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1 Project development and goals 

Landslides are among the most serious threats to human lives and infrastructure in mountain 
ranges worldwide. Beyond the direct hazard through the moving mass, landslides can initiate 
natural hazard cascades by damming rivers and initiating catastrophic flash floods and debris 
flows. Through such long-range effects even unwitnessed landslides occurring in remote 
areas matter. Critically, insufficient information exists on landslide occurrence and recurrence 
intervals, and hence on the hazard potential of landslide hazard cascades, as well as possible 
prediction and prevention measures. This lack of information is mostly due to the remoteness 
of many mountain regions as well as the complex dynamics of natural hazard cascades even 
so the hazard posed by landslide dam failures is often orders of magnitudes greater than that 
of the initial landslide event. In the RiCoLa project, we developed, tested and applied remote 
sensing and process modeling approaches to detect existing and predict potential landslide 
dams and landslide-dammed lakes.  

The interdisciplinary RiCoLa project combined geomorphology, remote sensing, 
geoinformatics and hazard research in the frame of the Earth System Science Call of the 
Austrian Academy of Sciences (ÖAW) and facilitated the collaboration of researchers at the 
Department of Geography and Geology and the Interfaculty Department of Geoinformatics – 
Z_GIS at the University of Salzburg with colleagues from Taiwan and New Zealand. The central 
aim of the project was to detect landslide-induced river course changes and lake formation 
to analyze the role of predisposing (e.g., lithology), preparatory (e.g., climate) and triggering 
(e.g., earthquakes) factors in the formation of landslide-induced hazard cascades. For this, 
different tools for the detection and prediction of landslide dams and landslide-dammed lakes 
on satellite images and digital elevation models had to be developed, tested and applied to 
different mountain ranges worldwide. 

2 Project execution 

2.1 Project duration 

The project started on August 1, 2017 and was originally scheduled to end on July 30, 2020. 
The project was extended twice. Once for 5 months (August 1, 2020, until December 31, 
2020), and once for 6 months (January 1, 2021 until June 30, 2021). 

The project was prolonged due to certain tasks taking longer than expected and due to the 
availability of additional funds from outside of the ÖAW, allowing for a cost-neutral 
continuation of the project. In particular, Günther Prasicek got a postdoc position funded at 
the University of Lausanne, allowing him to work as the PI of RiCoLa at the University of 
Salzburg at minimal costs and employing a PhD student, Anne-Laure Argentin, in the RiCoLa 
project. Further, Anne-Laure Argentin got awarded a 1-year PhD stipend by the University of 
Salzburg, allowing her to continue her work within the RiCoLa project beyond the originally 
envisioned employment period.  
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2.2 Important activities 

2.2.1 Field trip Taiwan 

An important project milestone and dissemination activity was a 10-day research visit in 
Tainan, Taiwan, in mid-November 2018. During our stay, we jointly organized a workshop and 
meetings (Figure 1) with our local collaboration partner from Taiwan, the Disaster Prevention 
Education Center (DPEC), National Cheng Kung University (NCKU). Experts in remote sensing 
and landslide research from different research and governmental institutions in Taiwan were 
participating, including experts from the Disaster Prevention Research Center (DPRC) at the 
NCKU, the National Chi Nan University (NCHU), and the National Space Organization (NSPO). 
The workshop was used to present the RiCoLa project and the first results as well as to discuss 
ongoing work and ideas. The feedback gathered was very important for improving our 
workflows, approaches and results. In addition, further opportunities for collaboration were 
discussed and evaluated. The Taiwanese colleagues provided valuable information about 
landslide-dammed lakes in Taiwan and suggested specific locations to be studied.  

 
Figure 1: RiCoLa workshop and meetings in Tainan, Taiwan.  

In the frame of our visit, we also conducted joint field trips with colleagues from the DPEC 
and DPRC to selected study areas in Taiwan (Figures 1, 2). This was especially useful for 
gathering knowledge about the area and the present landslide processes, validating the 
preliminary mapping results, collecting field reference data (e. g. field photographs, UAV 
imagery), and identifying mapping errors with the local experts. We visited several landside-
affected areas, particularly such places where landslides dammed rivers and led to the 
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creation of a landslide-dammed lake. One field trip was dedicated to visiting the famous 
Xiaolin landslide as well as the Butangbunasi landslide and the surrounding areas. The 
information collected in the field and provided by the Taiwanese experts, significantly helped 
to conduct a detailed study of the Butangbunasi landslide. Another field trip was dedicated 
to visiting the Caoling landslide, which created a landslide-dammed lake several times in the 
past. 

