.

```
THIELE, O., 1976
```

Der Nordrand des Tauernfensters zwischen Mayrhofen und Inner Schmirn (Tirol).-Geol. Rundsch., 65/2, p. 410-421.

THIELE, O., 1980,

Das Tauernfenster. - In: Oberhauser, R. (Ed): Der geologische Aufbau Österreichs.-Springer Verlag, Berlin-Heidelberg-New York, p. 300-314.

TOLLMANN, A., 1962

Der Baustil der tieferen tektonischen Einheiten der Ostalpen im Tauernfenster und in seinem Rahmen.-Geol. Rundschau, 52, 226 – 237, Stuttgart.

VAN HUSEN, D., 1987

Die Ostalpen und ihr Vorland in der letzten Eiszeit (Würm), Geologische Karte als Beilage zur Broschüre "Die Ostalpen in den Eiszeiten", Geologische Bundesanstalt Wien.

VAN DEN BERG A.P., RAINEY E.S.G., YUEN D.A., 2005

The combined influences of variable thermal conductivity, temperature- and pressuredependent viscosity and core-mantle coupling on thermal evolution, Physics of the Earth and Planetary Interiors, 149, p. 259-278.

VILLINGER H.W., LANGSETH M.G., GRÖSCHEL-BECKER H.M. & FISHER A.T., 1994

Estimating in-situ thermal conductivity from log data, Proceedings of the Ocean Drilling Program, Scientific Results, 139, p.545-552.

VOSTEEN H.D., 2003,

The thermal regime of the Eastern Alps along the TRANSALP profile, Dissertation, Rheinisch-Westfälischen Technischen Hochschule Aachen.

VOSTEEN, H.D, VOLKER, R., CLAUSER, C., LAMMERER, B., 2006

A review of the thermal regime of the Eastern Alps with respect to the effects of paleoclimate and exhumation. Tectonophysics 414, 157–167

Beilagenverzeichnis

Beilage 1	Messergebnisse Petrophysik
Beilage 2	Terrestrische Wärmestromdichte

THERMTEC

Thermisch – tektonische Modellierung orogenetischer Prozesse in den Ostalpen am Beispiel von Modellregionen - Tauernfenster (Brenner, Lungau / Pongau) und Mur- Mürzfurche / südliches Wiener Becken

Beilage 1

Messergebnisse Petrophysik

Enthält:

Tabelle 1	Übersicht der erhobenen Gesteinsproben
Tabelle 2	Übersicht der durchgeführten Untersuchungen
Tabelle 3	Ergebnisliste Wärmeleitfähigkeit
Tabelle 4	Ergebnisliste radiogene Wärmeproduktionsrate
Tabelle 5	Ergebnislisten spezifische Wärmekapazität, Dichte, Porosität und seismische Wellengeschwindigkeit $(v_{\mbox{\scriptsize p}})$

	ÜBERSICHT GESTEINSPROBEN											
FID	Bezeichnung	Datum Probenahme	Dünnschliff- Nummer	Aufschluss	Rechts- wert ¹	Hoch- wert ¹	Gesteinsart It. Probenehmer	Stratigrafische Zuordnung	Anmerkung	Seite Nr. Anhang A		
1	N 47/1, N47 / 2*, N47/3	2008-01-31	85-12, 86- 12, 87-12	Tauerntunnel, Vortrieb Röhre 2	456856	231771	Anhydrit mit phyllitischen Verunreinigungen	Penninnikum i. A.	2 Proben, Koordianten aus Amap	2		
2	N50/1*	2008-03-02	88-12		456869	231693	Grauphyllit	Penninnikum i. A.	Lage aus Plan geschätzt	5		
3	2RTT-N- 1979,1-052	2008-04-25	17-11	Tauerntunnel, Vortrieb Röhre 2	456882	231594	Grünphyllit	Penninnikum i. A.	Lage aus Plan geschätzt	7		
4	2RTT-N- 2090,5-053	2008-05-09	16-11	Tauerntunnel, Vortrieb Röhre 2	456902	231485	Schwarzphyllit	Penninnikum i. A.	Lage aus Plan geschätzt	9		
5	SB - N, SB 1*	2008-03-26		Tauerntunnel, Vortrieb Röhre 2			Ankermörtel	Penninnikum i. A.	Probe des Ankermörtel für Datenkorrektur	11		
6	S38/1*	2007-04-16	89-12	Tauerntunnel, Vortrieb Röhre 2	457408	228062	Schwarzphyllit/ Quarzit	Penninnikum i. A.	2 Proben vom selben Kartierungsstück; Lage aus Plan geschätzt	12		
7	S63*	2007-10-22	90-12	Tauerntunnel, Vortrieb Röhre 2	457254	229112	Anhydrit in Grünphyllit	Penninnikum i. A.	Lage aus Plan geschätzt	14		
8	S68*	2008-01-27	91-12	Tauerntunnel, Vortrieb Röhre 2	457200	229480	Anhydrit	Penninnikum i. A.	Probe sehr klein, 2 Stück; Lage aus Plan geschätzt	16		
9	S69; S69/N*	2008-01-28	92-12	Tauerntunnel, Vortrieb Röhre 2	457181	229525	talkiger Grünphyllit mit Anhydrit	Penninnikum i. A.	2 Proben, 1 Probe nur fragmentarisch vorhanden	18		
10	DOL*	2008-02-12	93-12, 94-12	Tauerntunnel, Vortrieb Röhre 2	457158	229763	Dolomitmarmor	Penninnikum i. A.	2 Proben, 1 Probe nur fragmentarisch vorhanden Lage aus Plan geschätzt	20		
11	2RTT-S- 3077,1-071	2008-04-03	13-11	Tauerntunnel, Vortrieb Röhre 2	457138	229883	Grau-/ Schwarz- phyllit	Penninnikum i. A.	Lage aus Plan geschätzt	22		
12	2RTT-S- 3266,5-074	n.b.		Tauerntunnel, Vortrieb Röhre 2	457093	230176	Schwarzphyllit	Penninnikum i. A.	Lage aus Plan geschätzt; Probe nicht für Petrophysikalische Untersuchungen geeignet	24		
13	EQ4-40,5	2007-10-09		Tauerntunnel, Vortrieb Röhre 2	456761	232564	Anhydrit	Penninnikum i. A.	Lage aus Plan geschätzt	26		
14	GQ4-43,1	2008-04-09	12-11	Tauerntunnel, Vortrieb Röhre 2	456761	232564	Chlorit-Quarzphyllit/ Buntphyllit	Penninnikum i. A.	Lage aus Plan geschätzt	27		
15	HM-G1*	2008-03-26		KW Hintermuhr	461204	218185	Granitgneis grobkörnig	Penninnikum i. A.		29		
16	нм-G2* HM-F1;	2008-03-26	95-12	KW Hintermuhr	461204	218185			Probenahme erfolgte auf	30		
17 18	HMF1/N* HM-F2, HME2/N*	2008-03-26	96-12 97-12	KW Hintermuhr KW Hintermuhr	461204 461204	218185 218185	Granitgneis feinkörnig Granitgneis feinkörnig	Penninnikum i. A. Penninnikum i. A.	Eingang; das Gestein stammt aus der Kaverne oder dem	34		
19	HM-I 1*	2008-03-26	98-12	KW Hintermuhr	461204	218185	Granitoneis	Penninnikum i A	Lotschacht	36		
	570+	0000 00 00	00 12	Kabelstollen	101201	040040				38		
20	570*	2008-03-26		Hintermuhr	461806	218843	Granitoid	Storzserie	Lage aus Plan geschatzt	20		
21	2595*	2009-04-09	14-11, 99-12	Hintermuhr	462907	220527	Grünschiefer	System	Lage aus Plan geschätzt	39		
22	HM-KS ; HM KS/N*	2008-03-26		Kabelstollen Hintermuhr	461853	218916	Granitoid	Storzserie	Lage aus Plan geschätzt	41		
23	2567*	2009-04-09	15-11, 100-	Kabelstollen	462891	220519	Schwarzschiefer	Glocknerdecken	Lage aus Plan geschätzt	42		
24	3111. kogo1*	2009-04-09	12	Kabelstollen	463372	221240	Grünschiefer/	Glocknerdecken	Lage aus Plan geschätzt	44		
24	5444, KSYS I	2009-04-09		Hintermuhr	403372	221249	Glimmerschiefer	System	Lage aus Fiail geschatzt	45		
25	S37/1	2009-07-01	10-11	EKB S37 - Neumarkt	532770	211970	Biotitgneis	Paläozoikum, Gurktaler Decke	EKB 07/08: 70.0 - 70.3 m	43		
26	S37/2	2009-07-01	9-11	EKB S37 - Neumarkt	532770	211970	Migmat. Gneis	Paläozoikum, Gurktaler Decke	EKB 07/08: 80.3 - 80.5 m	47		
27	S37/3	2009-07-01	11-11	EKB S37 - Neumarkt	533138	212619	Migmat. Gneis	Ostalpines Paläozoikum, Gurktaler Decke	EKB 05/08: 56.0 - 56.5 m	49		
28	TM1	2010-10-19		Überlaufstollen KW Tauernmoss	379345	222937	Granitgneis	Subpenninkum, Zentralgneis	Koordinaten vom Stolleneingang! Höhe Stolleneingang 2023m	51		
29	TM2	2010-10-19	509-10	Überlaufstollen KW Tauernmoss	379345	222937	Granitgneis	Subpenninkum, Zentralgneis		52		
30	SB1	2010-10-19		Bergau Mittersill	385934	232142	Amphibolit m. Scheelit	Subpenninkum, Habach Gruppe	Koordinaten vom Stolleneingang	54		
31	SB2	2010-10-19		Bergau Mittersill	385934	232142	Quarz m. Scheelit	Subpenninkum, Habach Gruppe	Höhe Stolleneingang 1025m	55		
32	SB3	2010-10-19	507-10	Bergau Mittersill	385934	232142	Fk. Amphibolit m. Scheelit	Subpenninkum, Habach Gruppe		56		
33	SB4	2010-10-19	506-10	Bergau Mittersill	385934	232142	Fk. Amphibolit m. Scheelit	Subpenninkum,		58		
34	TX1	2010-10-20	502-10	Taxenhach	419122	238989	Phyllit	Habach Gruppe Ostalpin,	Höhe 755m	60		
	0.44	2010 10-20	502 10		40000			Grauwackenzone Penninkum.		62		
35	GA1	2010-10-20	508-10	Gasteiner Tal	430665	238290	Klammkalk	Nordrahmenzone		61		
36	GA2	2010-10-20		Gasteiner Tal	429524	239525		Zentralgneis		04		

37 0	GA3	2010-10-20	504-10	Gasteiner Tal	433867	216627	Prossau Augengneis	Subpenninkum, Zentralgneis	Höhe 1131m	65
38 (GA4	2010-10-20		Gasteiner Tal	431791	215479	Romategneis	Subpenninkum, Zentralgneis	Höhe 1308m	67
39 (GA5	2010-10-20	503-10	Gasteiner Tal	429260	213981	Siglitzgneis	Subpenninkum, Zentralgneis	Höhe 1593m	68
40 0	GA6	2010-10-20	505-10	Gasteiner Tal	431601	215437	Romategneis, pyritreich	Subpenninkum, Zentralgneis	Höhe 1323m	70
41 <i>N</i>	M1_1, M1_1a	2009-09-17	1-11, 2-11	Bergau Mittersill	385934	232142	Fk. Amphibolit m. Scheelit	Subpenninkum, Habach Gruppe	Probennahme Götzl, 2009; Station 1152m	72
42 <i>N</i>	M1_2	2009-09-17	3-11	Bergau Mittersill	385934	232142	Fk. Amphibolit m. Scheelit	Subpenninkum, Habach Gruppe	2 Proben; Station 1152m	75
43 <i>N</i>	M2_1	2009-09-17	4-11	Bergau Mittersill	385934	232142	Fk. Amphibolit m. Scheelit	Subpenninkum, Habach Gruppe	2 Proben Station 1000m	77
44 N	M3_1	2009-09-17	6-11	Bergau Mittersill	385934	232142	Fk. Amphibolit m. Scheelit	Subpenninkum, Habach Gruppe	Station 800m	79
45 <i>N</i>	M3_2	2009-09-17	7-11	Bergau Mittersill	385934	232142	Fk. Amphibolit m. Scheelit	Subpenninkum, Habach Gruppe	2 Proben; 1 Probe sehr Quarzreich Station 800m	81
46 <i>M</i>	М4	2009-09-17	19-11	Bergau Mittersill	385934	232142	Fk. Amphibolit m. Scheelit	Subpenninkum, Habach Gruppe	2 Proben; Station 725m	83
47 N	/E-B01-00	n.b.		Venntal	n.b.	n.b	Granitgneis	Tuxer Kern	n.b.	85
48 F	P1	2012-08-08	P1	Paznauntal (Straße unter Bahn)	162050	219865	Phyllonit. Glimmerschiefer	Landecker Quarzphyllitzone	LtGk50 144: Nr. 66: heller Ph- Gr-Glimmerschiefer; Schieferung 158/76	86
49 F	P2	2012-08-08	P2	Paznauntal (Kappl)	152830	213858	Quarzitischer Gneis	Silvretta Kristallin	Schieferung: 205/60	88
50 F	2 3	2012-08-08	P3	Paznauntal (Kappl)	152830	213858	Amphibolit i.A.	Silvretta Kristallin	Probenblock neben der Straße als Befestigung, nicht anstehender Hangschutt	90
51 F	⊃4	2012-08-08	P4	Paznauntal (Kappl)	152804	213911	Glimmerschiefer	Silvretta Kristallin	oberhalb P2/P3, teils rötlich verwittert, Schieferung 190/85	92
52 F	> 5	2012-08-08	P5	Paznauntal (Kappl)	152804	213911	Glimmerschiefer	Silvretta Kristallin	oberhalb P2/P3, teils rötlich verwittert, Schieferung 190/86	94
53 F	P6	2012-08-08	P6	Paznauntal	153820	215000	Bi-Granit-Augen-Gneis	Silvretta Kristallin	Findling im Wald oberhalb v schmalen Aufschluss a d Straße	96
54 F	P7	2012-08-08	P7	Paznauntal	150102	211154	Knollkopfgneis	Silvretta Kristallin	Steinbruch vor Deponie	98
55 P	⊳8	2012-08-08		Paznauntal (Kappl)	151331	212363	Bi-Flecken-Schiefer	Silvretta Kristallin	Gk50 144: Nr. 74, Aufschluss neben der Straße	100
56 F	> 9	2012-08-08	P9	Paznauntal, Silvretta Str	136028	201511	Amphibolit i.A.	Silvretta Kristallin	Blockwerk neben Bach an der Silvretta Str.	102
57 F	P10	2012-08-08	P10	Paznauntal, Silvretta Str	136028	201511	Granitgneis	Silvretta Kristallin	Blockwerk neben Bach an der Silvretta Str.	103
58 P	P11	2012-08-08	P11	Silvretta Stausee	131980	197690	Para(Bi)-Gneis	Silvretta Kristallin	Block von der östl. Begrenzung des Stausee-Weges neben Parkplatz	105
59 F	P12	2012-08-08	P12	Arlbergpass			Phyllitgneis	Silvretta Kristallin	Aufschluss neben Straße ggü Restaurant 1800m	107
60 F	P13	2012-08-08	P13	Arlbergpass			Orthogneis	Silvretta Kristallin	Blockwerk oberhalb Aufschluss P12	109
61 E	BBT1	n.b.		Bohrung BBT	692214	5199794	Kalk-GlMarmor u. Prasinit	Bündnerschiefer	UTM Koordinaten!	111
62 E	BBT2	n.b.		Bohrung BBT	692214	5199794	Kalk-GlMarmor u. Prasinit	Bündnerschiefer	UTM Koordinaten!	112
63 E	ввтз	n.b.		Bohrung BBT	692214	5199794	Metabasit, Amp, Chl, Ep, Plag	Bündnerschiefer	UTM Koordinaten!	113
64 E	BBT4	n.b.		Bohrung BBT	692214	5199794	Metabasit, Amp, Chl, Ep, Plag	Bündnerschiefer	UTM Koordinaten!	114
65 E	BBT5 BBT6	n.b.		Bohrung BBT	692214 692214	5199794	Marmor und Prasinit	Bündnerschiefer Bündnerschiefer	UTM Koordinaten!	115 116
67 E	BBT6/2	n.b.		Bohrung BBT	692214	5199794	Marmor und Prasinit	Bündnerschiefer	UTM Koordinaten!	117
68 E	BBT7	n.b.		Bohrung BBT	692214	5199794	Anhydrit-Glimmerschiefer m. Chlorit	Bündnerschiefer	UTM Koordinaten!	118
69 E	BBT8	n.b.		Bohrung BBT	692214	5199794	Anhydrit-Glimmerschiefer m. Chlorit	Bündnerschiefer	UTM Koordinaten!	119
70 E	BBT9	n.b.		Bohrung BBT	692214	5199794	Kalkmarmor	Bündnerschiefer	UTM Koordinaten!	120
71 E	BBT11	n.b. n.b.		Bohrung BBT	692214 692214	5199794	Kalkmarmor Quarz-Glimmerschiefer	Bunanerschiefer Bündnerschiefer	UTM Koordinaten!	121
73 E	BBT12	n.b.		Bohrung BBT	692214	5199794	Schiefer m. Anhydrit, Cl u. Gl	Bündnerschiefer	UTM Koordinaten!	123
74 E	BBT13	n.b.		Bohrung BBT	692214	5199794	Schiefer m. Anhydrit, Cl u. Gl	Bündnerschiefer	UTM Koordinaten!	124
75 E	BBT14	n.b.		Bohrung BBT	691715	5198475	phlogopitführende Kalkmarmor	Bündnerschiefer	UTM Koordinaten!	125
76 E	BBT14/2	n.b.		Bohrung BBT	691715	5198475	phlogopitführende Kalkmarmor	Bündnerschiefer	UTM Koordinaten!	126
77 E	BBT15	n.b.		Bohrung BBT	691715	5198475	Kalzitmarmor m. Schieferlagen	Bündnerschiefer	UTM Koordinaten!	127
78 E	BBT16	n.b.		Bohrung BBT	691715	5198475	Marmor	Bündnerschiefer	UTM Koordinaten!	128
79 E	BBT17	n.b.		Bohrung BBT	691715	5198475	Gimmerschiefer m. Q-Chl- Karbonatlagen	Bündnerschiefer	UTM Koordinaten!	129
80 E	BBT18	n.b.		Bohrung BBT	691715	5198475	Karbonatlagen	Bündnerschiefer	UTM Koordinaten!	130
. UI 11		II.V.		DOMUNING DD I	031710	01904/0	Gimmerschlieler	Dununeischlieler	o nivi Nuurinateri!	131

