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Abstract

Detailed soil information and soil maps are essential for the monitoring, manage-
ment, conservation and restoration of natural ecosystems, rangelands and protected 
areas. Semi-automated mapping methods have advantages over conventional ones, 
and the selection of the best interpolation method and accurately predicted soil 
property maps are important for effective management and conservation strategies. 
Spatial soil information is important also for managing natural resources, predicting 
soil properties, improving sampling designs in future agro-ecological studies, and 
for assessing protected areas. We investigated the suitability of different interpolation 
methods for spatial variability predictions and for studying various soil properties 
within a rangeland ecosystem and the Sabalan National Natural Monument protect-
ed area, in northwestern Iran. Soil samples were collected randomly from a depth of 
0–30 cm, and various properties were measured in the laboratory. Normality of data 
was examined and spatial statistics was applied to determine spatial variation of the 
properties. Interpolation methods of inverse distance weighting, Kriging and Cokrig-
ing were applied and compared for suitability. Results were evaluated using cross-
validation. The results of applying spatial statistics demonstrated that soil properties 
had spatial dependence; Cokriging emerged as the most accurate technique overall. 
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Introduction

Soil spatial variability evaluation can be made on 
scales ranging from the micro-level (millimetres) to 
the plot level (metres), up to landscape (kilometres) 
scale (Garten et al. 2007). Soil information and knowl-
edge of  spatial soil variation are important, having 
useful applications such as enhancing natural resourc-
es management (Wang et al. 2009), management of  
protected areas (Zinck 1995; Varallyay et al. 1998; Ea-
gles & McCool 2002; Majaliwa et al. 2010), predicting 
soil properties at unsampled locations (Wei et al. 2008; 
Liu et al. 2009), improving sampling designs for future 
agro-ecological studies (Yan et al. 2007), and evaluat-
ing protected areas (Majaliwa et al. 2010). 

Spatial statistics is a powerful tool for spatial vari-
ability evaluations (Sauer et al. 2006); several studies 
have used spatial statistics to determine spatial vari-
ability of  soil properties (Wei et al. 2008; Glendell et 
al. 2014; Longa et al. 2014; Li et al. 2015).

The most commonly used spatial statistical meth-
ods are inverse distance weighting (IDW), and Kriging 
and Cokriging interpolations (ESRI 2012; Gong et al. 
2014). Kriging is a widely used stochastic method and 
is generally considered the best linear unbiased estima-
tor, as it minimizes variance of  the estimation error 
(Webster & Oliver 2001; Dai et al. 2014). The method 
has shown considerable advantages in making predic-
tions of  soil properties when compared with deter-
ministic interpolation methods (Liu et al. 2008, 2009; 
Worsham et al. 2010). Many studies have compared 

the accuracy of  IDW and Kriging and have variously 
reported which is the more successful method. For 
example, Yasrebi et al. (2009) evaluated and compared 
Ordinary Kriging and IDW for the prediction of  spa-
tial variability of  various chemical properties of  soil, 
and concluded that the Kriging method performed 
better than IDW for all the properties examined. 
However, Robinson and Metternicht (2006) examined 
the performance of  spatial interpolation techniques 
(IDW and Kriging) for mapping soil properties and 
concluded that Kriging performed better as an inter-
polated method for pH in the top soil, and lognormal 
Ordinary Kriging also performed better in measuring 
EC in the top soil. Sajid et al. (2013) evaluated and 
compared Kriging and IDW for the spatial analysis of  
soil bulk density. Their results indicated that neither 
method reflected the true variation of  bulk density.