 

Figure 2: Impressions from the field trips in Taiwan, including construction work at the Butangbunasi debris fan to avoid the 

damming of the river (top left), the Xiaolin landslide (bottom left) and the Caoling landslide (bottom right). Field photographs 

and UAV images were taken by A.-L. Argentin, D. Hölbling and C.-Y. Tsui in November 2018. 

2.2.2 Field trips New Zealand 

Within the scope of her work at the PhD studies in the frame of the RiCoLa project, Anne-
Laure Argentin visited the Canterbury University in New Zealand for 6 months, from 24th 
November 2018 to 24th May 2019. She worked with the local experts on landscaape 
geometry-based landslide dam detection methods, went on field trips to study the 
morphology of landslide dams (Figure 3), attended the 18th Australia New Zealand 
Geomorphology Group conference and a workshop dedicated to the study of landslide dams 
in Kaikoura. 
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Figure 3: Impressions from the field trips in New Zealand. The Leader dam (top left), triggered by the Kaikoura earthquake, 

has been eroded by the river. The landslide pushed the river out of its normal bed and the water incised into old terraces. 

Field trip of the ANZGG conference (top right) focusing on coastal and fluvial geomorphology. Remnants of the Coleridge 

landslide dam (bottom) with landslide deposits protruding from the mountain with a smaller slope, and a very dark green 

vegetation cover. Field photographs taken by A.-L. Argentin. 

During another trip to New Zealand, Daniel Hölbling organized meetings with collaborators 
and local experts from Manaaki Whenua – Landcare Research (MWLR) to discuss how the 
methods developed in RiCoLa could be applied to the study sites in New Zealand and which 
challenges and opportunities are present. Moreover, during a field visit he gained new 
knowledge about the local environmental and geomorphological conditions as well as the 
impact of landslides, in particular earthflows, on the local drainage system. 

3 Most important results 

3.1 In a nutshell 

◦ We analyzed the relationship between the area of the Butangbunasi landslide and 
lake, Tawian, and the occurrence of typhoons. 

◦ We automatically detected lakes and damming landslides on Landsat satellite images 
of Taiwan. 
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◦ We traced landslide area and dammed lake changes in New Zealand through satellite 
image time series and categorized lakes based on temporal change patterns. 

◦ We automatically detected landslide dam locations on digital elevation models 
(DEMs). 

◦ We simulated potential landslide dams and lakes across Austria. 

◦ We determined the scaling of landslide dam and lake area in different mountain 
ranges around the globe. 

◦ We modeled the landslide and the formation of the dam that impounded lake 
Hintersee, Bavaria. 

◦ We investigated landslide-induced geomorphological changes and lake formation on 
Sentinel-1 and Sentinel-2 satellite data. 

3.2 Mapping and monitoring of river-damming landslides on satellite images 

For mapping and monitoring of river-damming landslides on satellite images we used object-
based image analysis (OBIA), demonstrated by two case studies as described in the following. 
OBIA provides a suitable methodological framework for efficient landslide mapping, as well 
as landslide change analysis (Lu et al., 2011; Hölbling et al., 2012). By working on the object-
level instead of the pixel-level, OBIA allows considering spectral, spatial, textural, 
morphometric and hierarchical properties for the classification of landslides (Martha et al., 
2010; Hölbling et al., 2015). Moreover, it is argued that using OBIA yields better classification 
accuracies than pixel-based classifications (Martha et al., 2010; Moosavi et al., 2014; Keyport 
et al., 2018). Several studies employed OBIA for landslide mapping and landslide change 
detection in Taiwan (Lahousse et al., 2011, Eisank et al., 2014; Rau et al., 2014; Hölbling et al., 
2015; Plank et al., 2015), but none of them used time series of images for investigating the 
evolution and reactivation of an active large landslide or aimed to detect river-damming 
landslides. 