83	BBT21	n.b.		Bohrung BBT	691715	5198475	Glimmerschiefer	Bündnerschiefer	UTM Koordinaten!	133
84	BBT22	n.b.		Bohrung BBT	692820	5201580	Marmor, Kalk- Glimmerschiefer, Talk- Serpentinschiefer	Matreier Zone	UTM Koordinaten!	134
85	BBT22/2	n.b.		Bohrung BBT	692820	5201580	Marmor, Kalk- Glimmerschiefer, Talk- Serpentinschiefer	Matreier Zone	UTM Koordinaten!	135
86	BBT23	n.b.		Bohrung BBT	692820	5201580	Marmor, Kalk- Glimmerschiefer, Talk- Serpentinschiefer	Matreier Zone	UTM Koordinaten!	136
87	BBT24	n.b.		Bohrung BBT	687747	5223545	Kalkphyllit	Matreier Zone	UTM Koordinaten!	137
88	BB125	n.b.		Bohrung BBT	68/747	5223545	Karbonatquarzitschiefer	Matreier Zone	UTM Koordinaten!	138
09	DD120/2 DDT26	n.b.		Bohrung BBT	697747	5223545	Devilit	Matreier Zone		139
90	BBT20 BBT27	n.b.		Bohrung BBT	687747	5223545	Ouarzobyllit	Matreier Zone		140
92	BBT27/2	n b		Bohrung BBT	687747	5223545	Quarzphyllit	Matreier Zone	UTM Koordinaten	142
93	BBT27/3	n.b.		Bohrung BBT	687747	5223545	Quarzphyllit	Matreier Zone	UTM Koordinaten!	143
94	BBT28	n.b.		Bohrung BBT	687747	5223545	Quarzphyllit	Matreier Zone	UTM Koordinaten!	144
05					007747	5000545	Mata ana siti Damahama id	lbk-Quarz		145
95 96	BBT29/2	n.b.		Bohrung BBT	687747	5223545	Metaarenit, Porphyroid	phyllitkomplex Ibk-Quarz	UTM Koordinaten!	146
							Kalzit-Ch schiefer	bk-Quarz		147
97	BBT30	n.b.		Bohrung BBT	687747	5223545	u.Chloritphyllit	phyllitkomplex	UTM Koordinaten!	
98	BBT30/2	n.b.		Bohrung BBT	687747	5223545	Kalzit-Ch.schiefer u.Chloritphyllit	lbk-Quarz phyllitkomplex	UTM Koordinaten!	148
99	BBT30/3	n.b.		Bohrung BBT	687747	5223545	Kalzit-Ch.schiefer	Ibk-Quarz	UTM Koordinaten!	149
100	BBT31	nh		Bohrung BRT	687747	5223545	Karbonatphyllit m.	lbk-Quarz	UTM Koordinaten	150
					551171	0220070	Chloritphyllitlagen	phyllitkomplex		151
101	BBT32	n.b.		Bohrung BBT	687747	5223545	u.Chloritphvllit	рк-Quarz	UTM Koordinaten!	151
102	BBT33	n.b.		Bohrung BBT	687747	5223545	Karbonatphyllit m.	Ibk-Quarz	UTM Koordinaten!	152
102	DDT24	- h		Pohrupa DDT	607747	5202545	Karbonatphyllitlagen	bk-Quarz	LITM Kaardin-t	153
103	BB134	n.b.		Bonrung BB I	68/747	5223545	Chloritphyllitlagen	phyllitkomplex	U I M Koordinaten!	154
104	BBT34/2	n.b.		Bohrung BBT	687747	5223545	Chloritphyllitlagen	phyllitkomplex	UTM Koordinaten!	134
105	BBT34/3	n.b.		Bohrung BBT	687747	5223545	Karbonatphyllit m. Chloritphyllitlagen	lbk-Quarz phyllitkomplex	UTM Koordinaten!	155
106	BBT34/4	n.b.		Bohrung BBT	687747	5223545	Karbonatphyllit m. Chloritphyllitlagen	Ibk-Quarz phyllitkomplex	UTM Koordinaten!	156
107	BBT35	n.b.		Bohrung BBT	687747	5223545	Glimmerschiefer	Ibk-Quarz phyllitkomplex	UTM Koordinaten!	157
108	BBT36	n.b.		Bohrung BBT	687747	5223545	Glimmerschiefer	Ibk-Quarz	UTM Koordinaten!	158
109	BBT36/2	n.b.		Bohrung BBT	687747	5223545	Glimmerschiefer	lbk-Quarz	UTM Koordinaten!	159
110	BBT37	n.b.		Bohrung BBT	687747	5223545	Quarzphyllit	lbk-Quarz phyllitkomplex	UTM Koordinaten!	160
111	BBT37/2	n.b.		Bohrung BBT	687747	5223545	Quarzphyllit	lbk-Quarz phyllitkomplex	UTM Koordinaten!	161
112	BBT38	n.b.		Bohrung BBT	687747	5223545	Glimmerschiefer	lbk-Quarz phyllitkomplex	UTM Koordinaten!	162
113	BBT39	n.b.		Bohrung BBT	687747	5223545	Serizitphyllit	lbk-Quarz phyllitkomplex	UTM Koordinaten!	163
114	BBT39/2	n.b.		Bohrung BBT	687747	5223545	Serizitphyllit	lbk-Quarz phyllitkomplex	UTM Koordinaten!	164
115	BBT40	n.b.		Bohrung BBT	687747	5223545	Graphitphyllit	lbk-Quarz phyllitkomplex	UTM Koordinaten!	165
116	BBT40/2	n.b.		Bohrung BBT	687747	5223545	Graphitphyllit	lbk-Quarz phyllitkomplex	UTM Koordinaten!	166
117	BBT41	n.b.		Bohrung BBT	687747	5223545	Graphitphyllit	lbk-Quarz phyllitkomplex	UTM Koordinaten!	167
118	BBT42	n.b.		Bohrung BBT	687747	5223545	Graphitphyllit	lbk-Quarz phyllitkomplex	UTM Koordinaten!	168
119	BBT42/2	n.b.		Bohrung BBT	687747	5223545	Graphitphyllit	lbk-Quarz phyllitkomplex	UTM Koordinaten!	169
120	BBT43	n.b.		Bohrung BBT	688974	5223485	Kalkphyllit	lbk-Quarz phyllitkomplex	UTM Koordinaten!	170
121	BBT43/2	n.b.		Bohrung BBT	688974	5223485	Kalkphyllit	IDK-Quarz phyllitkomplex	UTM Koordinaten!	1/1
122	BBT45	n.b.		Bohrung BBT	688974	5223485	Chloritphyllit m.	Nordrahmenzone	UTM Koordinaten!	172
124	BRT46			Bobrung PPT	688074	5222A0F	Kalkmarmorlagen	Nordrahmenzone		17/
124	BBT47	n.b.		Bohrung BBT	688974	5223485	Metabrekzie	Nordrahmenzone	UTM Koordinaten!	175
126	BBT48	n.b.		Bohruna BBT	688974	5223485	Karbonat-Quarzschiefer	Nordrahmenzone	UTM Koordinaten!	176
127	BBT49	n.b.		Bohrung BBT	688974	5223485	Karbonat-Quarzschiefer	Nordrahmenzone	UTM Koordinaten!	177
128	BBT50	n.b.		Bohrung BBT	688974	5223485	Kalkphyllit m.	Nordrahmenzone	UTM Koordinaten!	178
129	BBT51	n.b.		Bohrung BBT	688974	5223485	Kalkphyllit	Nordrahmenzone	UTM Koordinaten!	179
130	BBT52	n.b.		Bohrung BBT	688974	5223485	Karbonatquarzitschiefer	Nordrahmenzone	UTM Koordinaten!	180
131	BBT53	n.b.		Bohrung BBT	688974	5223485	Quarz-Karbonatschiefer, Meta-Lith-Arenite	Nordrahmenzone	UTM Koordinaten!	181
132	BBT54	n.b.		Bohrung BBT	n.b.	n.b.	Granit	Nordrahmenzone		182
133	88135	n.b.		Bonrung BBT	n.b.	n.b.	Granit	Nordrahmenzone		183
134	BBT56	n.b.		Bohrung BBT	681897	5235527	Quarzphyllit	phyllitkomplex	UTM Koordinaten!	104
135	BBT57	n.b.		Bohrung BBT	681897	5235527	Quarzphyllit	phyllitkomplex	UTM Koordinaten!	100

136	BBT58	n.b.	Bohrung BBT	681784	5235778	Quarzphyllit	lbk-Quarz phyllitkomplex	UTM Koordinaten!	186
137	BBT58/2	n.b.	Bohrung BBT	681784	5235778			UTM Koordinaten!	187
138	BBT59	n.b.	Bohrung BBT	n.b.	n.b.	Biotitschiefer	lbk-Quarz phyllitkomplex		188
139	BBT60	n.b.	Bohrung BBT	691723	5209788	Arkose, Metafeinkonglomerat, Phyllit grünl.	Aigerbach Formation	UTM Koordinaten!	189
140	BBT60/2	n.b.	Bohrung BBT	691723	5209788	Arkose, Metafeinkonglomerat, Phyllit grünl.	Aigerbach Formation	UTM Koordinaten!	190
141	BBT60/3	n.b.	Bohrung BBT	691723	5209788	Arkose, Metafeinkonglomerat, Phyllit grünl.	Aigerbach Formation	UTM Koordinaten!	191
142	BBT61	n.b.	Bohrung BBT	691723	5209788	Chloritphyllit	Permotrias der Glockner Decke	UTM Koordinaten!	192
143	BBT62	n.b.	Bohrung BBT	691723	5209788	Kalkmarmor	Mesozoische Hüllgesteine; Hochstegen- Marmor	UTM Koordinaten!	193
144	BBT62/2	n.b.	Bohrung BBT	691723	5209788	Kalkmarmor	Mesozoische Hüllgesteine; Hochstegen- Marmor	UTM Koordinaten!	194
145	BBT63	n.b.	Bohrung BBT	691723	5209788	Kalkmarmor	Mesozoische Hüllgesteine; Hochstegen- Marmor	UTM Koordinaten!	195
146	BBT63/2	n.b.	Bohrung BBT	691723	5209788	Kalkmarmor	Mesozoische Hüllgesteine; Hochstegen- Marmor	UTM Koordinaten!	196
147	BBT63/3	n.b.	Bohrung BBT	691723	5209788	Kalkmarmor	Mesozoische Hüllgesteine; Hochstegen- Marmor	UTM Koordinaten!	197
148	BBT64	n.b.	Bohrung BBT	691715	5198475	Kalzitmarmor	n.b.	UTM Koordinaten!	198
149	BBT64/2	n.b.	Bohrung BBT	691715	5198475	Kalzitmarmor	n.b.	UTM Koordinaten!	199
150	BBT65	n.b.	Bohrung BBT	691715	5198475	Kalzitmarmor	n.b.	UTM Koordinaten!	200
151	BBT66	n.b.	Bohrung BBT	691715	5198475	Quarz-Glimmerschiefer	n.b.	UTM Koordinaten!	201
152	BBT67	n.b.	Bohrung BBT	691715	5198475	Quarz-Glimmerschiefer	n.b.	UTM Koordinaten!	202
153 154	BBT67/2 BBT68	n.b. n.b.	Bohrung BBT Haldenprobe Ahrental	691715 n.b.	5198475 n.b.	Quarz-Glimmerschiefer Karbonatphyllit	n.b. n.b.	UTM Koordinaten!	203
155	BBT69	n.b.	Haldenprobe Ahrental	n.b.	n.b.	Karbonatphyllit	n.b.		205
156	BBT70	n.b.	Haldenprobe Ahrental	n.b.	n.b.	Phyllit	n.b.		206
157	BBT71	n.b.	Haldenprobe Ahrental	n.b.	n.b.	Phyllit	n.b.		207
158	BBT72	n.b.	Haldenprobe Ahrental	n.b.	n.b.	Phyllit	n.b.		208
159	BBT73	n.b.	Permoskyth aus Wolf	n.b.	n.b.	Kieselschiefer u. Quarzite	Permoskyth aus Wolf		209
160	BBT74	n.b.	Permoskyth aus Wolf	n.b.	n.b.	Kieselschiefer u. Quarzite	Permoskyth aus Wolf		210
161	BBT75	n.b.	Permoskyth aus Wolf	n.b.	n.b.	Kieselschiefer u. Quarzite	Permoskyth aus Wolf		211