The Cokriging method is appealing because esti-
mations consider other potentially important variables 
such as covariates (ESRI 2013). There are several oth-
er advantages of  using Cokriging (Pardo-Iguzquiza et 
al. 2015): (i) problems of  classical Indicator Cokrig-
ing, such as estimates outside the interval (0, 1) and 
order relations, are avoided; (ii) secondary variables 
(e. g. topographic parameters) can be contained in the 
estimation of  probability maps; (iii) uncertainty maps 
(versus probability maps) can be obtained; (iv) there 
are modelling advantages, because variograms and 
cross-variograms of  real variables do not have the re-
strictions of  indicator variograms and indicator cross-
variograms (Pardo-Iguzquiza et al. 2015). It appears 



71
Ghorbani et  al .

that the optimal method depends on circumferences, 
and parameters such as the nature of  the targets to 
be estimated (e. g. ground arsenic concentration and 
rainfall) (Wu et al. 2006). Because of  the benefits of  
data transformation and Cokriging in making predic-
tions, Zn was assessed using a georeferenced set of  
data from northern North Dakota. Cokriging on Zn, 
using OC or pH as auxiliary variables, was consistently 
more effective than Kriging on Zn alone. Considering 
the importance of  mapping soil properties, the objec-
tives of  this study were to: (i) compare the accuracy 
of  the interpolation techniques IDW, Kriging and 
Cokriging, and select the most suitable technique(s) 
for future studies in soil mapping; (ii) investigate 
changes in various soil properties on the southeastern 
slopes of  Sabalan mountain. The aim was to create a 
framework that was appropriate for a particular soil, 
in order to preserve, restore and reform rangelands 
and protected areas. Maps produced in this study can 
be used in future studies to determine the relationship 
between these elements and parent material, as well as 
in analysing land use in other areas. They can also be 
used in future studies of  these particular rangelands 
and of  this protected area in order to enhance natural 
resource management, and to predict soil properties at 
unsampled locations. In addition, the maps can be of  
use in improving sampling designs, providing a base-
line for future studies.

Methods 

Area under study 
The area under study is located at 1 150 to 4 811 m 

a.s.l., at 47° 45’ E to 48° 23’ N (at the Balkhlichai 
watershed, southeast of  Sabalan mountain, Ardebil 
province, Iran; see Figure 1). It falls partly within the 
Sabalan National Natural Monument protected area. 
In terms of  its ecological abiotic and biotic factors, 
the area can be divided into four main utilization and 
vegetative units: (i) plains with gentle slope (less than 
12 %) and an elevation of  1 150 to 1 500 m (mainly ag-
ricultural, residential and industrial areas, and sparsely 
used rangeland in areas with limited slope; the range-
land is grazed mainly by rural livestock); (ii) hilly areas, 
intermediate between the plains and Sabalan moun-
tain, at an altitude of  1 500 to 2 500  m, with slope 
variation and relatively deep soil (the lower slopes 
are cultivated as dry farming; the rest of  the area is 
rangeland). Rural livestock and the livestock of  the 
Shahsevan nomads graze rangelands in these areas, 
which are extremely degraded; (iii) low mountainous 
areas of  Sabalan mountain, at 2 500 to 3 600 m, with 
limited rangeland use; mainly grazed by the Shahsevan 
nomads’ livestock; these areas are also extremely over-
grazed; (iv) elevated mountainous areas, over 3 600 m, 
also grazed by the Shahsevan nomads’ livestock; area 
designated as the Sabalan National Natural Monument 
(6 643 ha) by the Department of  the Environment of  
Iran (Ghorbani et al. 2013, 2014, 2015). The area un-

Figure 1 – Location of  the study area (Balkhlichai watershed), main cities in the study area, and sampling points in Ardabil 
province, Iran.

Azarbayjansharghi 
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der study has temperate summers and cold winters; 
for three to four months of  the year, it is covered 
with snow and ice; mid-June to mid-October is the 
dry season. At lower altitudes, the climate is semi-arid; 
high altitudes are cold and semi-arid (Ghorbani et al. 
2013). Despite considerable anthropogenic effects, 
plant species diversity is high; some plants, such as 
Artemisia melanolepis Boiss, and Nepeta menthoides Boiss 
and Buhse, are endemic to Iran; Nepeta menthoides Boiss 
and Buhse has been reported only in Iran’s Sabalan 
mountain. Due to the high anthropogenic effects on 
the habitat of  Sabalan more broadly, wildlife varia-
tion is low, particularly in unprotected areas. On the 
other hand, in the protected area (the Sabalan National 
Natural Monument), there is still a considerable vari-
ety of  flora (more than 600 species) and fauna (more 
than 40 species). The wildlife includes birds such as 
Tetraogallus caspiuscaspius, and mammals such as Ovis 
orientalis gmelini and Capra aegagrusaegagrus; Tetraogallus 
caspiuscaspius and Ovis orientalis gmelini are of  particular 
importance because they are found only on Sabalan 
mountain (Sheikh & Sheikh 2006).