3.2.1 Analyzing the evolution of the Butangbunasi landslide  

For mapping and monitoring the evolution of a large river-damming landslide in south-central 
Taiwan, i.e., the Butangbunasi landslide (Figure 4), we developed an object-based image 
analysis (OBIA) approach based on a time series of Landsat imagery. Moreover, we analyzed 
the potential relationship between landslide extension or re-activation with respect to heavy 
rainfall events during typhoons. Reactivation and extension of this major landslide have been 
taking place since the 1980s and have been resulting in repeated sediment delivery to the 
Laonong River, especially during torrential rainfall brought by typhoons. A landslide-dammed 
lake was created several times in the past. Better knowledge about the evolution of 
landslides, their triggering factor and the impact of landslides on rivers and on the 
downstream area is of high importance for disaster mitigation. In November 2018, we visited 
the Butangbunasi landslide and collected important information that helped to perform this 
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study. Intermediate results have been published in Hölbling et al. (2019) and final research 
outcomes in Hölbling et al. (2020). In the following, the main findings of this case study are 
summarized. 

 

Figure 4: The Butangbunasi landslide area. (a) Unmanned aerial vehicle (UAV) image of the upper part of the Butangbunasi 

landslide from June 2017. (b) UAV image of the temporary landslide-dammed lake at Butangbunasi and parts of the debris 

fan from April 2011. (c) Photograph of the Butangbunasi landslide from November 2018. The photograph was taken from 

the Laonong river valley looking towards Butangbunasi; the actual landslide area is further up the tributary. The Butangbunasi 

debris fan, the former lake area, and the former landslide-dam area are indicated. From Hölbling et al. (2020). 

3.2.1.1 Semi-automated object-based landslide and lake mapping 

We used time series of optical satellite data from Landsat 5, Landsat 7 and Landsat 8 with 
30 m spatial resolution. Overall, 20 Landsat images from 1984 to 2018 were selected to semi-
automatically map the evolution of the Butangbunasi landslide. In particular, we used the first 
cloud-free image available after a typhoon or tropical storm event that shows a change in the 
landslide area compared to pre-event images.  

We defined a set of knowledge-based classification rules for the OBIA mapping of the 
landslide area per image, starting with the Landsat 5 image from 1984. The analysis was done 
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using the eCognition (Trimble) software. Since images from 20 different points in time were 
used, efforts were made to design a transferable classification approach that could be applied 
to all images without or with only minor adaptations of the classification thresholds. Primarily, 
we used the normalized difference vegetation index (NDVI), the modified soil-adjusted 
vegetation index (MSAVI), and a brightness layer for classification of segmentation-derived 
image objects. The absence of vegetation was the main indication for mapping the landslide 
area, which leads to a distinctive spectral contrast between the landslide-affected area and 
its surroundings, especially in densely vegetated regions (Rau et al., 2014; Behling et al., 2014; 
Hölbling et al., 2015). By using the mentioned spectral indices, we were able to identify these 
changes in land cover and to develop a transferable object-based time series analysis 
classification scheme, which shows a high level of automation. Only minor adaptations in the 
classification rules were needed for one image that was taken at a different season and for 
applying the classification to Landsat 7 and Landsat 8. This approach enabled us to detect and 
map the landslide area and its changes for each image. Moreover, we identified a landslide-
dammed lake on several of the Landsat images with our semi-automated approach. The 
classification accuracy, i.e. producer’s accuracy and user's accuracy, was assessed by 
comparing the OBIA results to results from visual image interpretation. 

3.2.1.2 Correlation between the change in landslide area and rainfall during typhoons 

We obtained the hurricane/typhoon best-track position and intensity from the International 
Best Track Archive for Climate Stewardship (IBTrACS) data repository to extract the spatial 
information corresponding to 19 typhoon events that had an impact on the landslide area or 
had a Saffir–Simpson hurricane wind scale (SSHWS) category three (H3) or higher within a 100 
km radius from the Butangbunasi landslide. Rainfall data were obtained from Taiwan’s Central 
Weather Bureau (CWB). CWB provides station weather data, which includes hourly 
precipitation for each typhoon event for all the automatic rain gauge stations in Taiwan. For 
this study, we used the three closest stations to the Butangbunasi landslide. However, since 
the entire study period was not covered by the CWB rain gauge station data, we also acquired 
data from the Climate Hazards Group Infrared Precipitation with Station (CHIRPS) dataset. 