Та	bel	le	2
1 4	201	5	-

			KOPFD.	ATEN GEST	EINSUNTE	RSUCHUNG	GEN			
FID	Bezeichnung	Pro	benaufbewah	nrung	Dünr	nschliff	Geoc	hemie	Petro	ohysik
		Montanuni.	Uni Salzburg	GBA	Aufbereitung	Untersuchung	Aufbereitung	Untersuchung	Aufbereitung	Untersuchung
1	N 47/1, N47 / 2*	Leobell		x	x	x	x	x	x	x
2	N50/1*			х	х	х	х	х	х	x
3	2RTT-N-1979,1-052			X	X	X	X	X	X	X
4	2RTT-N-2090,5-053 SB - N_SB 1*			X	X	X	X	X	x	x
6	S38/1*			x	x	x	x	x	x	×
7	S63*			x	х	x	х	x	x	x
8	S68*			х	х	x	х	x	x	x
9 10	S69; S69/N*			X	X	X	X	X	X	X
11	2RTT-S-3077.1-071			x	x	×	x	x	^	^
12	2RTT-S-3266,5-074			X						
13	EQ4-40,5			x						
14	GQ4-43,1			X	X	X	X	X	X	X
16	HM-G2*			x	x	x	x	x	x	x
17	HM-F1; HMF1/N*			X	x	x	x	x	x	x
18	HM-F2, HMF2/N*			x	x	x	х	x	x	x
19	HM-L1*	x	v	X	X	x	X	X	x	x
20	2595*	x	^	-	x	x	x	x	x	x
22	HM-KS ; HM KS/N*			x					X	x
23	2567*			х	х	x	х	x	x	x
24	3444*			X					X	x
25	S37/2			X	X	x	X	x	X	x
27	S37/3			x	x	x	x	x	x	x
28	TM1			х			х		х	0
29	TM2			X	X	x	X	X	x	x
30	SB1 SB2			X			0		0	
32	SB3			x	x	x	x	x	x	x
33	SB4			х	х	x	х	x	x	x
34	TX1			x	x	x	x	x	x	x
35	GA1			X	X	x	x	X	x	x
37	GA2 GA3			x	x	×	x	x	x	x
38	GA4			X						
39	GA5			x	х	x	x	x	x	x
40	GA6 M1 1			X	X	x	X	X	x	x
42	M1_1 M1_2			x	X	x	x	x	0	^
43	M2_1			X	x	x	x	x	x	x
44	M3_1			x	x	x	x	x	x	x
45	M3_2 M4			X	X	x	X	X	0 	
40	VE-B01-00			x	^	^	^	^	×	×
48	P1			X	x	x	x	0	x	x
49	P2			x	x	x	х	0	x	x
50	P3 P4			X	X	×	X	0	×	×
52	P5			X	X	x	x	0	x	×
53	P6			X	x	x	x	0	x	x
54	P7			х	х	x	х	0	x	x
55	P8 Po			X	X	x	X	0	x	x
57	P10			x	x	x	x	0	x	×
58	P11			x	x	x	x	0	x	x
59	P12			X	X	X	X	0	X	x
60	P13 BBT1			X	X	x	x	0	X	X
62	BBT2			X					x	x
63	BBT3			x					x	x
64	BBT4			x					х	x
65	BBT5			X					X	x
67	BBT6/2			X					X	X
68	BBT7			x					x	^
69	BBT8			X					x	x
70	BBT9			X					x	x
71	BBT10 BBT11			X					x	x
73	BBT12			x					x	x
74	BBT13			x					x	x
75	BBT14			х					х	x
76	BB114/2 BBT15			X					X	x
78	BBT16			x					x	x
79	BBT17			<u>x</u>					x	x
80	BBT18			x					x	x
81	BBT19 BBT20			X					X	X
o∠ 83	BBT21			X					X	X Y
84	BBT22			x					x	x
85	BBT22/2			х					X	x
86	BBT23		1	x					x	x

87 88								
88	BBT24		X				X	X
00	BBT25		х				х	х
90	BBT25/2							~
03	DDT20/2	 	^		 		^	^
90	BB126		X				X	X
91	BBT27		х				x	x
92	BBT27/2		Y				Y	Y
02	DDT07/2		*				~	~
93	BB127/3	 	X		 		X	X
94	BBT28		x				x	x
95	BBT29		x				x	x
00	DDT20/2		*				~	~
96	BB129/2	 	X		 		X	X
97	BBT30		x				x	x
98	BBT30/2		x				x	x
00	DDT20/2							
99	BB130/3		X				X	X
100	BBT31		x				x	x
101	BBT32		х				х	х
102	BBT33							~
102	BB133		X				X	X
103	BBT34		X				X	X
104	BBT34/2		x				х	х
105	BBT34/3		Y				Y	Y
100	007044		^				^	^
106	BB134/4		X				X	X
107	BBT35		x				x	x
108	BBT36		Y				Y	Y
100	DDT00/0		*				~	~
109	DD130/2		X			-	X	X
110	BBT37		x				x	x
111	BBT37/2		x				x	x
112	BBT38							
112	22700	 	X		 		X	X
113	BBT39		x				X	X
114	BBT39/2		x				x	x
115	BBT40		v				v	v
110		 	Ă		 		Å	Å
116	BB140/2		x		 		x	x
117	BBT41	I	x	_			x	x
118	BBT42		¥				¥	¥
440		 	~		 		~	^
119	BB142/2		X				X	X
120	BBT43		х				x	x
121	BBT43/2		¥				¥	¥
100	00744		*				~	~
122	BB144	 	X		 		X	X
123	BBT45		x				x	x
124	BBT46		x				x	
105	DDT47		*				~	
125	DD141	 	X		 		X	X
126	BBT48		x				x	x
127	BBT49		х				х	х
120	BBT50							
120	BBT50		X				X	
129	BBT51		x				x	
130	BBT52		х				х	
121	BBT53		v				v	
131	BB103		X				X	
132	BBT54		х				X	x
133	DDTEE							
	DDIJJ		x				x	
134	BBT56		x				X	Y
134	BBT56		x x				x x	x
134 135	BBT55 BBT56 BBT57		x x x				X X X	x x
134 135 136	BBT56 BBT57 BBT58	 	x x x x x				X X X X	x x x
134 135 136 137	BBT56 BBT57 BBT58 BBT58/2		X X X X				X X X X	X X X
134 135 136 137	BB155 BB756 BB757 BB758 BB758/2 PB750		x x x x x x				X X X X X	X X X X
134 135 136 137 138	BBT56 BBT57 BBT58 BBT58/2 BBT59		X X X X X X X				X X X X X X X	x x x x x x
134 135 136 137 138 139	BBT56 BBT57 BBT58 BBT58/2 BBT59 BBT60		x x x x x x x x x x				X X X X X X X X	x x x x x x x x
134 135 136 137 138 139 140	BBT55 BBT55 BBT57 BBT58/2 BBT59 BBT60 BBT60/2		X X X X X X X X				x x x x x x x x x	X X X X X X X X
134 135 136 137 138 139 140	BBT55 BBT56 BBT57 BBT58 BBT58/2 BBT59 BBT60 BBT60/2 BBT60/2		x x x x x x x x x x x				X X X X X X X X	x x x x x x x x
134 135 136 137 138 139 140 141	BBT55 BBT57 BBT58 BBT58/2 BBT59 BBT60 BBT60/2 BBT60/3		x x x x x x x x x x x				X X X X X X X X X X X	X X X X X X X X X X
134 135 136 137 138 139 140 141 142	BBT56 BBT57 BBT58 BBT58/2 BBT59 BBT60 BBT60/2 BBT60/3 BBT61		X X X X X X X X X X X X X				x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143	BBT55 BBT56 BBT57 BBT58/2 BBT59 BBT60/2 BBT60/2 BBT60/3 BBT61 BBT62		x x x x x x x x x x x x x x x x x				x x x x x x x x x x x x x x	x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144	BBT53 BBT56 BBT57 BBT58 BBT58/2 BBT59 BBT60 BBT60/2 BBT60/3 BBT61 BBT62 BBT62 BBT62/2		x x x x x x x x x x x x x x x x x x				X X X X X X X X X X X X X	x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144	BBT56 BBT57 BBT58 BBT582 BBT59 BBT60 BBT60/2 BBT60/2 BBT61 BBT61 BBT62 BBT622 BBT622		X X X X X X X X X X X X X				X X X X X X X X X X X X X X	X X X X X X X X X X X X
134 135 136 137 138 139 140 141 142 143 144 145	BBT53 BBT56 BBT57 BBT58/2 BBT59 BBT60/2 BBT60/2 BBT60/3 BBT61 BBT62 BBT62/2 BBT63		X X X X X X X X X X X X X				x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146	BBT53 BBT56 BBT57 BBT58/2 BBT59 BBT60/2 BBT60/2 BBT60/3 BBT61 BBT62 BBT62 BBT62 BBT63/2		x x x x x x x x x x x x x x x x x x x				x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147	BBT53 BBT56 BBT57 BBT58 BBT58/2 BBT59 BBT60 BBT60/2 BBT60/2 BBT61 BBT62/2 BBT62 BBT63/2 BBT63/2 BBT63/3		x x x x x x x x x x x x x x x x x x x				x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 144 143 144 145 146 147 148	BBT53 BBT56 BBT57 BBT58/2 BBT59 BBT60/2 BBT60/2 BBT60/3 BBT61/2 BBT62/2 BBT62/2 BBT63/3 BBT63/3 BBT63/3 BBT63/3		x x x x x x x x x x x x x x x x x x x				x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149	BBT53 BBT56 BBT57 BBT58/2 BBT59 BBT60/2 BBT60/2 BBT60/3 BBT61/2 BBT62/2 BBT63/2 BBT63/2 BBT63/3 BBT64		x x x x x x x x x x x x x x x x x x x				x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149	BBT53 BBT56 BBT57 BBT58 BBT58/2 BBT59 BBT60 BBT60/2 BBT60/2 BBT61 BBT62 BBT62 BBT62 BBT63/2 BBT63/2 BBT63/2 BBT63/3 BBT64/2		x x x x x x x x x x x x x x x x x x x				x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150	BBT53 BBT56 BBT57 BBT58/2 BBT59 BBT60/2 BBT60/2 BBT60/3 BBT61/2 BBT62/2 BBT63/3 BBT63/3 BBT63/3 BBT63/3 BBT64/2 BBT64/2 BBT65		x x x x x x x x x x x x x x x x x x x				x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151	BBT53 BBT56 BBT57 BBT58 BBT58/2 BBT60/2 BBT60/2 BBT60/3 BBT61/2 BBT62/2 BBT63/2 BBT63/2 BBT63/2 BBT63/2 BBT64/2 BBT65 BBT65 BBT66		x x x x x x x x x x x x x x x x x x x				x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151	BBT53 BBT56 BBT57 BBT58 BBT58/2 BBT59 BBT60 BBT60/2 BBT60/2 BBT61 BBT62 BBT63/2 BBT63/2 BBT63/2 BBT63/2 BBT63/2 BBT64 BBT64/2 BBT65 BBT66 BBT66 BBT66		x x x x x x x x x x x x x x x x x x x				X X X X X X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151	BBT53 BBT56 BBT57 BBT58/2 BBT59 BBT60/2 BBT60/2 BBT60/3 BBT61/2 BBT62/2 BBT63/3 BBT63/3 BBT63/3 BBT63/3 BBT64/2 BBT65 BBT66 BBT65		x x x x x x x x x x x x x x x x x x x				x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153	BBT53 BBT56 BBT57 BBT58 BBT58/2 BBT60/2 BBT60/2 BBT60/3 BBT61/2 BBT62/2 BBT63/2 BBT63/2 BBT63/2 BBT63/2 BBT64/2 BBT65 BBT65 BBT65 BBT66 BBT67/2		x x x x x x x x x x x x x x x x x x x				X X X X X X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154	BBT53 BBT56 BBT57 BBT58 BBT58/2 BBT59 BBT60/2 BBT60/2 BBT60/2 BBT61 BBT62 BBT62 BBT63/2 BBT63/2 BBT63/2 BBT63/2 BBT64 BBT64/2 BBT65 BBT66 BBT67 BBT67/2 BBT68		x x x x x x x x x x x x x x x x x x x				X X X X X X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154	BBT53 BBT56 BBT57 BBT58 BBT58/2 BBT60/2 BBT60/2 BBT60/3 BBT61/2 BBT62/2 BBT63/3 BBT63/3 BBT63/3 BBT63/3 BBT64/2 BBT65/2 BBT65 BBT66 BBT67 BBT67/2 BBT68 BBT68 BBT68		x x x x x x x x x x x x x x x x x x x				X X X X X X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154	BBT55 BBT56 BBT57 BBT58/2 BBT59/2 BBT60/2 BBT60/2 BBT60/2 BBT61/2 BBT62/2 BBT63/2 BBT63/2 BBT63/2 BBT63/3 BBT64 BBT64/2 BBT65 BBT66 BBT66 BBT67 BBT67/2 BBT68 BBT69		x x x x x x x x x x x x x x x x x x x				X X X X X X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156	BBT53 BBT56 BBT57 BBT58 BBT58/2 BBT60/2 BBT60/2 BBT60/3 BBT61 BBT62 BBT62 BBT62 BBT63/2 BBT63/2 BBT63/2 BBT63/2 BBT64/2 BBT64 BBT65 BBT66 BBT66 BBT67/2 BBT68 BBT69 BBT70		x x x x x x x x x x x x x x x x x x x				X X X X X X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157	BBT53 BBT56 BBT57 BBT58 BBT58/2 BBT60/2 BBT60/2 BBT60/3 BBT61/2 BBT62/2 BBT63/3 BBT63/3 BBT63/3 BBT63/3 BBT64 BBT64/2 BBT65 BBT66 BBT67 BBT67 BBT67/2 BBT68 BBT69 BBT70 BBT70 BBT71		x x x x x x x x x x x x x x x x x x x				X X X X X X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158	BBT53 BBT56 BBT57 BBT58 BBT58/2 BBT59 BBT60 BBT60/2 BBT60/2 BBT61 BBT62 BBT62/2 BBT63 BBT63/2 BBT63/2 BBT63/3 BBT64 BBT64/2 BBT65 BBT66 BBT67 BBT66 BBT67 BBT67 BBT67 BBT67 BBT67 BBT68 BBT69 BBT70 BBT71 BBT71 BBT71 BBT72		x x x x x x x x x x x x x x x x x x x				x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x
$\begin{array}{r} 134\\ 135\\ 136\\ 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 155\\ 156\\ 155\\ 156\\ 157\\ 158\\ 156\\ 157\\ 156\\ 157\\ 158\\ 156\\ 157\\ 156\\ 157\\ 158\\ 156\\ 157\\ 158\\ 156\\ 157\\ 158\\ 156\\ 157\\ 158\\ 156\\ 157\\ 158\\ 156\\ 157\\ 158\\ 156\\ 157\\ 156\\ 157\\ 158\\ 156\\ 157\\ 158\\ 156\\ 157\\ 158\\ 156\\ 157\\ 158\\ 156\\ 157\\ 158\\ 156\\ 157\\ 158\\ 156\\ 157\\ 158\\ 156\\ 157\\ 158\\ 156\\ 157\\ 156\\ 157\\ 156\\ 157\\ 156\\ 156\\ 157\\ 156\\ 157\\ 156\\ 157\\ 156\\ 156\\ 157\\ 156\\ 157\\ 156\\ 157\\ 156\\ 157\\ 156\\ 156\\ 157\\ 156\\ 157\\ 156\\ 156\\ 157\\ 156\\ 157\\ 156\\ 157\\ 156\\ 156\\ 157\\ 156\\ 156\\ 157\\ 156\\ 156\\ 157\\ 156\\ 156\\ 157\\ 156\\ 156\\ 157\\ 156\\ 156\\ 157\\ 156\\ 156\\ 157\\ 156\\ 156\\ 156\\ 157\\ 156\\ 156\\ 156\\ 156\\ 156\\ 156\\ 156\\ 156$	BBT53 BBT56 BBT57 BBT58/2 BBT59 BBT60/2 BBT60/2 BBT60/2 BBT61/2 BBT62/2 BBT63/2 BBT63/2 BBT63/2 BBT63/2 BBT64/2 BBT64/2 BBT65 BBT66 BBT66 BBT67/2 BBT68 BBT67/2 BBT68 BBT70 BBT70 BBT72 DBT72		x x x x x x x x x x x x x x x x x x x				x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159	BBT53 BBT56 BBT57 BBT58 BBT58/2 BBT60/2 BBT60/2 BBT60/3 BBT61/2 BBT62/2 BBT63/3 BBT63/3 BBT63/3 BBT63/3 BBT64/2 BBT65/2 BBT65 BBT66 BBT67 BBT67/2 BBT68 BBT69 BBT70 BBT71 BBT72 BBT73		x x x x x x x x x x x x x x x x x x x				X X X X X X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160	BBT53 BBT56 BBT57 BBT58 BBT58/2 BBT59 BBT60 BBT60/2 BBT60/2 BBT62/2 BBT62 BBT63/2 BBT63/2 BBT63/2 BBT64/2 BBT64/2 BBT65 BBT66 BBT67 BBT66 BBT67 BBT67 BBT67 BBT70 BBT71 BBT72 BBT73 BBT74		x x x x x x x x x x x x x x x x x x x				X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 155 157 158 159 160 161	BBT53 BBT56 BBT57 BBT58 BBT58/2 BBT60/2 BBT60/2 BBT60/2 BBT61 BBT62/2 BBT63/2 BBT63/2 BBT63/2 BBT63/2 BBT63/2 BBT64 BBT64 BBT65 BBT66 BBT66 BBT67/2 BBT68 BBT68 BBT69 BBT70 BBT71 BBT72 BBT73 BBT74 BBT75		x x x x x x x x x x x x x x x x x x x				X X X X X X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161	BBT53 BBT56 BBT57 BBT58 BBT58/2 BBT59 BBT60/2 BBT60/2 BBT60/3 BBT61/2 BBT62/2 BBT63/3 BBT63/3 BBT63/3 BBT64 BBT64/2 BBT65 BBT66 BBT67 BBT67/2 BBT68 BBT69 BBT70 BBT71 BBT72 BBT73 BBT74 BBT75 SC 1		x x x x x x x x x x x x x x x x x x x				X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162	BBT55 BBT56 BBT57 BBT58/2 BBT59 BBT60 BBT60/2 BBT60/2 BBT61/2 BBT62/2 BBT63/2 BBT63/2 BBT63/2 BBT64/2 BBT65 BBT66 BBT66 BBT67 BBT66 BBT67 BBT68 BBT67 BBT68 BBT67 BBT70 BBT71 BBT71 BBT72 BBT73 BBT74 BBT75 SG-1		x x x x x x x x x x x x x x x x x x x				X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 155 156 157 158 159 160 161 162 163	BBT53 BBT56 BBT57 BBT58 BBT58/2 BBT60/2 BBT60/2 BBT60/2 BBT61/2 BBT62/2 BBT63/3 BBT63/2 BBT63/2 BBT63/3 BBT64/2 BBT64 BBT65 BBT66 BBT66 BBT67 BBT66 BBT67 BBT68 BBT69 BBT70 BBT71 BBT72 BBT73 BBT74 BBT75 SG-1 SG-2		X X X X X X X X X X X X X X X X X X X				X X X X X X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164	BBT53 BBT56 BBT57 BBT58 BBT58/2 BBT60/2 BBT60/2 BBT60/3 BBT61/2 BBT62/2 BBT63/3 BBT63/3 BBT63/3 BBT63/3 BBT64/2 BBT664 BBT65 BBT66 BBT67 BBT66 BBT67 BBT672 BBT68 BBT69 BBT70 BBT71 BBT72 BBT73 BBT74 BBT75 SG-1 SG-2 SG-3		x x x x x x x x x x x x x x x x x x x				X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164	BB153 BB756 BB757 BB758 BB758 BB759 BB760 BB761 BB762 BB763 BB763 BB763/2 BB764 BB765 BB766 BB767 BB768 BB771 BB772 BB774 BB775 SG-1 SG-4		x x x x x x x x x x x x x x x x x x x				X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164	BBT55 BBT56 BBT57 BBT58 BBT58/2 BBT60/2 BBT60/2 BBT60/2 BBT61/2 BBT62/2 BBT63/3 BBT63/2 BBT63/2 BBT63/3 BBT64/2 BBT65 BBT66 BBT65 BBT66 BBT67 BBT66 BBT67 BBT68 BBT69 BBT70 BBT71 BBT72 BBT73 BBT74 BBT75 SG-1 SG-2 SG-3 SG-4 SG-2		x x x x x x x x x x x x x x x x x x x				X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165	BBT53 BBT56 BBT57 BBT58 BBT58/2 BBT59 BBT60/2 BBT60/2 BBT60/3 BBT61/2 BBT62/2 BBT63/3 BBT63/3 BBT63/3 BBT63/3 BBT64/2 BBT66/3 BBT65 BBT66 BBT67 BBT66 BBT67 BBT68 BBT69 BBT70 BBT71 BBT72 BBT73 BBT74 BBT75 SG-1 SG-2 SG-3 SG-4 SG-5		x x x x x x x x x x x x x x x x x x x				X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x