Soil sampling
The study area is mountainous and has limited ac-

cess only, by nomadic roads. Thus, it was impossible to 
collect samples in a systematic grid format and some 
parts remained unsampled. Soil samples were there-
fore collected randomly, according to accessibility by 
road, from 151 sites (Figure 1). The criteria used in 
selecting sites for soil sample collection were that the 
sites had to be: (i) at least 1 000  m away from each 
other; (ii) in the natural rangelands; (iii) some distance 
from villages, cultivated land and recreational areas to 
avoid edge effects; (iv) representative of  all landforms 
and soil types of  the area in terms of  elevation, slope 
and aspect. As the region is mountainous, samples 
were taken from a depth of  0 to 30  cm (the effec-
tive depth of  plant roots; Ghorbani et al. 2013, 2015). 
In each site, a 100 m transect was established perpen-
dicular to the main slope (for vegetation sampling for 
another study). Soil samples were collected from the 
start, middle and end of  each transect and mixed to-
gether as one sample for each site. The position of  
each soil sample was recorded using GPS. Soil samples 
were transferred to the laboratory of  the University of  
Mohaghegh Ardabili and prepared for analysis.

Measuring soil properties
Prior to analysis, all soil samples were air dried and 

hand-sieved through a 2 mm mesh to remove roots 
and other debris. pH, EC, OC, CaCO3, absorbable K 
and P, and percentages of  sand, silt and clay were mea-
sured according to standard procedures. pH and EC 
were measured using a pH meter and WTW (Bauer 
& Knorr 2004) respectively. OC was measured using 
the Blac-Valkly (Sato et al. 2014) method; CaCO3 was 
measured by neutralization with acid and titration (Bit-
ter et al. 2010); K and P were measured by ammonium 

acetate (Patel et al. 2014) and Olsen methods (Beten-
court et al. 2012) respectively. The Baykas hydrometer 
(Kettler et al. 2001) method was used to determine 
soil texture in terms of  sand, silt and clay, which were 
measured without separation. 

Conventional statistical analyses
Descriptive statistics, including the mean, standard 

deviation, coefficient of  variation, maximum, mini-
mum, Kurtosis, Skewness and Kolmogov-Smirnov 
(K-S) tests, were performed for each of  the soil vari-
ables measured. Descriptive statistical analyses were 
performed using the SPSS16.0 software package 
(SPSS Inc., USA).

Spatial statistics of estimated soil properties 
Spatial statistical methods were used to study spa-

tial variability of  soil properties. The semivariograms 
were calculated from the data, and fitted models were 
derived for the properties of  each soil sample. In the 
second stage, predictions were made for the unsam-
pled locations. The semivariogram of  each soil prop-
erty was constructed using equation (model) 1:

					             (1)