We extracted daily precipitation from the CHIRPS data for the date when the typhoon was 
closest to the landslide. Hourly precipitation from the CWB rain gauge station data allowed 
us to identify rainfall events during the typhoons. For each rainfall event, we calculated the 
duration, cumulative rainfall and intensity. The rainfall event with the highest duration and 
intensity within each typhoon event was selected for further analysis. Finally, we tested for 
rank correlation after Spearman between the landslide area change and the derived rainfall 
parameters for each CWB rain gauge station and the daily precipitation derived from the 
CHIRPS data. 

3.2.1.3 Mapping results and relation between landslide evolution and rainfall 

The OBIA landslide mapping results for each of the Landsat images are shown in Figure 5. 
Next to the Butangbunasi landslide area, we could detect a temporary landslide-dammed lake 
at the confluence of the Butangbunasi tributary with the Laonong River on six images. The 
comparison of the semi-automated OBIA results with the results from visual interpretation 
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revealed for the landslide area producer's accuracies between 82% and 89%, and user's 
accuracies between 84% and 95%. For the landslide-dammed lake, we achieved lower 
accuracies, i.e. producer's accuracies between 71% and 79% and user's accuracies between 
62% and 81%. The lower accuracies for the lake result from classification uncertainties 
associated with mixed objects, partly shallow water areas with high sediment load or wet 
areas in the riverbed. 
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Figure 5: OBIA mapping results for the Butangbunasi landslides using Landsat images from 1984 to 2018. Additionally, a 

landslide-dammed lake was detected on six of the images (2016, 2010, August 2008, 2000, 1992 and 1990). From Hölbling 

et al. (2020). 
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To assess the influence of typhoon events on landslide evolution, each typhoon was linked to 
the respective Landsat image date when the OBIA landslide mapping was performed. Figure 
6 shows the time series where landslide area evolution was tracked along with the preceding 
typhoon events. An abrupt increase in landslide area was identified after typhoon Morakot in 
2009, while a steady or even slightly decreasing trend can be observed for the other typhoons. 

 

Figure 6: Butangbunasi landslide area evolution and the dates of each typhoon event. The SSHWS category corresponds to 

the maximum category reached by the typhoon when crossing Taiwan. A locally estimated scatterplot smoothing (LOESS) 

curve (confidence interval 95%) is fitted to the time series for illustration purposes. From Hölbling et al. (2020). 

Daily precipitation data from CHIRPS for the date when a typhoon passed over Taiwan were 
correlated with the landslide area change for the typhoon events. The results show that there 
was not enough evidence of a significant correlation between the variables. Moreover, we 
tested for correlations between the landslide area change and the cumulative rainfall, 
duration and mean intensity of the rainfall events during typhoon events for the three 
available CWB stations (Meishan, Fuxing, Xiaoguanshan). The rainfall parameters per CWB 
station were plotted against the landslide area change and the resulting Spearman’s rank 
correlation coefficients (Figure 7). For the Fuxing and Xiaoguanshan stations, moderate 
positive correlations were found at a 90% confidence level between the change in the 
landslide area and the duration of the heavy rainfall event. 
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Figure 7: Spearman correlation results between the Butangbunasi landslide area change and rainfall event parameters 

calculated for three CWB stations for selected typhoon events. From Hölbling et al. (2020). 

Our results demonstrate that the proposed approach is suitable to semi-automatically map 
the evolution of landslides with time series of satellite images. Moreover, we could identify 
landslide-dammed lakes on some of the images and by that reveal new knowledge about 
landslide-river interaction. Our results on the analysis of the relationship of landslide rainfall 
during typhoons indicate that the duration of the heavy rainfall event is the main parameter 
linked to the landslide area change, while cumulative rainfall and mean intensity did not show 
significant correlations with the extension of the landslide.  

Rainfall-induced landslides are among the most dangerous natural hazards in Taiwan, putting 
people and infrastructure at risk. While our results did not indicate a direct relationship 
between the extension of the Butangbunasi landslide and the strength of the typhoon event, 
it became evident that also comparatively small typhoons or tropical storms caused landslide 
reactivation. Knowledge about the evolution and reactivation of large landslides and the 
recurring impact on rivers and downstream areas is of high importance for disaster mitigation. 