Aufbereitung Untersuchung **x** o Vorbereitung der Probe für Laboruntersuchungen Durchführung von Laboruntersuchungen Arbeitsschritt erledigt Arbeitsschritt in Ausführung

FDLithologieTektonikN ¹ λ_{tr} $\lambda_{trestingt}$ λ_{tranik} $Qualität^2$ Anisotropie1Anhydrit mit phyllitischen VerunzeinigungenPenninikum - Nordrahmenzone624.85.025.30Gut1.02GrauphyllitPenninikum - Nordrahmenzone102.813.135Ankermörtel151.141.55Schlecht6Schwarzphyllit, mit Quarzit veretztPenninikum - Nordrahmenzone154.29-4.818AnhydritPenninikum - Nordrahmenzone155.42 <th></th> <th>Zusar</th> <th>nmenfassung der gemessenen W</th> <th>ärmelei</th> <th>tfähigkeiten, St</th> <th>tand: Jänner 20</th> <th>013</th> <th></th> <th></th>		Zusar	nmenfassung der gemessenen W	ärmelei	tfähigkeiten, St	tand: Jänner 20	013		
Image: Normal state of the state	FID	Lithologie	Tektonik	N^1	λ_{tr}	$\lambda_{\text{gesättigt}}$	λ_{Matrix}	Qualität ²	Anisotropie ³
1 Anhydrit mit phyllitischen Penninikum - Nordrahmenzone 62 4.8 5.02 5.30 Gut 1.1.0 2 Grauphyllt Penninikum - Nordrahmenzone 10 2.81 - 3.13 - 5 Ankermörtel - 15 1.1.4 1.55 Schlecht 6 Schwarzphyllit, mit Quarit veretzt Penninikum - Nordrahmenzone 15 4.2.9 - 4.81 - <td< th=""><th></th><th></th><th></th><th>-</th><th colspan="2">W m⁻¹K⁻¹</th><th>-</th><th>-</th></td<>				-	W m ⁻¹ K ⁻¹		-	-	
Verunneinigungen Image: Construction Construction Construction Construction 2 Grauphylit Penninikum - Nordrahmenzone 10 2.81 - 3.13 - 5 Ankermörtel - 15 1.14 1.55 - Schecht 6 Schwarzphylit, mit Quarzit veretzt Penninikum - Nordrahmenzone 15 5.35 - 5.72 - 7 Anhydrit Penninikum - Nordrahmenzone 15 5.49 - - - 9 Talkiger Grünphyllit mit Anhydrit Penninikum - Nordrahmenzone 15 5.42 6.6.49 - 10 Dolomitmarmor Penninikum - Nordrahmenzone 19 4.7 4.97 - 1.1 11 Grau/ Schwarzphyllit / Buntphyllit Penninikum - Nordrahmenzone 10 4.52 4.98 - - 15 Grauitgneis, grobkörnig Zentralgneise 10 2.65 3.05 3.27 Schlecht 1.1 16 Granitgneis, feinkörnig Zentralgnei	1	Anhydrit mit phyllitischen	Penninikum - Nordrahmenzone	62	4.8	5.02	5.30	Gut	1.08
2 Grauphyllit Penninkum - Nordrahmenzone 10 2.81 - 3.13 - 5 Ankermörtel - 15 1.14 1.55 Schlecht 6 Schwarzphyllit, mit Quarzit veretzt Penninikum - Nordrahmenzone 15 5.35 - S.72 - 7 Anhydrit Penninikum - Nordrahmenzone 15 4.29 - 4.81 - 8 Anhydrit Penninikum - Nordrahmenzone 15 5.42 - 6.48 - 9 Tatkiger Grünphyllit mit Anhydrit Penninikum - Nordrahmenzone 19 4.7 - 4.97 - 11.0 11 Grau/ Schwarzphyllit / Buntphyllit Penninikum - Nordrahmenzone 10 4.52 - 4.89 - - 11.14 11 Grau/ Schwarzphyllit / Buntphyllit Penninikum - Nordrahmenzone 10 2.68 - 11.14 1.5 Granitgneis, feinkörnig Zentralgneise 10 2.68 - 11.14 Grännitgneis, feinkörnig Zentralgnenise <td></td> <td>Verunreinigungen</td> <td></td> <td>02</td> <td>4.0</td> <td>0.02</td> <td>0.00</td> <td>Out</td> <td>1.00</td>		Verunreinigungen		02	4.0	0.02	0.00	Out	1.00
5Ankermörtel151.141.55Schlecht6Schwarzphyllit, mit Quarzit veretztPenninikum - Nordrahmenzone155.35-5.72-7AnhydritPenninikum - Nordrahmenzone154.29-4.818AnhydritPenninikum - Nordrahmenzone155.499Talkiger Grünphyllit mit AnhydritPenninikum - Nordrahmenzone155.42-6.49 <t< td=""><td>2</td><td>Grauphyllit</td><td>Penninikum - Nordrahmenzone</td><td>10</td><td>2.81</td><td>-</td><td>3.13</td><td>-</td><td>-</td></t<>	2	Grauphyllit	Penninikum - Nordrahmenzone	10	2.81	-	3.13	-	-
6 Schwarzphyllit, mit Quarzit veretzt Penninikum - Nordrahmenzone 15 5.35 - 5.72 - 7 Anhydrit in Grünphyllit Penninikum - Nordrahmenzone 15 4.29 4.81 - 9 Talkiger Grünphyllit mit Anhydrit Penninikum - Nordrahmenzone 15 5.42 6.49 - 10 Dolomitmarmor Penninikum - Nordrahmenzone 45 5.28 5.68 - 10.1 11 Grau - / Schwarphyllit / Buntphyllit Penninikum - Nordrahmenzone 19 4.7 - 4.97 - 1.7 14 Choirt - Quarzphyllit / Buntphyllit Penninikum - Nordrahmenzone 10 4.52 4.98 - - - - 10 1.6 Grautingneis, grobkörnig Zentralgneise 10 2.55 3.05 3.27 Schelecht 1.7 Granitgneis, feinkörnig Zentralgneise 9 2.92 - 3.18 - 1.7 16 Granitgneis, feinkörnig Zentralgneise 13 2.31 2.49 -	5	Ankermörtel		15	1.14	1.55	-	Schlecht	-
7 Anhydrit in Grünphyllit Penninikum - Nordrahmenzone 15 4.29 - 4.81 - 8 Anhydrit Penninikum - Nordrahmenzone 15 5.49 - - - 9 Talkiger Grünphyllit mit Anhydrit Penninikum - Nordrahmenzone 15 5.42 - 6.49 - 10 Dolomitmarmor Penninikum - Nordrahmenzone 19 4.7 - 4.97 - 11.0 11 Grau-/ Schwarphyllit Penninikum - Nordrahmenzone 19 4.7 - 4.97 - 11.1 14 Chlorit - Quarzphyllit/ Buntphyllit Penninikum - Nordrahmenzone 10 4.52 - 4.98 - - 10 15 Granitgneis, grinkörnig Zentralgneise 10 2.65 3.05 3.27 Schlecht 17 Granitgneis, feinkörnig Zentralgneise 9 2.92 - 3.18 - 1.1 18 Granitgneis, feinkörnig Zentralgneise 13 2.3 - 2.90 - 1.0 19 Granitgneis Giokkn	6	Schwarzphyllit, mit Quarzit veretzt	Penninikum - Nordrahmenzone	15	5.35	-	5.72	-	-
8 Anhydrit Penninikum - Nordrahmenzone 15 5.49 - - 9 Talkiger Grünphyllit mit Anhydrit Penninikum - Nordrahmenzone 15 5.42 - 6.49 - 10 Dolomitmarmor Penninikum - Nordrahmenzone 15 5.42 - 5.68 - 11.0 11 Grau-/ Schwarphyllit / Buntphyllit Penninikum - Nordrahmenzone 19 4.77 - 4.97 - 1.1 14 Chlorit - Quarzphyllit / Buntphyllit Penninikum - Nordrahmenzone 10 4.52 - 4.98 - - 1.1 15 Granitzneis, grobkörnig Zentralgneise 10 2.65 3.05 3.27 Schlecht 16 Granitzneis, feinkörnig Zentralgneise 9 2.92 - 3.18 - 1.1 18 Granitzneis, feinkörnig Zentralgneise 13 2.3 - 2.49 - 1.1 21 Grünschiefer Glocknerdecken System - 2.86 3	7	Anhydrit in Grünphyllit	Penninikum - Nordrahmenzone	15	4.29	-	4.81	-	-
9 Talkiger Grünphyllit mit Anhydrit Penninikum - Nordrahmenzone 15 5.42 - 6.49 - 10 Dolomitmarmor Penninikum - Nordrahmenzone 45 5.28 - 5.68 - 10.0 11 Grau-/Schwarphyllit Penninikum - Nordrahmenzone 19 4.7 - 4.97 - 1.1 14 Chlorit - Quarzphyllit / Buntphyllit Penninikum - Nordrahmenzone 10 4.52 - 4.98 - 15 Granitgneis, grobkörnig Zentralgneise 10 2.68 - 2.95 - - 1.1 16 Granitgneis, feinkörnig Zentralgneise 9 2.92 - 3.18 - 1.1 17 Granitgneis, feinkörnig Zentralgneise 13 2.3 - 2.49 - 1.0 18 Granitschefer Glocknerdecken System - 2.86 3.13 3.34 Mittel 1.1 22 Granitodi Storzserie 28 2.85 3.32 3.34 Mittel 1.1 23 Schwarschiefer </td <td>8</td> <td>Anhydrit</td> <td>Penninikum - Nordrahmenzone</td> <td>15</td> <td>5.49</td> <td>-</td> <td>-</td> <td>-</td> <td></td>	8	Anhydrit	Penninikum - Nordrahmenzone	15	5.49	-	-	-	
10DolomitmarmorPenninikum - Nordrahmenzone45 5.28 5.68 11.011Grau-/SchwarphyllitPenninikum - Nordrahmenzone19 4.77 4.97 1.12 14Chlorit - Quarzphyllit/BuntphyllitPenninikum - Nordrahmenzone10 4.52 4.98 1.12 15Granitgneis, genkörnigZentralgneise10 2.68 2.95 1.12 15Granitgneis, feinkörnigZentralgneise9 2.92 3.18 1.12 16Granitgneis, feinkörnigZentralgneise9 2.92 3.18 1.12 18Granitgneis, feinkörnigZentralgneise9 2.92 3.18 1.12 19Granitgneis, feinkörnigZentralgneise13 2.33 2.49 1.12 19Granitgneis, feinkörnigZentralgneise13 2.33 2.49 1.12 19GranitgneisGlocknerdecken System 2.86 3.13 3.34 Mittel 0.12 20GranitschieferGlocknerdecken System 2.84 1.12 21Grünschiefer / GlimmerschieferGlocknerdecken System30 3.44 4.49 4.69 Schlecht 1.12 23SchwarzschieferOstalpin, Gurktaler Decke30 2.41 2.99 2.51 2.61 2.84 1.12 <t< td=""><td>9</td><td>Talkiger Grünphyllit mit Anhydrit</td><td>Penninikum - Nordrahmenzone</td><td>15</td><td>5.42</td><td>-</td><td>6.49</td><td>-</td><td>-</td></t<>	9	Talkiger Grünphyllit mit Anhydrit	Penninikum - Nordrahmenzone	15	5.42	-	6.49	-	-
11Grau-/SchwarphyllitPenninikum - Nordrahmenzone194.74.9701.14Chlorit - Quarzphyllit / BuntphyllitPenninikum - Nordrahmenzone104.524.98015Granitgneis, grobkörnigZentralgneise102.682.950016Granitgneis, feinkörnigZentralgneise102.553.053.27Schlecht17Granitgneis, feinkörnigZentralgneise92.923.18-1.118Granitgneis, feinkörnigZentralgneise132.32.49-1.119GranitgneisZentralgneise132.32.49-1.119GranitgneisGlocknerdecken System-2.863.133.34Mittel0.121GrünschieferGlocknerdecken System-2.843.323.34Mittel0.123SchwarzschieferGlocknerdecken System-2.840.124Grünschiefer / GlimmerschieferGlocknerdecken System303.44.494.69Schlecht1.125BiotigneisOstalpin, Gurktaler Decke302.132.815.90Gut1.125Migmatischer GneisOstalpin, Gurktaler Decke302.132.812.811.126Migmatischer GneisSubpenninkum, Zentralgneis302.82.812.995.11.129GranitgneisSubpenninkum, Habac	10	Dolomitmarmor	Penninikum - Nordrahmenzone	45	5.28	-	5.68	-	1.02
14 Chlorit - Quarzphyllit / Buntphyllit Penninikum - Nordrahmenzone 10 4.52 - 4.98 - 15 Granitgneis, grobkörnig Zentralgneise 10 2.68 - 2.95 - 16 Granitgneis, feinkörnig Zentralgneise 10 2.55 3.05 3.27 Schlecht 17 Granitgneis, feinkörnig Zentralgneise 9 2.92 - 3.18 - 1.1 18 Granitgneis, feinkörnig Zentralgneise 9 2.92 - 3.18 - 1.1 19 Granitgneis, feinkörnig Zentralgneise 13 2.3 - 2.49 - 1.0 21 Grünschiefer Glocknerdecken System - 2.86 3.13 3.34 Mittel 0.1 1.1 23 Schwarzschiefer Glocknerdecken System - 2.84 - - 0.1 1.1 24 Grünschiefer / Glimmerschiefer Glocknerdecken System 30 3.4 4.49 4.69 Schlecht 1.1 1.1 1.1 1.1 1.1	11	Grau- / Schwarphyllit	Penninikum - Nordrahmenzone	19	4.7	-	4.97	-	1.17