where γ is the semi-variance for N data pairs sepa-
rated by a distance lag h, and z is the variable under 
consideration at positions i and i+h. As semivario
gram construction assumes a Gaussian distribution 
(Reimann & Filzmoser 2000; Olea 2006; Wang et al. 
2015), variables were transformed if  necessary to ap-
proximate normality and stabilize variance (Goovaerts 
1999; Wang et al. 2015). Data was detrended by fit-
ting low-order polynomials according to the exhibited 
trend (if  existent) to account for any systematic vari-
ation (i. e. global trend) and hence satisfy the assump-
tion of  stationarity (Bekele & Hudnall 2006; Sauer et 
al. 2006; Wang et al. 2015). Thus, after detrending, par-
ticular residuals were used to determine standardized 
isotropic semivariograms in the soil sample from each 
location. Therefore, according to the distribution of  
the collected samples, anisotropy (the effect of  direc-
tion on the intensity of  spatial dependence) was not 
considered in the interpretation, as such an analysis 
would have required a higher number of  samples in 
each direction in order to build a stable semivariogram. 
Isotropic characterization of  spatial dependence is 
reportedly more suitable when there are only a small 
number of  samples (Davidson & Csillag 2003). After 
the semivariograms had been constructed, theoreti-
cal semivariogram models were fitted to the data, by 
selecting the model with the lowest residual sum of  
squares and highest R2 (e. g. Wei et al. 2008; Liu et al. 
2009; Wang et al. 2009). In these models, Co is the nug-
get, Co+C is the sill, and a is the range. These param-
eters were used to describe and compare the spatial 
structure of  soil properties. Soil variables were then in-
terpolated using IDW, Kriging and Cokriging methods.
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Based on minimization of  the sum of  the squared 
deviations between experimental and theoretical semi-
variograms, a spherical model (equation 2), an expo-
nential model (equation 3), and a Gaussian model 
(equation 4) were selected for the further investigation 
of  spatial structure: 

					             (2)

					             (3)

					             (4)

Figure 2 – Variograms and cross-variogams of  pH, EC, 
CaCO3, OC, K, P, sand, silt and clay
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where h is lag distance, C0 the nugget effect (the 
local variation occurring at scales finer than the sam-
pling interval, or fine-scale variability, measurement or 
sampling error), C0 + C1 is the total variance, and a is 
the range of  spatial dependence.

Continuous maps of  individual attributes were gen-
erated by point Kriging without drift, which estimates 
values of  points at the grid nodes (Candela et al. 1988). 
Construction of  semivariograms and model fitting 
were performed in GS+ version 5 (Gamma Design 
Software, USA); ArcGIS10.2 (ESRI, ArcGIS Desktop, 
USA) geostatistical analyst tool was used for interpola-
tion and mapping.

Assessment of the accuracy of predictions
Cross-validation was used to test the accuracy of  the 

maps produced, and MAE (equation 5), MBE (equa-
tion 6) and RMSE (equation 7) were used to measure 
the accuracy (Wang et al. 2015). The mean absolute 
error (MAE) is a useful measure widely used in model 
evaluations (Elshorbagy et al. 2010). Elshorbagy et al. 
reported that the root mean square error (RMSE) is 
used as a standard statistical metric to measure model 
performance in meteorology, air quality, climatic and 
soil studies. Furthermore, they reported that while 
MAE gives the same weight to all errors, RMSE pe-
nalizes variance as it gives errors with larger absolute 
values more weight than errors with smaller absolute 
values. In addition, MBE is a measure of  overall bias 
error or systematic error and is usually written as a 
percentage error. 

					             (5)

					             (6)

					             (7)

where N represents the number of  instances pre-
sented to the model; Oi and Pi represent observed and 
predicted equals; and O and P represent the means of  
the corresponding variables.

Results and discussion

Analysis of descriptive statistics
Descriptive statistics, including mean, median, 

standard deviation (SD), variance, skewness, kurtosis 
and coefficient of  variation (CV) for soil properties, 
are presented in Table 1. Most of  the soil properties 
did not have a normal distribution; exceptions were 
P and percentage of  sand. Since the deviation from 
the normal distribution may have an undesirable ef-
fect on statistical analysis, especially in semivariogram 
computation, this study applied several normalization 
functions, and the inverse method was then used for 
normalization of  silt, CaCO3 and K using a logarith-
mic converter, amount of  soil OC using square root, 
clay content, EC and pH. 