Final Project Report 

 

14 

 

3.2.2 Mapping landslides that created landslide dams and monitoring of the dammed 
lakes in Taiwan using OBIA 

3.2.2.1 Detection of landslide-dammed lakes and triggering landslides based on Landsat 

We used OBIA for the detection of landslide-dammed lakes and triggering landslides. For a 
first study (Friedl et al., 2018), we selected a sub-region of the Central Mountain Range of 
Southern Taiwan, where landslide-induced lake formation was observed after Typhoon 
Morakot in 2009. The semi-automated analysis was based on a post-event Landsat-5 image 
acquired on 12/09/2009 and the SRTM DEM including derived products with 30 m spatial 
resolution. We derived the Normalized Difference Water Index (NDWI), the NDVI, and a 
brightness layer from the Landsat image, and flow accumulation and slope derived from the 
DEM. The spectral indices were considered for image segmentation. By using a combination 
of the spectral, spatial, morphological and contextual characteristics we could detect the 
existing landslides and lakes and by establishing a spatial relation we semi-automatically 
identified the potentially dam-causing landslides. The classification result is shown in Figure 
8, a detailed view of the indicated subsets is provided in Figure 9. 

 

Figure 8: Classification results using OBIA, based on a Landsat image (12/09/2009) and DEM products derived from the SRTM. 

The red rectangles (a, b, and c) indicate the location of the detected landslide-dammed lakes and the triggering landslides 

(see Figure 9). 
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Figure 9: Detailed view of the classification results (right) for the three subsets (a, b, c) indicated in Figure 8, and original 

Landsat-5 image from 12/09/2009 in false-colour composition (left). 

The largest landslide dam detected measures 24.12 ha and the largest triggering landslide is 
161.01 ha in size. Table 1 summarized the findings for the three subsets. 

Table 1: the results of area (ha) for the landslide-dammed lake and the triggering landslides, for the three subsets, a, b, and 

c. The mean slope (°) in which the classes were detected are presented. 

 Class name Area (ha) Mean slope(°) 

Subset (a) 

Landslide-dammed lake 2.88 34.30 

Triggering landslide (*) 52.83 31.14 36.92 45.98 

Subset (b) 

Landslide-dammed lake 24.12 22.69 

Triggering landslide (*) 161.01 32.85 29.71 32.02 

Subset (c) 

Landslide-dammed lake 1.35 24.33 

Triggering landslide 34.29 30.20 
(*) Two landslides were identified as potential triggers 
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Based on these findings, we further developed the classification routine so that it could be 
applied to monitor the evolution of landslide-dammed lakes with satellite image time series. 
Moreover, an inventory of landslide-induced lakes and triggering landslides and a better 
understanding of landslide-river interaction are crucial to assess and predict natural hazards 
and hazard cascades. 

3.2.2.2 Detecting lake-triggering landslides and monitoring the evolution of dammed 
lakes using multi-temporal Landsat imagery 

Following the previous study (Friedl et al., 2018), we further developed the approach towards 
a change detection approach for monitoring the evolution of landslide-dammed lakes and 
detecting triggering landslides using multi-temporal Landsat imagery in the northern part of 
the Kaohsiung county in south-central Taiwan (Dabiri et al., 2019). We used multi-temporal 
Landsat imagery from 30/10/2009, 20/10/2010, and 06/02/2011, and the ALOS PALSAR DEM 
data (© JAXA) with 12 spatial resolutions. Figure 10 shows the overall methodological 
workflow. In the first step, we created a DEM mosaic that covers the whole study area, and 
then we derived surface parameters, such as slope, aspect, and curvature, and hydrological 
related parameters, such as flow-direction, flow-accumulation, and stream order. 

Next, we pre-processed and calibrated the Landsat images and derived spectral indices 
(NDWI, NDVI, brightness) which served as additional information layers during classification. 
For the rule-based classification in OBIA, we used the eCognition (Trimble Geospatial) 
software and specific classification criteria (Figure 10). The assumption for defining landslides 
that led to river damming was that the nearest landslide downstream of a detected lake had 
the highest probability to create the landslide dam.   
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Figure 10: Overall methodological workflow for monitoring the evolution of landslide-dammed lakes and detecting triggering 

landslides. The input data included (a) DEM derived from the ALOS PALSAR, and (b) Landsat images from three different 

dates. The pre-processing of the images included creating the DEM mosaic for the study area and Landsat image calibration. 