15 Granitgneis, grobkörnig Zentralgneise 10 2.68 - 2.95 - 16 Granitgneis, feinkörnig Zentralgneise 10 2.55 3.05 3.27 Schlecht 17 Granitgneis, feinkörnig Zentralgneise 9 2.92 - 3.18 - 1.1 18 Granitgneis, feinkörnig Zentralgneise 25 2.68 - 2.90 - 1.0 19 Granitgneis, feinkörnig Zentralgneise 13 2.3 - 2.49 - 1.0 21 Grünschiefer Glocknerdecken System - 2.86 3.13 3.34 Mittel 0.1 22 Granitoid Storzserie 28 2.85 3.32 3.34 Mittel 1.1 23 Schwarzschiefer Glocknerdecken System - 2.84 - - - 0.1 24 Grünschiefer / Glimmerschiefer Glocknerdecken System 30 3.4 4.49 4.69 Schlecht 1.1 25 Biotitgneis Ostalpin, Gurktaler Decke	14	Chlorit - Quarzphyllit / Buntphyllit	Penninikum - Nordrahmenzone	10	4.52	-	4.98	-	-
16 Granitgneis, feinkörnig Zentralgneise 10 2.55 3.05 3.27 Schlecht 17 Granitgneis, feinkörnig Zentralgneise 9 2.92 3.18 1. 18 Granitgneis, feinkörnig Zentralgneise 25 2.68 2.90 10 19 Granitgneis Zentralgneise 13 2.3 2.49 10 21 Grünschiefer Glocknerdecken System - 2.86 3.13 3.34 Mittel 0.7 22 Granitoid Storzserie 28 2.85 3.32 3.34 Mittel 11 23 Schwarzschiefer Glocknerdecken System - 2.84 - - 0.7 24 Grünschiefer / Glimmerschiefer Glocknerdecken System 30 3.4 4.49 4.69 Schlecht 11.4 25 Biotitgneis Ostalpin, Gurktaler Decke 30 2.37 2.72 2.73 Mittel 26 Migmatischer Gneis Ostalpin, Gurktaler Decke 30 2.13 - 2.81 1.7 32 <td>15</td> <td>Granitgneis, grobkörnig</td> <td>Zentralgneise</td> <td>10</td> <td>2.68</td> <td>-</td> <td>2.95</td> <td>-</td> <td>-</td>	15	Granitgneis, grobkörnig	Zentralgneise	10	2.68	-	2.95	-	-
17 Granitgneis, feinkörnig Zentralgneise 9 2.92 - 3.18 - 1.1 18 Granitgneis, feinkörnig Zentralgneise 25 2.68 - 2.90 - 1.0 19 Granitgneis Zentralgneise 13 2.3 - 2.49 - 1.0 21 Grünschiefer Glocknerdecken System - 2.86 3.13 3.34 Mittel 0.1 22 Granitoid Storzserie 28 2.85 3.32 3.34 Mittel 1.1 23 Schwarzschiefer Glocknerdecken System - 2.84 - - 0.1 24 Grünschiefer / Glimmerschiefer Glocknerdecken System - 2.84 - - 0.1 25 Biotitgneis Ostalpin, Gurktaler Decke 20 2.37 2.72 2.73 Mittel 1.2 26 Migmatischer Gneis Ostalpin, Gurktaler Decke 30 2.13 - 2.81 - 1.1 29 Granitgneis Subpenninkum, Zentralgneis 30 <	16	Granitgneis, feinkörnig	Zentralgneise	10	2.55	3.05	3.27	Schlecht	-
18 Granitgneis, feinkörnig Zentralgneise 25 2.68 - 2.90 - 1.0 19 Granitgneis Zentralgneise 13 2.3 - 2.49 - - 21 Grünschiefer Glocknerdecken System - 2.86 3.13 3.34 Mittel 0.1 22 Granitoid Storzserie 28 2.85 3.32 3.34 Mittel 1.1 23 Schwarzschiefer Glocknerdecken System - 2.84 - - - 0.1 24 Grünschiefer / Glimmerschiefer Glocknerdecken System - 2.84 - - 0.1 25 Biotitgneis Ostalpin, Gurktaler Decke 20 2.37 2.72 2.73 Mittel 1.2 26 Migmatischer Gneis Ostalpin, Gurktaler Decke 30 2.13 - 2.81 - 1.1 29 Granitgneis Subpenninkum, Zentralgneis 30 2.8 - 2.93 - 1.1 31 Fk. Amphibolit m. Scheelit Subpenninkum, Habach Grupp	17	Granitgneis, feinkörnig	Zentralgneise	9	2.92	-	3.18	-	1.14
19GranitgneisZentralgneise132.3-2.49-21GrünschieferGlocknerdecken System-2.863.133.34Mittel0.722GranitoidStorzserie282.853.323.34Mittel1.723SchwarzschieferGlocknerdecken System-2.840.724Grünschiefer / GlimmerschieferGlocknerdecken Systeme303.444.494.69Schlecht1.724Grünschiefer / GlimmerschieferGlocknerdecken Systeme303.44.494.69Schlecht1.725BiotitgneisOstalpin, Gurktaler Decke202.372.722.73Mittel26Migmatischer GneisOstalpin, Gurktaler Decke302.13-2.81-1.729GranitgneisSubpenninkum, Zentralgneis302.8-2.93-1.732Fk. Amphibolit m. ScheelitSubpenninkum, Habach Gruppe262.182.412.59Schlecht33Fk. Amphibolit m. ScheelitSubpenninkum, Habach Gruppe292.52.612.66Gut34PhyllitOstalpin, Grauwackenzone102.753.153.51Schlecht35KlammkalkPenninikum, Nordrahmenzone302.773.063.26Schlecht	18	Granitgneis, feinkörnig	Zentralgneise	25	2.68	-	2.90	-	1.05
21GrünschieferGlocknerdecken System-2.863.133.34Mittel0.122GranitoidStorzserie282.853.323.34Mittel1.123SchwarzschieferGlocknerdecken System-2.840.124Grünschiefer / GlimmerschieferGlocknerdecken Systeme303.444.494.69Schlecht1.125BiotitgneisOstalpin, Gurktaler Decke202.372.722.73Mittel1.126Migmatischer GneisOstalpin, Gurktaler Decke302.13-2.81-1.129GranitgneisSubpenninkum, Zentralgneis302.8-2.93-1.132Fk. Amphibolit m. ScheelitSubpenninkum, Habach Gruppe262.182.412.59Schlecht1.133Fk. Amphibolit m. ScheelitOstalpin, Grauwackenzone102.753.153.51Schlecht35KlammkalkPenninikum, Nordrahmenzone302.773.063.26Schlecht	19	Granitgneis	Zentralgneise	13	2.3	-	2.49	-	-
22GranitoidStorzserie282.853.323.34Mittel1.123SchwarzschieferGlocknerdecken System-2.840.724Grünschiefer / GlimmerschieferGlocknerdecken Systeme303.44.494.69Schlecht1.125BiotitgneisOstalpin, Gurktaler Decke202.372.722.73Mittel26Migmatischer GneisOstalpin, Gurktaler Decke302.13-2.81-1.729GranitgneisOstalpin, Gurktaler Decke302.8-2.93-1.729GranitgneisSubpenninkum, Zentralgneis302.8-2.93-1.732Fk. Amphibolit m. ScheelitSubpenninkum, Habach Gruppe262.182.412.59Schlecht33Fk. Amphibolit m. ScheelitSubpenninikum, Habach Gruppe292.52.612.66Gut34PhyllitOstalpin, Grauwackenzone102.753.153.51Schlecht35KlammkalkPenninikum, Nordrahmenzone302.773.063.26Schlecht	21	Grünschiefer	Glocknerdecken System	-	2.86	3.13	3.34	Mittel	0.79
23SchwarzschieferGlocknerdecken System-2.840.124Grünschiefer / GlimmerschieferGlocknerdecken Systeme303.44.494.69Schlecht1.225BiotitgneisOstalpin, Gurktaler Decke202.372.722.73Mittel26Migmatischer GneisOstalpin, Gurktaler Decke345.795.815.90Gut27Migmatischer GneisOstalpin, Gurktaler Decke302.13-2.81-1.729GranitgneisSubpenninkum, Zentralgneis302.8-2.93-1.732Fk. Amphibolit m. ScheelitSubpenninkum, Habach Gruppe262.182.412.59Schlecht33Fk. Amphibolit m. ScheelitSubpenninikum, Habach Gruppe292.52.612.66Gut34PhyllitOstalpin, Grauwackenzone102.753.153.51Schlecht35KlammkalkPenninikum, Nordrahmenzone302.773.063.26Schlecht	22	Granitoid	Storzserie	28	2.85	3.32	3.34	Mittel	1.26
24Grünschiefer / GlimmerschieferGlocknerdecken Systeme303.44.494.69Schlecht1.125BiotitgneisOstalpin, Gurktaler Decke202.372.722.73Mittel26Migmatischer GneisOstalpin, Gurktaler Decke345.795.815.90Gut27Migmatischer GneisOstalpin, Gurktaler Decke302.13-2.81-1.129GranitgneisOstalpin, Gurktaler Decke302.88-2.93-1.132Fk. Amphibolit m. ScheelitSubpenninkum, Zentralgneis302.8-2.93-1.133Fk. Amphibolit m. ScheelitSubpenninkum, Habach Gruppe262.182.412.59Schlecht34PhyllitOstalpin, Grauwackenzone102.753.153.51Schlecht35KlammkalkPenninikum, Nordrahmenzone302.773.063.26Schlecht	23	Schwarzschiefer	Glocknerdecken System	-	2.84	-	-	-	0.76
25BiotitgneisOstalpin, Gurktaler Decke202.372.722.73Mittel26Migmatischer GneisOstalpin, Gurktaler Decke345.795.815.90Gut27Migmatischer GneisOstalpin, Gurktaler Decke302.13-2.81-1.129GranitgneisSubpenninkum, Zentralgneis302.8-2.93-1.132Fk. Amphibolit m. ScheelitSubpenninkum, Habach Gruppe262.182.412.59Schlecht33Fk. Amphibolit m. ScheelitSubpenninkum, Habach Gruppe292.52.612.66Gut34PhyllitOstalpin, Grauwackenzone102.753.153.51Schlecht35KlammkalkPenninikum, Nordrahmenzone302.773.063.26Schlecht	24	Grünschiefer / Glimmerschiefer	Glocknerdecken Systeme	30	3.4	4.49	4.69	Schlecht	1.23
26Migmatischer GneisOstalpin, Gurktaler Decke345.795.815.90Gut27Migmatischer GneisOstalpin, Gurktaler Decke302.13-2.81-1.129GranitgneisSubpenninkum, Zentralgneis302.8-2.93-32Fk. Amphibolit m. ScheelitSubpenninkum, Habach Gruppe262.182.412.59Schlecht33Fk. Amphibolit m. ScheelitSubpenninkum, Habach Gruppe292.52.612.66Gut34PhyllitOstalpin, Grauwackenzone102.753.153.51Schlecht35KlammkalkPenninikum, Nordrahmenzone302.773.063.26Schlecht	25	Biotitgneis	Ostalpin, Gurktaler Decke	20	2.37	2.72	2.73	Mittel	-
27Migmatischer GneisOstalpin, Gurktaler Decke302.13-2.81-1.129GranitgneisSubpenninkum, Zentralgneis302.8-2.93-32Fk. Amphibolit m. ScheelitSubpenninikum, Habach Gruppe262.182.412.59Schlecht33Fk. Amphibolit m. ScheelitSubpenninikum, Habach Gruppe292.52.612.66Gut34PhyllitOstalpin, Grauwackenzone102.753.153.51Schlecht35KlammkalkPenninikum, Nordrahmenzone302.773.063.26Schlecht	26	Migmatischer Gneis	Ostalpin, Gurktaler Decke	34	5.79	5.81	5.90	Gut	-
29GranitgneisSubpenninkum, Zentralgneis302.8-2.93-32Fk. Amphibolit m. ScheelitSubpenninkum, Habach Gruppe262.182.412.59Schlecht33Fk. Amphibolit m. ScheelitSubpenninkum, Habach Gruppe292.52.612.66Gut34PhyllitOstalpin, Grauwackenzone102.753.153.51Schlecht35KlammkalkPenninikum, Nordrahmenzone302.773.063.26Schlecht	27	Migmatischer Gneis	Ostalpin, Gurktaler Decke	30	2.13	-	2.81	-	1.16
32Fk. Amphibolit m. ScheelitSubpenninikum, Habach Gruppe262.182.412.59Schlecht33Fk. Amphibolit m. ScheelitSubpenninikum, Habach Gruppe292.52.612.66Gut34PhyllitOstalpin, Grauwackenzone102.753.153.51Schlecht35KlammkalkPenninikum, Nordrahmenzone302.773.063.26Schlecht	29	Granitgneis	Subpenninkum, Zentralgneis	30	2.8	-	2.93	-	-
33Fk. Amphibolit m. ScheelitSubpenninikum, Habach Gruppe292.52.61Gut34PhyllitOstalpin, Grauwackenzone102.753.153.51Schlecht35KlammkalkPenninikum, Nordrahmenzone302.773.063.26Schlecht	32	Fk. Amphibolit m. Scheelit	Subpenninikum, Habach Gruppe	26	2.18	2.41	2.59	Schlecht	-
34 Phyllit Ostalpin, Grauwackenzone 10 2.75 3.15 3.51 Schlecht 35 Klammkalk Penninikum, Nordrahmenzone 30 2.77 3.06 3.26 Schlecht	33	Fk. Amphibolit m. Scheelit	Subpenninikum, Habach Gruppe	29	2.5	2.61	2.66	Gut	-
35 Klammkalk Penninikum, Nordrahmenzone 30 2.77 3.06 3.26 Schlecht	34	Phyllit	Ostalpin, Grauwackenzone	10	2.75	3.15	3.51	Schlecht	-
	35	Klammkalk	Penninikum, Nordrahmenzone	30	2.77	3.06	3.26	Schlecht	-