Results of spatial statistical analysis 
The results of  semivariogram analysis for soil pa-

rameters showed that with normal distribution of  
samples, error rate reduced and solidarity and precision 
increased. As presented in Table 2 and Figure 2, a semi-
variogram of  all parameters was derived as isotropic or 
independent of  direction. Different soil variables fol-
lowed different variogam models. For example, CaCO3 
and pH conformed to an exponential model, while 
EC, OC and silt conformed to a Gaussian model. The 
same results are reported in Cobo et al. (2010), in which 
soil properties clay, silt, sand and pH were very well re
presented by spherical modelling, with variable para
meters depending on the property and the area under 
evaluation. Moreover, Bitencourt et al. (2016) reported 
that physical properties of  soil, including sand, clay 
and silt, followed the Gaussian model. Results of  the 
spatial properties examined in this case also imply that 
most soil variables have strong spatial correlation, with 
the exception of  pH and CaCO3, which have moder-
ate spatial structure. Based on the results of  semivario-
gram elements, it was observed that K, with 66 150 m, 
had the maximum impact domain, and CaCO3, with 
11 190 m, had the smallest impact domain among the 
elements studied (Table 2). The corresponding results 
in Cobo et al. (2010), for the smallest and largest im-
pact ranges, were for sand (506 m) and clay (695 m) 
respectively, which were very low in comparison to our 
results. If  we look at the range of  K (66 150 m), it can 
be concluded that the spatial structure of  this para

Table 1 – Descriptive statistics for soil properties.
CVKurtosisSkewnessVarianceSDMedianMeanSoil  

properties

0.277.971.040.070.277.757.76pH

0.2934.705.460.060.260.200.25EC (ds / m)

0.603.430.940.640.801.151.32OC (%)

0.824.671.3063.847.998.209.68CaCO3 (%)

0.7113.112.6063 862.00254.00274.68351.40K (mg / kg)

0.5428.8550.0053.14833.002.370.31P (mg / kg)

0.2812.6342.6544.17160.002.600.20Sand (%)

0.321.940.17223.2014.9445.3245.32Silt (%)

0.8413.002.7876.388.746.0110.33Clay (%)

Table 2 – The parameters of  the semivariogram models.
Soil  
properties

Model C0 C + C0 Range  
[m]

C / (C + C0) R2 RSS

pH Exponential 0.06 0.11 33 980 0.50 0.76 0.04

EC (ds / m) Gaussian 4.70 210.00 30 570 0.97 0.95 0.00

OC (%) Gaussian 2.90 96.80 29 860 0.97 0.98 0.33

CaCO3 (%) Exponential 0.08 0.20 11 190 0.60 0.92 0.00

K (mg / kg) Spherical 0.73 4.27 66 150 0.82 0.97 0.06

P (mg / kg) linear 10.00 10 130.00 40 740 0.99 0.95 0.00

Sand (%) Spherical 1.00 2 721.00 53 470 1.00 0.91 0.80

Silt (%) Gaussian 320.00 10 750.00 26 860 0.97 0.95 0.00

Clay (%) linear 1.00 399.00 46 520 0.99 0.96 0.00
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Table 3 – Results of  interpolation methods for soil properties, 
showing the best model for each parameter.
Soil  
properties

Method type Lag  
size

Model type RMSE

pH Simple Kriging 2 000 Exponential 0.00

EC (ds / m) Simple Cokriging 1 500 Gaussian 1.36

OC (%) Disjunctive Cokriging 1 000 Gaussian 0.27

CaCO3 (%) Ordinary Cokriging 1 500 Gaussian 0.36

K (mg / kg) Ordinary Kriging 1 500 Gaussian 0.23

P (mg / kg) Indicator Cokriging 1 000 Exponential 0.49

Sand (%) Indicator Cokriging 1 800 Exponential 0.45

Silt (%) Ordinary Cokriging 2 000 Gaussian 0.13

Clay (%) Ordinary Cokriging 1 500 Gaussian 0.06

Table 4 – Results of  accuracy assessment of  the various 
interpolation methods.
Soil  
properties

Method type MBE MAE RMSE

pH Simple Kriging 0.00 0.00 0.00

EC (ds/m) Simple Cokriging 0.06 0.07 0.25

OC (%) Disjunctive Cokriging −0.04 0.22 0.27

CaCO3 (%) Ordinary Cokriging 0.18 0.27 0.36

K (mg / kg) Ordinary Kriging −0.03 0.11 0.23

P (mg / kg) Indicator Cokriging 5.90 21.74 0.49

Sand (%) Indicator Cokriging 6.12 10.75 11.34

Silt (%) Ordinary Cokriging 0.04 0.11 0.13

Clay (%) Ordinary Cokriging 0.00 0.04 0.06

meter, in comparison with that of  other elements (e. g. 
lag distance), was much larger. This makes it possible 
to select greater values for the various elements, reduc-
ing the number of  actual samples required, to estimate 
unsampled locations. Moreover, in the design of  the 
sampling network for this parameter, it was possible to 
increase the sampling intervals. 