Several surface (e.g., slope and curvature), and hydrological (e.g., flow direction, flow) parameters were derived from the 

DEM. OBIA was used for data integration and classification. Modified after Dabiri et al. (2019).    

Figure 11 presents the classification results. For validation of the results, we compared them 
to a reference dataset of dammed lakes and triggering landslides, created based on literature 
and visual interpretation. For the year 2009, we correctly extracted two landslide-dammed 
lakes out of three, for the year 2010 four landslide-dammed lakes out of five, and for the year 
2011 three landslide-dammed lakes out of four. As for the semi-automatically detected lake-
triggering landslides, apart from one misclassification in the year 2010, all other landslides 
that led to the formation of a dammed lake were correctly detected. However, the delineation 
of single landslides was challenging and not always appropriate. The difficulty to delineate 
single landslides as single objects semi-automatically is a problem with OBIA (Hölbling et al., 
2016), which needs further investigation in future. 

 

Figure 11: Illustration of the classification results for the Landsat images from 2009/10/30, 2010/12/20, and 2011/02/06. 

The IDs indicate identified landslide-dammed lakes and on which image they have first been detected; see also Figure 11). 

Modified after Dabiri et al. (2019). 

Figure 12 shows the trend in area changes for each landslide-dammed lake. The area of the 
landslide-dammed lakes ID-1 and ID-4 increased. All the other landslide-dammed lakes 
showed a decline in their area during the three investigated years. 
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Figure 12: Changes in mapped area for each landslide-dammed lake in 2009, 2010, and 2011. The IDs (1 to 5) are the same 

as in Figure 11. From Dabiri et al. (2019). 

We were able to extract the features of interest from the three Landsat images using a semi-
automated OBIA approach. However, we had to adapt the classification thresholds for 
extracting the different classes from each Landsat image, mainly because the images were 
taken at different times and under different illumination conditions. The landslide-dammed 
lakes and their triggering landslides were successfully detected and extracted to a large 
extent; however, further work should be done to improve the exact delineation of triggering 
landslides to be able to draw further conclusions on their characteristics and their impact on 
the channel system. The approach can be useful to monitor the evolution of landslide-
dammed lakes and triggering landslides at regional scale after typhoon and heavy rainstorm 
events within an efficient time range. 

3.3 Detection of landslide-dammed lakes on time series of satellite images 

The detection of landslide-dammed lakes using optical satellite imagery was tested at a 
regional scale for a study case in New Zealand. We focused on the Mw 7.8 Kaikōura 
earthquake event, which took place on November 14th, 2016 (Dellow et al., 2017). The 
earthquake involved the rupture of several active faults that triggered approximately 30,000 
co-seismic landslides in North Canterbury and Marlborough, extending over an area of 
10,000 km2. The landslides blocked river courses and created approximately 200 landslide 
dams (Figure 12). The aim of the study was to automatically map the landslide-dammed lakes 
caused by the earthquake and to monitor their evolution at different points in time, using 
time series of Sentinel-2 imagery and a pixel-based change detection approach within Google 
Earth Engine (GEE). The results of the study have been submitted as a journal article to the 
“Natural Hazards” journal (Abad et al., in review). The main findings are presented in the 
following subsections. 



Final Project Report 

 

19 

 

 
Figure 13: (a) Study area in New Zealand. (b) Example of a landslide-dammed lake and (c) its landslide dam in the Hurunui 

district, Canterbury (photographs © Anne-Laure Argentin 2019; date taken: 03-01-2019). The Leader River was dammed by 

~ 6 million m³ of material, which impounded a 1.1 km long lake. Modified after Abad et al. (in review). 

3.3.1 Landslide-dammed lake mapping and monitoring approach  

Cloud computing platforms like the GEE (Gorelick et al., 2017) have transformed the handling 
and processing of big Earth observation (EO) data. Remote sensing workflows can directly 
benefit from 1) big EO data archives, available through the Earth Engine Data Catalog, and 2) 
high-speed and high-performance geospatial analyses by accessing the several pixel-based 
algorithms available through the GEE API. For this study, we explored the capabilities of the 
GEE API for the automatic mapping of landslide-dammed lakes at a regional scale by 
combining dynamic thresholding, change detection, and connected component analyses 
which allowed a time series monitoring of the impounded lakes area. The approach is 
schematized in Figure 14, and its strengths and limitations are further explained in the 
following subsections.  
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Figure 14: Landslide-dammed lake mapping and monitoring workflow based on the Google Earth Engine. Modified after Abad 

et al. (in review). 