Seite 1 von 5

37	Prossau Augengneis	Subpenninkum, Zentralgneis	30	2.53	2.83	3.07	Schlecht	-
39	Siglitzgneis	Subpenninkum, Zentralgneis	30	2.47	2.69	2.69	Mittel	-
40	Romategneis, pyritreich	Subpenninkum, Zentralgneis	19	2.31	2.46	2.56	Gut	-
41	Amphibolit i.A.	Habach Gruppe	15	2.85	-	3.19	-	-
42	Amphibolit i.A.	Habach Gruppe	20	3.12	-	3.53	-	-
43	Amphibolit i.A.	Habach Gruppe	24	2.47	-	2.73	-	-
44	Amphibolit i.A.	Habach Gruppe	10	2.41	-	2.74	-	-
45	Amphibolit i.A.	Habach Gruppe	10	2.96	-	3.20	-	-
46	Amphibolit i.A.	Habach Gruppe	10	1.89	-	2.20	-	-
47	Granitgneis	Tuxer Kern	10	2.45	2.70	2.89	Mittel	-
48	Phyllonit. Glimmerschiefer	Landecker Quarzphyllitzone	-	3.33	3.85	3.60	Schlecht	-
49	Quarzitischer Gneis	Silvretta Kristallin	-	3.45	3.43	3.45	Gut	-
50	Amphibolit i.A.	Silvretta Kristallin	-	2.18	2.28	2.36	Gut	0.81
51	Glimmerschiefer	Silvretta Kristallin	-	3.45	3.59	3.69	Gut	1.24
52	Glimmerschiefer	Silvretta Kristallin	-	3.66	-	3.80	-	-
53	Bi-Granit-Augen-Gneis	Silvretta Kristallin	-	2.52	2.69	2.83	Mittel	1.26
54	Knollkopfgneis	Silvretta Kristallin	-	2.68	2.91	3.11	Schlecht	-
55	Bi-Flecken-Schiefer	Silvretta Kristallin	-	2.72	3.03	3.33	Schlecht	-
56	Amphibolit i.A.	Silvretta Kristallin	-	2.3	2.36	2.41	Gut	-
57	Granitgneis	Silvretta Kristallin	-	2.69	2.94	3.16	Schlecht	1.27
58	Para(Bi)-Gneis	Silvretta Kristallin	-	2.31	2.54	2.73	Schlecht	-
59	Phyllitgneis	Silvretta Kristallin	-	3.73	3.82	3.90	Gut	1.24
60	Orthogneis	Silvretta Kristallin	-	3.16	3.37	3.56	Mittel	1.25
61	Kalk-GlMarmor u. Prasinit	Bündnerschiefer	-	2.4	2.76	3.09	Schlecht	-
62	Kalk-GlMarmor u. Prasinit	Bündnerschiefer	-	3.5	3.50	3.51	Gut	-
63	Metabasit, Amp, Chl, Ep, Plag	Bündnerschiefer	-	3.19	3.40	3.59	Mittel	-
64	Metabasit, Amp, Chl, Ep, Plag	Bündnerschiefer	-	2.68	2.69	2.70	Gut	-
65	Marmor und Prasinit	Bündnerschiefer	-	2.82	3.08	3.31	Schlecht	-
66	Marmor und Prasinit	Bündnerschiefer	-	2.79	3.13	3.45	Schlecht	-
67	Marmor und Prasinit	Bündnerschiefer	-	2.86	3.13	3.39	Schlecht	-
69	Anhydrit-Glimmerschiefer m. Chlorit		-	2.69	3.08	3.45	Schlecht	-
70	Kalkmarmor	Bündnerschiefer	-	3.52	3.57	3.61	Gut	-
71	Kalkmarmor	Bündnerschiefer	-	2.3	-	2.35	-	0.79

Seite 2 von 5

72	Quarz-Glimmerschiefer		-	1.72	2.02	2.27	Schlecht	-
73	Schiefer m. Anhydrit, Cl u. Gl		-	2.99	3.39	3.77	Schlecht	-
74	Schiefer m. Anhydrit, Cl u. Gl		-	2.6	3.25	3.90	Schlecht	-
75	phlogopitführende Kalkmarmor		-	2.9	3.06	3.19	Mittel	-
76	phlogopitführende Kalkmarmor		-	4.82	5.42	6.03	Schlecht	-
77	Kalzitmarmor m. Schieferlagen		-	2.95	3.28	5.42	Schlecht	-
78	Marmor		-	2.58	2.67	2.74	Gut	-
70	Glimmerschiefer m. Q-Chl-			2.40	2.52	2.52	Gut	
79	Karbonatlagen		-	2.49	2.52	2.52	Gui	-
80	Glimmerschiefer m. Q-Chl-		-	3.38	3.46	3.53	Gut	-
	Karbonatlagen							
81	Glimmerschiefer		-	3.63	3.70	3.73	Gut	-
82	Glimmerschiefer		-	2.94	3.03	3.11	Gut	-
83	Glimmerschiefer		-	3.35	3.37	3.37	Gut	-
84	Marmor, Kalk-Glimmerschiefer, Talk-	Matreier Zone	-	3.8	4.07	4.33	Mittel	-
_	Serpentinschiefer				-			
85	Marmor, Kalk-Glimmerschiefer, Talk-	Matreier Zone	-	4.3	4.20	4.27	Mittel	-
	Serpentinschiefer							
86	Marmor, Kaik-Glimmerschlefer, Taik-	Matreier Zone	-	2.43	2.91	3.37	Schlecht	-
87	Serpentinschiefer Kalkohvllit		-	3.06	2 79	2 94	Schlecht	
88	Karbonatayarzitschiefer			3.58	3 71	2.04	Mittal	
00	Karbonatquarzitschiefer		-	3.50	3.71	3.03	Gut	
09	Phyllit		-	3.04	3.11	3.09	Mittal	- 10
90	Priyint Quaranhullit		-	3.43	3.02	3.80	O a b la ab b	1.2
91	Quarzphyllit		-	4.97	6.20	7.46	Schlecht	0.48
92	Quarzphyllit		-	4.3	4.86	5.43	Schlecht	-
93	Quarzphyllit		-	4.7	4.55	4.63	Mittel	1.24
94	Quarzphyllit		-	6.8	6.80	6.81	Gut	-
95	Metaarenit, Porphyroid	Ibk-Quarz phyllitkomplex	-	3.51	3.63	3.72	Gut	-
96	Metaarenit, Porphyroid	Ibk-Quarz phyllitkomplex	-	4.26	4.22	4.25	Gut	-
97	Kalzit-Ch.schiefer u.Chloritphyllit	Ibk-Quarz phyllitkomplex	-	3.43	3.42	3.43	Gut	-
98	Kalzit-Ch.schiefer u.Chloritphyllit	Ibk-Quarz phyllitkomplex	-	3.7	3.88	4.05	Mittel	-
99	Kalzit-Ch.schiefer u.Chloritphyllit	Ibk-Quarz phyllitkomplex	-	4.17	4.36	4.55	Mittel	-
101	Kalzit-Ch.schiefer u.Chloritphyllit	Ibk-Quarz phyllitkomplex	-	3.19	3.21	3.22	Gut	-
	-							

Seite 3 von 5

102	Karbonatphyllit m. Chloritphyllitlagen	Ibk-Quarz phyllitkomplex	-	2.51	2.49	2.51	Gut	-
103	Karbonatphyllit m. Chloritphyllitlagen	Ibk-Quarz phyllitkomplex	-	2.54	2.64	2.70	Gut	-
104	Karbonatphyllit m. Chloritphyllitlagen	Ibk-Quarz phyllitkomplex	-	2.37	2.44	2.48	Gut	-
105	Karbonatphyllit m. Chloritphyllitlagen	Ibk-Quarz phyllitkomplex	-	2.29	2.33	2.33	Gut	-
106	Karbonatphyllit m. Chloritphyllitlagen	Ibk-Quarz phyllitkomplex	-	2.35	-	2.40	-	-
107	Glimmerschiefer	Ibk-Quarz phyllitkomplex	-	5.46	5.53	5.59	Gut	-
108	Glimmerschiefer	lbk-Quarz phyllitkomplex	-	4.54	4.56	4.56	Gut	-
109	Glimmerschiefer	Ibk-Quarz phyllitkomplex	-	5.98	6.74	7.54	Schlecht	-
110	Quarzphyllit	Ibk-Quarz phyllitkomplex	-	4.45	4.91	5.37	Schlecht	-
111	Quarzphyllit	lbk-Quarz phyllitkomplex	-	4.45	4.47	4.48	Gut	-
112	Glimmerschiefer	Ibk-Quarz phyllitkomplex	-	3.29	3.43	3.56	Mittel	-
113	Serizitphyllit	lbk-Quarz phyllitkomplex	-	3.06	3.24	3.40	Mittel	0.74
114	Serizitphyllit	Ibk-Quarz phyllitkomplex	-	2.88	3.09	3.27	Mittel	-
115	Graphitphyllit	Ibk-Quarz phyllitkomplex	-	3.4	3.37	3.40	Gut	-
116	Graphitphyllit	lbk-Quarz phyllitkomplex	-	3.34	3.41	3.45	Gut	-
117	Graphitphyllit	lbk-Quarz phyllitkomplex	-	3.5	3.78	4.03	Mittel	1.60
118	Graphitphyllit	Ibk-Quarz phyllitkomplex	-	3.55	3.60	3.63	Gut	-
119	Graphitphyllit	lbk-Quarz phyllitkomplex	-	2.96	3.11	3.23	Mittel	-
120	Kalkphyllit		-	3.47	3.69	3.89	Mittel	-
121	Kalkphyllit		-	4.94	6.82	8.76	Schlecht	-
122	Chloritphyllit	Nordrahmenzone	-	4.36	-	4.43	-	-
123	Chloritphyllit m. Kalkmarmorlagen	Nordrahmenzone	-	4.63	4.72	4.79	Gut	1.20
125	Metabrekzie	Nordrahmenzone	-	3.27	3.71	4.13	Schlecht	-
126	Karbonat-Quarzschiefer	Nordrahmenzone	-	3.37	3.48	3.58	Gut	0.68
127	Karbonat-Quarzschiefer	Nordrahmenzone	-	3.49	4.14	4.78	Schlecht	-
132	Granit		-	2.9	3.05	3.18	Mittel	-
134	Quarzphyllit	Ibk-Quarz phyllitkomplex	-	2.97	3.01	3.01	Gut	-
135	Quarzphyllit	Ibk-Quarz phyllitkomplex	-	2.53	2.72	2.88	Mittel	-
136	Quarzphyllit	Ibk-Quarz phyllitkomplex	-	3.07	3.43	3.77	Schlecht	-
137			-	2.8	3.22	3.62	Schlecht	-
138	Biotitschiefer	Ibk-Quarz phyllitkomplex	-	3.28	3.46	3.62	Mittel	-
139	Arkose, Metafeinkonglomerat, Phyllit grünl.	Aigerbach Formation	-	2.35	2.26	2.32	Mittel	0.77

Seite 4 von 5

140	Arkose, Metafeinkonglomerat, Phyllit arünl.	Aigerbach Formation	-	3.28	3.69	4.09	Schlecht	-
141	Arkose, Metafeinkonglomerat, Phyllit arünl.	Aigerbach Formation	-	3.08	3.35	3.59	Schlecht	-
142	Chloritphyllit	Permotrias der Glockner Decke	-	2.73	2.81	2.88	Gut	-
143	Kalkmarmor	Mesozoische Hüllgesteine; Hochstegen-Marmor	-	2.66	2.68	2.69	Gut	-
144	Kalkmarmor	Mesozoische Hüllgesteine; Hochstegen-Marmor	-	2.44	2.49	2.53	Gut	-
145	Kalkmarmor	Mesozoische Hüllgesteine; Hochstegen-Marmor	-	2.64	2.74	2.83	Gut	-
146	Kalkmarmor	Mesozoische Hüllgesteine; Hochstegen-Marmor	-	2.43	2.63	2.74	Gut	-
147	Kalkmarmor	Mesozoische Hüllgesteine; Hochstegen-Marmor	-	3.1	3.14	3.16	Gut	-
148	Kalzitmarmor		-	2.86	3.10	3.31	Schlecht	-
149	Kalzitmarmor		-	2.41	2.60	2.77	Schlecht	-
150	Kalzitmarmor		-	3.55	3.69	3.83	Mittel	-
151	Quarz-Glimmerschiefer		-	3.24	3.42	3.59	Mittel	-
152	Quarz-Glimmerschiefer		-	3.13	3.27	3.38	Gut	0.81
153	Quarz-Glimmerschiefer		-	3.53	4.46	5.41	Schlecht	0.85
154	Karbonatphyllit		-	3.05	3.19	3.31	Mittel	-
155	Karbonatphyllit		-	3.7	4.25	4.80	Schlecht	0.71
156	Phyllit		-	3.52	4.17	4.83	Schlecht	0.72
157	Phyllit		-	3.88	3.96	4.02	Gut	0.79
158	Phyllit		-	3.36	3.45	3.51	Gut	-
159	Kieselschiefer u. Quarzite	Permoskyth aus Wolf	-	4.65	4.95	5.25	Mittel	0.85
160	Kieselschiefer u. Quarzite	Permoskyth aus Wolf	-	4.22	4.71	5.21	Schlecht	0.91
161	Kieselschiefer u. Quarzite	Permoskyth aus Wolf	-	3.83	4.49	5.16	Schlecht	0.91

1 Anzahl Einzelmessungen

2 Reproduzierbarkeit des Kennwerts zur festen Gesteinsmatrix aus Vergleichsmessungen an trockenen und gesättigten Proben (Abweichung < 5%: Gut; > 10 % Schlecht)

3 Scheinbare Anisotropie ($\lambda_{max}{:}\lambda_{min})$ gemäß Schnittflächen der Gesteinsproben

	Zusammenfassung der gemessenen radiogenen Wärmeproduktion, Stand: Jänner 2013									
FID	Lithologie	Tektonik	N^1	c _U	c _{Th}	c _K	А	Stabw		
			-	рр	m	%	µW m⁻³	-		
1	Anhydrit mit phyllitischen Verunreinigungen	Penninikum - Nordrahmenzone	2	1.37	2.43	1.4	0.62	0.000		
2	Grauphyllit	Penninikum - Nordrahmenzone	2	2.21	1.85	2.91	0.98	0.105		
6	Schwarzphyllit, mit Quarzit veretzt	Penninikum - Nordrahmenzone	5	1.85	4.27	2.21	0.96	0.110		
7	Anhydrit in Grünphyllit	Penninikum - Nordrahmenzone	3	2.04	4.34	1.84	0.99	0.368		
8	Anhydrit	Penninikum - Nordrahmenzone	1	1.71	5.26	1.61	-	-		
9	Talkiger Grünphyllit mit Anhydrit	Penninikum - Nordrahmenzone	2	1.68	3.19	1.36	0.83	0.045		
10	Dolomitmarmor	Penninikum - Nordrahmenzone	2	2.23	2.44	1.55	0.93	0.080		
11	Grau- / Schwarphyllit	Penninikum - Nordrahmenzone	1	2.56	1.84	2.65	1.04	-		
12			1	1.56	3.43	2	0.84	-		
14	Chlorit - Quarzphyllit / Buntphyllit	Penninikum - Nordrahmenzone	1	5.42	2.32	2.82	1.82	-		
15	Granitgneis, grobkörnig	Zentralgneise	1	5.83	3.32	2.73	1.98	-		
16	Granitgneis, feinkörnig	Zentralgneise	2	2.4	2.19	2.34	0.98	0.135		
17	Granitgneis, feinkörnig	Zentralgneise	1	3.92	4.79	2.95	1.64	-		
18	Granitgneis, feinkörnig	Zentralgneise	1	3.04	5.24	3.2	1.47	-		
19	Granitgneis	Zentralgneise	2	1.38	3.71	2.23	0.88	0.350		
22	Granitoid	Storzserie	2	2.29	3.74	2.49	1.07	0.070		
24	Grünschiefer / Glimmerschiefer	Glocknerdecken Systeme	4	3.69	4.34	2.92	1.58	0.187		
25	Biotitgneis	Ostalpin, Gurktaler Decke	2	4.15	1.06	2.63	1.51	0.520		
26	Migmatischer Gneis	Ostalpin, Gurktaler Decke	1	1.73	0.42	1.9	0.64	-		
27	Migmatischer Gneis	Ostalpin, Gurktaler Decke	1	1.37	3.63	3.24	0.95	-		
29	Granitgneis	Subpenninkum, Zentralgneis	1	2.48	3.97	3.11	1.16	-		
32	Fk. Amphibolit m. Scheelit	Subpenninikum, Habach Gruppe	1	1.5	2.28	1.75	0.27	-		
33	Fk. Amphibolit m. Scheelit	Subpenninikum, Habach Gruppe	1	1.14	2.47	1.49	0.65	-		
34	Phyllit	Ostalpin, Grauwackenzone	1	2.3	4.82	2.83	1.16	-		
35	Klammkalk	Penninikum, Nordrahmenzone	1	1.13	2.3	1.3	0.55	-		
37	Prossau Augengneis	Subpenninkum, Zentralgneis	1	2.36	4.93	2.89	1.16	-		
39	Siglitzgneis	Subpenninkum, Zentralgneis	1	2.81	6.31	3.01	1.38	-		
40	Romategneis, pyritreich	Subpenninkum, Zentralgneis	1	5.85	11.36	4.57	2.67	-		