Selection of the best model
After processing the appropriate model and extract-

ing semivariograms from the data, the best interpola-
tion method based on RMSE was selected. For pH 
and EC, a Simple Kriging interpolation method was 
selected; for OC, Disjunctive Cokriging; for CaCO3, K, 
silt and clay, Ordinary Cokriging; and for P and sand 
Indicator, Cokriging (see Tables 3 and 4). According 
to metrics such as MAE and RMSE, the Cokriging 
method had a lower error rate than Kriging. This could 
reflect the fact that the spatial distribution of  soil prop-
erties was highly correlated with elevation, which tends 
to reduce variance estimation. Yanl et al. (2007) com-
pared the Cokriging and Kriging methods for improved 
prediction and reduction of  sampling density for soil 
salinity. They reported that, in all cases, the RMSE of  
the Cokriging estimation was significantly lower than 
for the Kriging estimation. Bameri et al. (2015) also 
report lower RMSE for Ordinary Cokriging in estimat-
ing OC using clay content as the covariant. This gave 
better results over the whole slope in comparison with 
the Kriging and IDW methods. In our study, using co-
variates such as elevation, which was highly correlated 
with the main variable (Ghorbani et al. 2015), resulted 
in an increase in accuracy in interpolation. Thus, for 
the prediction of  soil properties (except pH), in order 
to convert the point data to an area, we recommend 
the use of  auxiliary variables that are highly correlated 
with the main variables, such as elevation. 

Spatial distribution of soil properties
Figure 3 shows interpolated maps for soil variables 

based on the best derived models and methods. Ac-
cording to map 3a, which was produced using Sim-
ple Kriging, the average pH in the study area was 7.76 
(Table 1). North and south of  the area had higher es-
timates for pH (7.97–8.80). EC, in the entire area of  
study, was less than 0.61 ds / m (Figure 3b). Based on 
these results, there was a relationship between soil OC 
and elevation.

Figure 3c shows the map produced using discrete 
Cokriging for OC. The north and northwestern ar-
eas showed unexpectedly high OC content because 
in other areas rangeland vegetation cover in compari-
son was high (Ghorbani et al. 2013, 2014, 2015). In 
contrast, the samples taken at lower altitudes and in 
areas degraded by grazing showed lower soil OC. It 
seems that at higher elevations, reduced temperature 
and increased humidity led to a reduction in the de-
composition of  litter, causing an accumulation of  OC 
(Franzluebbers 2002).

The interpolated map (Figure 3d) of  Ordinary 
Cokriging showed that the CaCO3 in the area did not 
have a random pattern, and was affected by elevation. 
Thus, the lowest amount of  CaCO3 (0.8–15.6%) was 
mapped in the south and southeast at lower elevations. 
It seems that destructive activities such as overgraz-
ing carried out in steep mountainous areas caused in-
creased erosion and leaching into the soil, increased 
dissolution of  limestone, and ultimately increased 
CaCO3 percentage in soil at lower altitudes.

Figure 3e shows the map for K content produced 
using the Ordinary Kriging method. The central and 
northeastern areas had higher amounts of  K. Evalu-
ation in the rangeland areas located below 2 500  m 
a.s.l. may have been affected by changes such as dry 
farming, planting of  high-yield varieties, and use of  
groundwater rather than surface water; these consid-
erations may need further investigation. There was a 
radical change in P availability in the area.

As seen in Figure 3f, the northern part of  the area 
had higher levels of  P. Since rangeland vegetation in 
the mid-highland areas had dense cover, and absorbed 
P from different layers of  the soil, phosphorus accu-
mulated at the soil surface after the destruction of  the 
soil layers. Moreover, there were increasing amounts 
of  P in the northeastern part of  the study area.