3.3.1.1 Water bodies detection through dynamic thresholding 

We created monthly mosaics of Sentinel-2 Top-Of-the-Atmosphere (TOA) imagery with a low 
cloud coverage (below 30%) between December 2015 and March 2021. Due to the large area 
of analysis, obtaining cloud-free monthly mosaics for the entire area was challenging, and 
hence a visual inspection had to be performed to guarantee the quality of the mosaics. 
Additional challenges with snow cover, clouds, and topographic shadows made us focus our 
analysis mostly on summer months, analyzing 22 different timestamps, out of which three 
corresponded to pre-event dates (December 2015, February and April 2016). Attempts to 
apply topographic corrections to the Sentinel-2 TOA imagery did not lead to improvements in 
the quality of the mosaics. Using Surface Reflectance (SR) imagery might lead to better results; 
however, this extra processing is only available for Sentinel-2 scenes from 2017.  

We applied a water detection algorithm written for the GEE by Donchyts et al. (2016). The 
algorithm consists of a histogram-based Otsu thresholding method based on the Canny edge 
filter of a spectral water index. Using a Canny edge filter, the differences between the water 
index values for those areas in the mosaic where water pixels border non-water pixels are 
better discriminated, ideally in a bimodal distribution, which allows the automatic setting of 
a threshold value. In practice, this allows for the automatic extraction of water bodies using 
optical imagery, without the need to manually set threshold values for each timestamp 
analyzed. Although the approach gave reasonable results for our purposes, mixed pixels did 
not always result in a clear bimodal distribution, which resulted in false positive detections. 
Several spectral water indices were tested to evaluate the performance of the algorithm, 
including the NDWI, the Automated Water Extraction Index (AWEI), the NDVI, and the 
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Modified Normalized Difference Water Index (MNDWI). Finally, the MNDWI index (Xu, 2006) 
was selected as the one with the best results.  

A further source of water pixels misclassifications were topographical shadows. A way to 
bypass this issue was to use DEM-derived information. On the assumption that dammed lakes 
will only reach a maximum vertical height measured from the riverbed, we applied a threshold 
of 15 m to the vertical distance to the channel network (VDCN) derived from a local DEM (15 
m horizontal resolution). Using the VDCN as ancillary data greatly reduced the number of false 
positives outside valley floors, on areas with snow cover or farm dams, which are common in 
New Zealand's pastoral landscapes. Ultimately, we obtained water masks for each timestamp 
analyzed for our study area. 

3.3.1.2 Lake extraction based on pre- and post-event water masks change detection 

Based on the premise that permanent water bodies unaffected by river-damming landslides 
remained unchanged, we extracted the newly formed landslide-dammed lakes based on the 
change detection between the pre-event water mask, and each of the post-event monthly 
water masks. Although this was an effective approach for large landslide-dammed lakes 
where changes were evident, smaller and medium size lakes, especially those located within 
steep incised and rugged terrain, were not always detected.  

Further, seasonal variations in the water bodies resulted in several false positive results. We 
worked with three pre-event mosaics, corresponding to December 2015, February 2016 and 
April 2016. However, the difference in water level between pre- and post-event pairs 
remained an issue.  

Attempts to bypass this included working with mosaics created from Landsat imagery, 
however, the difference in resolution resulted in unrealistic results. A partial solution we 
employed to remove water bodies present before the earthquake was to mask out 
permanent water pixels from the Joint Research Center (JRC) Monthly Water History dataset 
based on Landsat imagery (Pekel et al., 2016). Lastly, by analyzing the temporal trend of the 
potential dammed lakes mapped on the post-event water masks, we removed those pixels 
where water was detected only on 1 of the 19 mosaics, as they were considered to potentially 
be a cloud-shadow or another type of false positive error.  