41	Amphibolit i.A.	Habach Gruppe	3	2.79	2.54	2.89	1.18	0.069
42	Amphibolit i.A.	Habach Gruppe	1	5.49	4.94	2.9	1.98	-
43	Amphibolit i.A.	Habach Gruppe	2	3.35	4.12	2.97	1.44	0.280
44	Amphibolit i.A.	Habach Gruppe	2	3.37	3.39	2.46	1.44	0.100
45	Amphibolit i.A.	Habach Gruppe	1	5.27	9.64	2.25	2.17	-
47	Granitgneis	Tuxer Kern	1	2.37	3.55	2.25	1.04	-
48	Phyllonit. Glimmerschiefer	Landecker Quarzphyllitzone	-	1.9	4.70	2.34	1.03	-
49	Quarzitischer Gneis	Silvretta Kristallin	-	1.41	3.78	1.91	0.88	-
50	Amphibolit i.A.	Silvretta Kristallin	-	1.64	3.82	2.04	0.99	-
51	Glimmerschiefer	Silvretta Kristallin	-	1.83	3.90	2.22	0.95	-
52	Glimmerschiefer	Silvretta Kristallin	-	2.46	6.53	2.60	1.28	-
53	Bi-Granit-Augen-Gneis	Silvretta Kristallin	-	2.23	4.15	2.74	1.12	-
54	Knollkopfgneis	Silvretta Kristallin	-	2.24	4.57	2.98	1.15	-
55	Bi-Flecken-Schiefer	Silvretta Kristallin	-	1.76	4.07	2.23	0.97	-
56	Amphibolit i.A.	Silvretta Kristallin	-	1.22	2.38	1.57	0.71	-
57	Granitgneis	Silvretta Kristallin	-	2	4.14	2.59	1.04	-
58	Para(Bi)-Gneis	Silvretta Kristallin	-	1.31	2.99	1.68	0.74	-
59	Phyllitgneis	Silvretta Kristallin	-	1.67	4.06	2.17	0.92	-
60	Orthogneis	Silvretta Kristallin	-	2.27	3.65	2.89	1.07	-
61	Kalk-GlMarmor u. Prasinit	Bündnerschiefer	-	1.46	2.42	1.53	0.73	-
62	Kalk-GlMarmor u. Prasinit	Bündnerschiefer	-	1.61	2.96	1.84	0.79	-
63	Metabasit, Amp, Chl, Ep, Plag	Bündnerschiefer	-	1.50	3.68	1.42	0.87	-
64	Metabasit, Amp, Chl, Ep, Plag	Bündnerschiefer	-	1.93	4.69	2.06	1.10	-
65	Marmor und Prasinit	Bündnerschiefer	-	1.28	1.66	1.42	0.64	-
66	Marmor und Prasinit	Bündnerschiefer	-	1.41	2.88	1.83	0.75	-
67	Marmor und Prasinit	Bündnerschiefer	-	1.00	3.78	1.56	0.67	-
69	Anhydrit-Glimmerschiefer m. Chlorit		-	1.59	3.52	1.89	0.84	-
70	Kalkmarmor	Bündnerschiefer	-	1.32	3.48	1.64	0.74	-
71	Kalkmarmor	Bündnerschiefer	-	1.87	3.07	1.77	0.87	-
72	Quarz-Glimmerschiefer		-	1.61	3.98	1.80	0.92	-
73	Schiefer m. Anhydrit, Cl u. Gl		-	2.01	2.82	1.75	0.88	-
74	Schiefer m. Anhydrit, Cl u. Gl		-	1.49	2.44	1.49	0.70	-
75	phlogopitführende Kalkmarmor		-	1.44	2.91	1.92	0.76	-

Seite 2 von 5

76	phlogopitführende Kalkmarmor		-	1.19	3.37	1.60	0.69	-
77	Kalzitmarmor m. Schieferlagen		-	1.43	2.88	1.79	0.74	-
78	Marmor		-	1.61	2.56	1.78	0.77	-
79	Glimmerschiefer m. Q-Chl-Karbonatlagen		-	1.66	3.23	1.96	0.87	-
80	Glimmerschiefer m. Q-Chl-Karbonatlagen		-	1.42	3.25	1.63	0.81	-
81	Glimmerschiefer		-	2.04	3.31	3.03	1.03	-
82	Glimmerschiefer		-	1.60	3.83	1.99	0.88	-
83	Glimmerschiefer		-	1.08	1.77	1.46	0.57	-
84	Marmor, Kalk-Glimmerschiefer, Talk- Serpentinschiefer	Matreier Zone	-	1.28	2.47	1.34	0.69	-
85	Marmor, Kalk-Glimmerschiefer, Talk- Serpentinschiefer	Matreier Zone	-	1.54	3.27	1.57	0.83	-
86	Marmor, Kalk-Glimmerschiefer, Talk- Serpentinschiefer	Matreier Zone	-	1.54	2.04	1.51	0.69	-
87	Kalkphyllit		-	1.60	3.43	2.06	0.84	-
88	Karbonatquarzitschiefer		-	2.12	4.34	2.34	1.09	-
89	Karbonatquarzitschiefer		-	1.60	3.07	2.00	0.83	-
90	Phyllit		-	1.62	3.95	2.06	0.90	-
91	Quarzphyllit		-	1.67	4.36	1.72	0.90	-
92	Quarzphyllit		-	1.92	3.98	2.13	0.99	-
93	Quarzphyllit		-	2.15	4.03	1.84	1.01	-
94	Quarzphyllit		-	1.92	4.39	2.29	1.03	-
95	Metaarenit, Porphyroid	Ibk-Quarz phyllitkomplex	-	1.75	3.44	1.95	0.90	-
96	Metaarenit, Porphyroid	Ibk-Quarz phyllitkomplex	-	1.70	3.11	1.93	0.85	-
97	Kalzit-Ch.schiefer u.Chloritphyllit	Ibk-Quarz phyllitkomplex	-	1.80	3.20	2.29	0.94	-
98	Kalzit-Ch.schiefer u.Chloritphyllit	Ibk-Quarz phyllitkomplex	-	1.74	3.54	2.20	0.93	-
99	Kalzit-Ch.schiefer u.Chloritphyllit	Ibk-Quarz phyllitkomplex	-	1.66	2.99	2.09	0.87	-
101	Kalzit-Ch.schiefer u.Chloritphyllit	Ibk-Quarz phyllitkomplex	-	1.43	3.35	1.90	0.80	-
102	Karbonatphyllit m. Chloritphyllitlagen	Ibk-Quarz phyllitkomplex	-	1.74	3.20	2.41	0.91	-
103	Karbonatphyllit m. Chloritphyllitlagen	Ibk-Quarz phyllitkomplex	-	1.51	3.06	2.09	0.83	-
104	Karbonatphyllit m. Chloritphyllitlagen	Ibk-Quarz phyllitkomplex	-	1.60	6.46	2.17	1.10	-
105	Karbonatphyllit m. Chloritphyllitlagen	Ibk-Quarz phyllitkomplex	-	1.71	7.29	2.32	1.20	-

106	Karbonatphyllit m. Chloritphyllitlagen	Ibk-Quarz phyllitkomplex	-	1.76	4.26	2.34	0.98	-
107	Glimmerschiefer	Ibk-Quarz phyllitkomplex	-	3.31	5.07	3.70	1.61	-
108	Glimmerschiefer	Ibk-Quarz phyllitkomplex	-	1.52	4.28	2.11	0.88	-
109	Glimmerschiefer	Ibk-Quarz phyllitkomplex	-	1.88	4.24	1.95	0.95	-
110	Quarzphyllit	Ibk-Quarz phyllitkomplex	-	2.25	4.82	2.70	1.18	-
111	Quarzphyllit	Ibk-Quarz phyllitkomplex	-	1.76	3.65	2.10	0.90	-
112	Glimmerschiefer	lbk-Quarz phyllitkomplex	-	2.37	4.77	3.01	1.25	-
113	Serizitphyllit	Ibk-Quarz phyllitkomplex	-	1.55	3.39	1.95	0.84	-
114	Serizitphyllit	lbk-Quarz phyllitkomplex	-	1.75	4.18	2.28	0.97	-
115	Graphitphyllit	Ibk-Quarz phyllitkomplex	-	1.80	4.04	2.59	1.03	-
116	Graphitphyllit	Ibk-Quarz phyllitkomplex	-	2.12	4.49	2.74	1.16	-
117	Graphitphyllit	lbk-Quarz phyllitkomplex	-	4.29	7.55	4.44	2.06	-
118	Graphitphyllit	Ibk-Quarz phyllitkomplex	-	2.14	5.11	2.66	1.20	-
119	Graphitphyllit	Ibk-Quarz phyllitkomplex	-	1.75	4.45	2.06	0.97	-
120	Kalkphyllit		-	1.80	4.53	2.10	0.99	-
121	Kalkphyllit		-	1.52	4.50	2.02	0.89	-
122	Chloritphyllit	Nordrahmenzone	-	1.94	3.55	2.21	0.94	-
123	Chloritphyllit m. Kalkmarmorlagen	Nordrahmenzone	-	2.01	4.64	2.55	1.11	-
125	Metabrekzie	Nordrahmenzone	-	1.98	3.32	1.84	0.93	-
126	Karbonat-Quarzschiefer	Nordrahmenzone	-	1.49	3.44	1.82	0.80	-
127	Karbonat-Quarzschiefer	Nordrahmenzone	-	1.38	3.63	1.83	0.77	-
132	Granit		-	2.09	4.64	2.61	1.09	-
134	Quarzphyllit	Ibk-Quarz phyllitkomplex	-	1.95	5.17	2.66	1.14	-
135	Quarzphyllit	Ibk-Quarz phyllitkomplex	-	1.66	3.87	2.54	0.94	-
136	Quarzphyllit	Ibk-Quarz phyllitkomplex	-	1.86	3.49	1.93	0.90	-
137			-	1.42	3.78	1.84	0.81	-
138	Biotitschiefer	Ibk-Quarz phyllitkomplex	-	1.72	3.68	2.35	0.93	-
139	Arkose, Metafeinkonglomerat, Phyllit grünl.	Aigerbach Formation	-	2.06	4.78	3.43	1.17	-
140	Arkose, Metafeinkonglomerat, Phyllit grünl.	Aigerbach Formation	-	2.30	4.72	2.96	1.18	-
141	Arkose, Metafeinkonglomerat, Phyllit grünl.	Aigerbach Formation	-	3.14	4.66	2.99	1.39	-
142	Chloritphyllit	Permotrias der Glockner Decke	-	1.91	4.02	2.35	1.01	-

Seite 4 von 5

143	Kalkmarmor	Mesozoische Hüllgesteine;	-	1.43	2.77	1.35	0.69	-
		Hochstegen-Marmor		-				
144	Kalkmarmor	Mesozoische Hüllgesteine;	-	1 44	2 34	1 45	0.68	-
		Hochstegen-Marmor			2.01	1.10	0.00	
145	Kalkmarmor	Mesozoische Hüllgesteine;		1 21	5.09	1 35	0.80	
140		Hochstegen-Marmor		1.21	0.00	1.00	0.00	
146	Kalkmarmor	Mesozoische Hüllgesteine;		1.05	2 50	1 / 7	0.50	
140		Hochstegen-Marmor		1.05	2.55	1.47	0.55	
1/7	Kalkmarmor	Mesozoische Hüllgesteine;		1 28	3 10	1 / 7	0.60	
147		Hochstegen-Marmor		1.20	5.19	1.47	0.03	-
148	Kalzitmarmor		-	1.59	3.50	1.49	0.80	-
149	Kalzitmarmor		-	1.50	3.20	1.32	0.70	-
150	Kalzitmarmor		-	1.39	3.04	1.58	0.72	-
151	Quarz-Glimmerschiefer		-	1.58	3.59	2.52	0.89	-
152	Quarz-Glimmerschiefer		-	2.01	4.14	2.50	1.04	-
153	Quarz-Glimmerschiefer		-	1.76	3.97	2.51	0.96	-
154	Karbonatphyllit		-	0.98	2.57	1.36	0.56	-
155	Karbonatphyllit		-	1.47	3.39	1.98	0.80	-
156	Phyllit		-	1.79	4.76	1.60	0.93	-
157	Phyllit		-	0.85	2.33	1.45	0.00	-
158	Phyllit		-	1.54	4.17	2.33	0.94	-
159	Kieselschiefer u. Quarzite	Permoskyth aus Wolf	-	1.38	3.53	2.18	0.76	-
160	Kieselschiefer u. Quarzite	Permoskyth aus Wolf	-	1.81	3.95	2.76	0.97	-
161	Kieselschiefer u. Quarzite	Permoskyth aus Wolf	-	1.44	3.09	2.41	0.77	-

1 Anzahl der Einzelmessungen
	Zusammenfassung der gemessenen Wärmekapazität, Stand: Jänner 2013									
FID	Lithologie	Tektonik	Dichte	Porosität	V _P	C _{p,trocken}	C _{p,gesättigt}	C _{p,Matrix}		
			g cm⁻³	%	m s⁻¹		J kg ⁻¹ K ⁻¹			
1	Anhydrit mit phyllitischen	Penninikum - Nordrahmenzone	2.770	2.24	5278	990	-	917.00		
2	Grauphyllit	Penninikum - Nordrahmenzone	2.720	2.28	4821	891	-	814.00		
5	Ankermörtel		2.500	20.48	4037	1300	-	559.00		
6	Schwarzphyllit, mit Quarzit veretzt	Penninikum - Nordrahmenzone	2.678	1.24	5380	911	-	870.00		
7	Anhydrit in Grünphyllit	Penninikum - Nordrahmenzone	2.600	2.21	5206	861	-	786.00		
9	Talkiger Grünphyllit mit Anhydrit	Penninikum - Nordrahmenzone	2.860	3.29	4683	916	-	805.00		
10	Dolomitmarmor	Penninikum - Nordrahmenzone	2.825	1.35	6467	955	-	911.00		
11	Grau- / Schwarphyllit	Penninikum - Nordrahmenzone	2.710	2.8	4726	965	-	963.85		
12			2.730	-	-	-	-	-		
14	Chlorit - Quarzphyllit / Buntphyllit	Penninikum - Nordrahmenzone	2.700	1.81	4741	857	-	796.00		
15	Granitgneis, grobkörnig	Zentralgneise	2.680	2.02	4669	848	-	779.00		
16	Granitgneis, feinkörnig	Zentralgneise	2.665	1.73	4732	887	-	887.00		
17	Granitgneis, feinkörnig	Zentralgneise	2.740	1.83	4620	869	-	807.00		
18	Granitgneis, feinkörnig	Zentralgneise	2.740	1.64	4718	889	-	834.00		
19	Granitgneis	Zentralgneise	2.900	1.76	4699	912	-	853.00		
21	Grünschiefer	Glocknerdecken System	2.68	2.41	-	-	928	847.77		
22	Granitoid	Storzserie	2.680	2.41	4699	928	-	848.00		
24	Grünschiefer / Glimmerschiefer	Glocknerdecken Systeme	2.805	1.03	5763	939	-	906.00		
25	Biotitgneis	Ostalpin, Gurktaler Decke	2.920	2.33	4397	938	-	861.00		
26	Migmatischer Gneis	Ostalpin, Gurktaler Decke	2.650	0.48	5582	942	-	926.00		
27	Migmatischer Gneis	Ostalpin, Gurktaler Decke	2.810	5.95	4084	987	-	786.00		
29	Granitgneis	Subpenninkum, Zentralgneis	2.600	1.8	3007**	-	911	851.13		
32	Fk. Amphibolit m. Scheelit	Subpenninikum, Habach Gruppe	3.030	1.6	3435**	-	859	805.05		
33	Fk. Amphibolit m. Scheelit	Subpenninikum, Habach Gruppe	2.900	1.58	2143**	-	836	782.36		