Figure 3g shows a map of  sand evaluations and 
their variation. In the northern parts of  the study 
area, as expected, high altitude rangeland had low soil 
depth, high slope and rocky outcrops in comparison 
with the lowland areas, which had deeper soil, and 
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Figure 3 – Spatial distributions of  soil properties; a) pH,  
b) EC, c) OC, d) CaCO3, e) K, f) P, g) sand, h) silt, i) clay.

shallow slope in the south and east, which showed 
lower amounts of  sand in the soil contents.

The spatial distribution of  silt was almost the op-
posite of  the OC distribution (Figure 3h). Mapping 
showed that where silt occurred, it did so in higher 
concentrations in the southeast, although overall this 
area had relatively little silt. In contrast, the percentage 
of  silt was higher towards the north and west, in the 
steeper areas, as was expected because of  the shallow 
soil and the low outcrops.

Figure 3i shows the map for clay content, which 
was as expected. However, the percentage of  clay par-
ticles was lower towards the western areas.

Application of results: emphasis on protected 
area

Ecosystems, including rangelands and protect-
ed areas, require constant monitoring (Zinck 1995; 
Várallyayet et al. 1998; Hockings 2009), and soil maps 
are one of  the basic sources of  information in this re-
gard (Webster & Oliver 2000). Monitoring natural eco-
systems and protected areas is necessary for the collec-
tion of  reliable physical data, such as certain soil types 
and special soil features relating to broad geographical 
areas (e. g. natural rangelands), or smaller land units 

(such as protected areas). The availability of  such in-
formation helps in the conservation, management and 
monitoring of  biological and physical features of  re-
gions or land units (Alberta Natural Heritage Informa-
tion Centre 2002). 

Providing reliable physical data can enhance de-
cision-making related to resource- and / or land-use. 
Data must be collected to help evaluate an area’s bio-
diversity, such as presence, distribution, status and 
trends of  plant species, and which species are at risk 
and to what extent. The impact of  human activities 
also needs to be determined (Alberta Natural Heritage 
Information Centre 2002). Producing detailed infor-
mation such as soil maps based on conventional meth-
ods is time-consuming but cost effective, particularly 
when these maps need to be produced every 5 to 10 
years for monitoring purposes. Semi-automated meth-
ods are therefore needed to produce detailed soil in-
formation maps, including for the whole of  Iran, and 
in particular for natural environments and protected 
areas such as Sabalan mountain and Sabalan National 
Natural Monument (Ghorbani et al. 2013, 2014, 2015). 
The results of  this study provide basic information of  
interest for various fields of  study, such as quantitative 
vegetation studies and ecotourism development plan-
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ning. Moreover, this study presents a method that can 
be applied to soil parameter mapping in other range-
lands and protected areas. 

Conclusion

We conducted this study in order to help overcome 
the need for relatively low-cost, detailed information. 
This study compared interpolation methods to deter-
mine the spatial distribution of  soil properties, includ-
ing pH, EC, OC, CaCO3, K, P, sand, silt and clay, on 
the southeastern slope of  Sabalan mountain range-
lands and at the Sabalan National Natural Landmark. 
Selection of  the best interpolation method and ac-
curately predicting soil property maps can help range 
management to conserve and restore the rangeland, 
and can be instrumental in identifying new areas to be 
protected and monitoring them.

The maps produced can be used to locate the dis-
tribution of  soil properties and improve sampling de-
sign. Based on the results of  the interpolation meth-
ods for soil variables, the Kriging method was found 
to be the best predictor for pH and K; the Cokrig-
ing method was more suitable for other variables. 
Comparison among the Cokriging, Kriging and IDW 
methods showed that Cokriging produced more reli-
able results. In other words, although the application 
of  the Kriging method in this study presented accept-
able predictions, Cokriging increased the accuracy of  
the maps. This could reflect the fact that the spatial 
distribution evaluations for individual soil properties 
were highly correlated with elevation, which tends to 
reduce the variance of  the predictions. Mapping the 
variables showed that pH, EC and OC was effective in 
enhancing management efficiency.
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