Seite 1 von 6

34	Phyllit	Ostalpin, Grauwackenzone	2.630	1.88	2315**	-	819	754.66
35	Klammkalk	Penninikum, Nordrahmenzone	2.620	1.85	5701**	-	852	789.33
37	Prossau Augengneis	Subpenninkum, Zentralgneis	2.550	1.85	2713**	-	848	785.25
39	Siglitzgneis	Subpenninkum, Zentralgneis	2.580	1.51	4115**	-	923	873.11
40	Romategneis, pyritreich	Subpenninkum, Zentralgneis	2.650	1.6	3676**	-	802	747.12
41	Amphibolit i.A.	Habach Gruppe	2.730	2.43	5044	941	-	864.00
42	Amphibolit i.A.	Habach Gruppe	2.640	2.52	4735	904	-	819.39
43	Amphibolit i.A.	Habach Gruppe	2.740	2.12	5349	904	-	834.00
44	Amphibolit i.A.	Habach Gruppe	2.920	2.73	5611	853	-	760.00
45	Amphibolit i.A.	Habach Gruppe	2.620	1.65	5951	1000	-	946.00
46	Amphibolit i.A.	Habach Gruppe	3.030	3.42	-	888	-	772.00
47	Granitgneis	Tuxer Kern	2.630	1.58	4589**	-	941	889.05
48	Phyllonit. Glimmerschiefer	Landecker Quarzphyllitzone	2.7	0.88	-	-	685.46	654.46
49	Quarzitischer Gneis	Silvretta Kristallin	2.95	0.44	-	-	675.91	660.44
50	Amphibolit i.A.	Silvretta Kristallin	3.05	0.78	-	-	711.64	684.40
51	Glimmerschiefer	Silvretta Kristallin	2.72	1.43	-	-	696.82	646.33
52	Glimmerschiefer	Silvretta Kristallin	2.6	1.68	-	-	786.22	728.28
53	Bi-Granit-Augen-Gneis	Silvretta Kristallin	2.7	0.98	-	-	622.21	587.03
54	Knollkopfgneis	Silvretta Kristallin	2.66	0.87	-	-	726.29	696.01
55	Bi-Flecken-Schiefer	Silvretta Kristallin	2.76	0.29	-	-	680.49	670.32
56	Amphibolit i.A.	Silvretta Kristallin	3.07	0.49	-	-	665.94	648.65
57	Granitgneis	Silvretta Kristallin	2.68	0.98	-	-	712.28	677.99
58	Para(Bi)-Gneis	Silvretta Kristallin	2.87	0.53	-	-	740.66	722.35
59	Phyllitgneis	Silvretta Kristallin	2.73	0.64	-	-	745.17	723.06
60	Orthogneis	Silvretta Kristallin	2.62	0.97	-	-	729.75	695.98
61	Kalk-GlMarmor u. Prasinit	Bündnerschiefer	2.86	1.26	-	-	784	741
62	Kalk-GlMarmor u. Prasinit	Bündnerschiefer	2.71	0.59	-	-	790	770
63	Metabasit, Amp, Chl, Ep, Plag	Bündnerschiefer	3.04	0.77	-	-	733	706
64	Metabasit, Amp, Chl, Ep, Plag	Bündnerschiefer	2.93	0.76	-	-	771	745
65	Marmor und Prasinit	Bündnerschiefer	2.98	0.94	-	-	639	605
66	Marmor und Prasinit	Bündnerschiefer	2.76	0.42	-	-	715	700
67	Marmor und Prasinit	Bündnerschiefer	2.72	0.67	-	-	734	711

69	Anhydrit-Glimmerschiefer m. Chlorit		2.74	0.46	-	-	678	662
70	Kalkmarmor	Bündnerschiefer	2.74	0.39	-	-	635	621
71	Kalkmarmor	Bündnerschiefer	2.74	0.84	-	-	673	643
72	Quarz-Glimmerschiefer		2.89	1.50	-	-	737	685
73	Schiefer m. Anhydrit, Cl u. Gl		2.70	0.99	-	-	797	764
74	Schiefer m. Anhydrit, Cl u. Gl		2.72	0.49	-	-	699	682
75	phlogopitführende Kalkmarmor		2.72	0.65	-	-	767	745
76	phlogopitführende Kalkmarmor		2.72	0.45	-	-	686	670
77	Kalzitmarmor m. Schieferlagen		2.73	0.41	-	-	770	670
78	Marmor		2.76	0.36	-	-	762	750
79	Glimmerschiefer m. Q-Chl- Karbonatlagen		2.83	0.62	-	-	710	689
80	Glimmerschiefer m. Q-Chl- Karbonatlagen		2.93	0.51	-	-	749	732
81	Glimmerschiefer		2.69	1.23	-	-	714	671
82	Glimmerschiefer		2.75	0.51	-	-	754	736
83	Glimmerschiefer		2.88	0.35	-	-	662	650
84	Marmor, Kalk-Glimmerschiefer, Talk-Serpentinschiefer	Matreier Zone	2.97	0.88	-	-	757	726
85	Marmor, Kalk-Glimmerschiefer, Talk-Serpentinschiefer	Matreier Zone	2.91	1.29	-	-	813	769
86	Marmor, Kalk-Glimmerschiefer, Talk-Serpentinschiefer	Matreier Zone	2.74	0.50	-	-	877	861
87	Kalkphyllit		2.68	0.50	-	-	762	745
88	Karbonatquarzitschiefer		2.75	0.33	-	-	734	722
89	Karbonatquarzitschiefer		2.75	0.44	-	-	660	645
90	Phyllit		2.77	0.70	-	-	697	673
91	Quarzphyllit		2.73	0.54	-	-	763	745
92	Quarzphyllit		2.77	0.94	-	-	708	676

Seite 3 von 6

93	Quarzphyllit		2.71	0.79	-	-	784	756
94	Quarzphyllit		2.75	0.53	-	-	669	650
95	Metaarenit, Porphyroid	Ibk-Quarz phyllitkomplex	2.77	0.97	-	-	748	714
96	Metaarenit, Porphyroid	lbk-Quarz phyllitkomplex	2.76	0.50	-	-	792	775
97	Kalzit-Ch.schiefer	Ibk-Quarz phyllitkomplex	2.81	0.57	_	_	747	727
51	u.Chloritphyllit		2.01	0.01			141	121
98	Kalzit-Ch.schiefer	Ibk-Quarz phyllitkomplex	2.80	0.68	-	-	745	722
	u.Chloritphyllit							
99	Kalzit-Ch.schiefer	Ibk-Quarz phyllitkomplex	2.82	0.50	-	-	747	730
	u.Chloritphyllit							
100	Karbonatphyllit m.	lbk-Quarz phyllitkomplex	2.79	0.69	-	-	738	714
	Chloritphyllitlagen							
101	Kalzit-Ch.schiefer	lbk-Quarz phyllitkomplex	2.77	0.51	-	-	737	720
	u.Chloritphyllit							
102	Karbonatphyllit m.	lbk-Quarz phyllitkomplex	2.75	0.70	-	-	755	731
	Chloritphyllitlagen							
103	Karbonatpnyllit m.	Ibk-Quarz phyllitkomplex	2.80	1.02	-	-	731	695
	Chloritphyllitlagen	Ible Ourses a buillible as a low						
104	Karbonatphyllit m.	lbk-Quarz phyllitkomplex	2.79	0.89	-	-	731	700
	Cnioritphyllitiagen	lbk Quara phyllitkomplay						
105	Karbonatphyllit m.	lbk-Quarz phyllitkomplex	2.79	1.15	-	-	749	709
	Chioritphyllitiagen	lbk Quara phyllitkamplay	-					
106	Kurbonutpriyint m.	lbk-Quarz phyllitkomplex	2.74	0.69		-	698	674
107	Glimmerschiefer	lbk-Quarz phyllitkomplex	2.81	0.85	-	-	765	736
108	Glimmerschiefer	Ibk-Quarz phyllitkomplex	2.68	0.55	-	-	799	781
109	Glimmerschiefer	Ibk-Quarz phyllitkomplex	2.68	0.60	-	-	659	638
110	Quarzphyllit	Ibk-Quarz phyllitkomplex	2.74	0.39	-	-	752	739
111	Quarzphyllit	Ibk-Quarz phyllitkomplex	2.70	0.36	-	-	726	714
112	Glimmerschiefer	Ibk-Quarz phyllitkomplex	2.76	0.58	-	_	711	691
113	Serizitphyllit	Ibk-Quarz phyllitkomplex	2.77	0.68	-	-	749	726
114	Serizitphyllit	Ibk-Quarz phyllitkomplex	2.76	0.93	-	-	698	666
115	Graphitphyllit	Ibk-Quarz phyllitkomplex	2.83	0.97	-	-	717	683
116	Graphitphyllit	Ibk-Quarz phyllitkomplex	2.82	1.02	-	-	753	718
117	Graphitphyllit	Ibk-Quarz phyllitkomplex	2.73	1.08	-	-	836	800
118	Graphitphyllit	lbk-Quarz phyllitkomplex	2.80	0.89	-	-	766	736

Seite 4 von 6

119	Graphitphyllit	Ibk-Quarz phyllitkomplex	2.75	0.85	-	-	793	764
120	Kalkphyllit		2.75	0.72	-	-	726	701
121	Kalkphyllit		2.71	0.49	-	-	796	779
122	Chloritphyllit	Nordrahmenzone	2.67	0.70	-	-	789	765
123	Chloritphyllit m. Kalkmarmorlagen	Nordrahmenzone	2.79	1.16	-	-	747	707
125	Metabrekzie	Nordrahmenzone	2.74	1.01	-	-	795	761
126	Karbonat-Quarzschiefer	Nordrahmenzone	2.72	0.65	-	-	874	853
127	Karbonat-Quarzschiefer	Nordrahmenzone	2.69	0.75	-	-	800	775
132	Granit		2.67	0.48	-	-	671	655
134	Quarzphyllit	Ibk-Quarz phyllitkomplex	2.78	0.97	-	-	771	737
135	Quarzphyllit	Ibk-Quarz phyllitkomplex	2.71	0.99	-	-	827	794
136	Quarzphyllit	Ibk-Quarz phyllitkomplex	2.71	0.79	-	-	703	675
137			2.72	0.90	-	-	753	722
138	Biotitschiefer	Ibk-Quarz phyllitkomplex	2.75	0.63	-	-	749	727
139	Arkose, Metafeinkonglomerat, Phyllit grünl.	Aigerbach Formation	2.68	0.68	-	-	716	692
140	Arkose, Metafeinkonglomerat, Phyllit grünl.	Aigerbach Formation	2.67	0.71	-	-	704	679
141	Arkose, Metafeinkonglomerat, Phyllit grünl.	Aigerbach Formation	2.66	0.81	-	-	708	680
142	Chloritphyllit	Permotrias der Glockner Decke	2.74	0.42	-	-	707	692
143	Kalkmarmor	Mesozoische Hüllgesteine; Hochstegen-Marmor	2.71	0.26	-	-	769	760
144	Kalkmarmor	Mesozoische Hüllgesteine; Hochstegen-Marmor	2.72	0.30	-	-	735	724
145	Kalkmarmor	Mesozoische Hüllgesteine; Hochstegen-Marmor	2.73	0.54	-	-	782	764
146	Kalkmarmor	Mesozoische Hüllgesteine; Hochstegen-Marmor	2.70	2.36	-	-	744	661
147	Kalkmarmor	Mesozoische Hüllgesteine; Hochstegen-Marmor	2.70	0.37	-	-	757	744
148	Kalzitmarmor		2.72	0.82	-	-	715	686

149	Kalzitmarmor		2.59	0.87	-	-	746	716
150	Kalzitmarmor		2.73	0.36	-	-	692	679
151	Quarz-Glimmerschiefer		2.69	0.58	-	-	707	687
152	Quarz-Glimmerschiefer		2.69	1.02	-	-	736	701
153	Quarz-Glimmerschiefer		2.70	0.92	-	-	743	711
154	Karbonatphyllit		2.72	0.75	-	-	752	726
155	Karbonatphyllit		2.69	0.52	-	-	667	648
156	Phyllit		2.68	1.07	-	-	779	742
157	Phyllit		2.78	0.92	-	-	705	672
158	Phyllit		2.81	0.92	-	-	732	700
159	Kieselschiefer u. Quarzite	Permoskyth aus Wolf	2.56	1.66	-	-	684	625
160	Kieselschiefer u. Quarzite	Permoskyth aus Wolf	2.63	0.88	-	-	707	676
161	Kieselschiefer u. Quarzite	Permoskyth aus Wolf	2.58	1.64	-	-	726	669

**vp: trocken

Seite 6 von 6

THERMTEC

Thermisch – tektonische Modellierung orogenetischer Prozesse in den Ostalpen am Beispiel von Modellregionen - Tauernfenster (Brenner, Lungau / Pongau) und Mur- Mürzfurche / südliches Wiener Becken

Beilage 2

Terrestrische Wärmestromdichte

Enthält:

Tabelle 1

Terrestrische Wärmestromdichte

Nr.	Easting ¹	Northing ¹	Location	Type of measurement	Data Source	Literature	Heatflow
							Density
-							(mW/m²)
1	41/53/	446499	Attersee	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	77.0
2	410233	444505	Attersee	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	77.0 66.0
4	414758	435328	Attersee	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	70.0
5	435034	441569	Traunsee	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	104.0
6	404437	434316	Mondsee	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	41.0
7	396498	433401	Fuschlsee	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	70.0
8	404038	428392	Wolfgangsee	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	53.0
9	444539	416069	Toplitzsee	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	52.0
10	324556	416862	Walchsee	Lakefloor Measurement	Literature	Haenel & Staroste, 1988	54.0
11	434101	415920	Altausseer See	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	33.0
13	424615	408571	Hallstätter See	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	48.0
14	424355	406723	Hallstätter See	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	46.0
15	277494	399344	Achensee	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	60.0
16	277421	397085	Achensee	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	61.0
1/	277366	395910	Achensee	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	65.0
18	209079	209570	Plansee	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	69.0 54.0
20	360133	396570	Zeller See	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	54.0 60.0
20	334976	367730	Mittersill	Gallery measurement	Literature	Haenel & Zoth, 1975	38.7
22	407127	367271	Bohrung	Drilling survey	Literature	Hahn & Haenel, 1974	63.0
			Tauernautobahn			·····, -···	
23	161628	363599	Arlberg Tunnel	Gallery measurement	Literature	Haenel & Staroste, 1988	90.0
24	386476	349142	Tauern Tunnel (Bahn)	Gallery measurement	Literature	Hahn & Haenel, 1974	80.4
25	415328	323462	Millstätter See	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	49.0
26	418872	321899	Millstätter See	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	45.0
27	422701	319148	Millstätter See	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	45.0
28	483398	321711	Langsee	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	75.0
29	399964	312606	Weißensee	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	45.0
30	402305	311500	Weißensee	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	36.0
31	462333	303676	Wörthersee	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	57.0
32	457194	302523	Worthersee	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	53.0
3/	407954	302238	Kloneiner See	Lakefloor Measurement	Literature	Haenel & Zoth, 1973	70.0
39	387764	379257	Robrung St. Johann			Interfels	67.3
41	357481	375264	Kaprun TH1	Drilling survey	Data Acquisition	Geoteam	99.2
43	353348	407656	Saalachthal TH1	Drilling survey	Literature	Archiv GBA	63.9
44	387983	345123	Mallnitz TH1	Drilling survey	Literature	Etschel & Mayer, Geco	79.5
45	220455	354377	Laengenfeld TH2	Drilling survey	Literature	Messung Schlumberger	72.0
47	267134	378543	Wattens 1	Drilling survey	Literature	Joanneum Research	48.2
68	387482	409609	Golling TH 1	Drilling survey	Data Acquisition	Archive government of	63.9
						Salzburg	
69	376424	428236	Obermoos TH1	Drilling survey	Data Acquisition	Archive government of Salzburg	53.4
70	385099	419004	Vigaun U1	Drilling survey	Data Acquisition	Thermalp database	65.2
71	392334	428406	Vordersee 1	Drilling survey	Data Acquisition	Thermalp database	56.6
72	262367	347570	GR-B01/04	Drilling survey	Data Acquisition	Archive BBT	92.7
76	259163	361521	Pf-B02_04	Drilling survey	Data Acquisition	Archive BBT	72.1
77	260384	361394	INA_U1_U4s		Data Acquisition	Archive BBT	73.5
/8 70	254564	3/0944	Tauerntunnel Poobre 2	Gallery measurement	Field campaign	Thermtec	/3.1
79	400997	267644					80.0
80	334929	367644	Kampagne 2010	Gallery measurement	Field campaign	i nermtec	48.5
81	412958	358332	Kabelstollen Hintermuhr	Gallery measurement	Field campaign	Inermtec	70.0
82	483140	350335	EKB 05/08	Drilling survey	Field campaign	Thermtec	48.0
83	482753	349686	EKB07/08	Drilling survey	Field campaign	Thermtec	80.9
84	482875	348401	EKB 20/08		Field campaign	i nermtec	98.0
85	480927	343468	EKB 51/08	Drilling survey	Field campaign	inermtec	80.8

1 Coordinate System WGS1984, Austria Lambert