3.3.1.3 Connected component analysis for landslide-dammed lake classification 
refinement, area calculation and time series monitoring 

The last stage of false positive removal was done through a connected component analysis of 
the detected landslide-dammed lake pixels. Neighboring water pixels are clustered together, 
what would imitate an object-based detection approach, allowing to compute the area of the 
clusters. This enabled the removal of isolated pixels on riverbeds, and the exclusion of water 
bodies with an area smaller than 300 m2, which is the minimum area that is correctly detected 
according to the literature (e.g., Freitas et al. 2019), given the limitations of the Sentinel-2 
spatial resolution. Calculating the landslide-dammed lakes area also allowed for a time series 
monitoring of its evolution, based on the 19 post-event landslide-dammed lake mosaics. We 
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showcased the time series monitoring with ten landslide-dammed lakes, based on their 
visibility on Sentinel-2, their size, persistence, and changes in their spatial extent. The findings 
based on time series monitoring are further summarized in Section Fehler! Verweisquelle 
konnte nicht gefunden werden.. 

The validation of the detected landslide-dammed lakes mosaics was based on the selection 
of two subsets within the study area for three different timestamps, based on the distribution 
of landslide dams and considering environmental characteristics. The automatically detected 
landslide-dammed lakes were compared to those lakes that were visible and manually 
delineated on the Sentinel-2 mosaics. We further validated the approach by determining the 
number of landslide-dammed lakes found in the proximity of landslide dams known locations 
for the whole study area, based on a GNS Science dam inventory (Massey et al., 2018). 

Despite the pre- and post-processing efforts previously described, the approach still 
presented a large number of misclassifications throughout the study area. For this reason, 
reporting our results on an aggregated regional scale (i.e., number of lakes detected or 
aggregated lake surface area) was not possible. Nevertheless, the true positive detection of 
landslide-dammed lakes was satisfactory, reaching similar levels as using object-based image 
analysis (OBIA) approaches (Hölbling et al., 2020). Our approach represented a fast way of 
detecting landslide-dammed lake candidates and their locations on a regional scale. These 
locations can be used to establish a targeted field survey plan, complementing the initial 
efforts for emergency response after a hazard event that affects large areas.  

3.3.2 Landslide-dammed lake categorization based on spatio-temporal patterns 

Monitoring the evolution of landslide-dammed lakes located on relatively flat terrain was 
possible at different time periods, which could be potentially expanded to a finer temporal 
resolution as frequent as every 5 days for Sentinel-2 imagery, provided the areas of interest 
remain cloud-free. A general overview of the landslide dams’ potential hazards can be 
obtained with the proposed approach while saving resources.  

Based on the observed spatio-temporal patterns and changes of the landslide-dammed lakes 
during the time series monitoring analysis (Figure 15), we were able to suggest the 
categorization of landslide-dammed lakes in four types:  

1) constant, the lake size remains constant over time, which may indicate dam stability.  
2) increasing, the lake size increases over time, which might be associated with subsequent 

secondary slope failures and the related increase in landslide dam height due to the 
deposition of additional material driving the emergence and expansion of lakes.  

3) decreasing, the lake size decreases over time, possibly due to sediment infilling, 
overtopping, dam erosion or dam breaching, 

4) variant, the lake size varies over time without showing a significant increasing or 
decreasing trend, both revealing periodic variations, potentially influenced by wet and dry 
seasons, and aperiodic variations. 
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The fourth proposed type still needs further investigation regarding the lake variations, 
definite conclusions can only be drawn when the changes are monitored throughout the 
whole year, including winter months, and when they are analyzed in relation to other data 
such as rainfall, water discharge, and lithology. 

 

Figure 15: Landslide-dammed lake classification according to the spatio-temporal lake area evolution patterns. From Abad 
et al. (in review). 

Attempts to categorize landslide-dammed lakes are scarce in the literature (Adams, 1981; Cui 
et al., 2009) and do not incorporate further information about the lakes spatio-temporal 
evolution. Hence, we believe our categorization scheme can greatly complement landslide 
damming studies and disaster mitigation.  



Final Project Report 

 

24 

 

The temporal monitoring of hazards is also useful for disaster prevention. Landslide-dammed 
lakes constitute latent hazards, especially in areas prone to multiple hazards like New Zealand. 
Temporal and spatial monitoring of dammed lakes contributes to the analysis of potential 
cascading hazards and their interactions. Our approach can complement current monitoring 
practices while reducing the time and effort needed for field surveys or manual mapping by 
automatically monitoring the variations inherent in the lakes. While the availability of EO data 
does not yet allow real-time monitoring, the approach can be applied to monitor specific lakes 
that present a potentially high threat to downstream areas. Knowledge about the temporal 
evolution – and particularly about unexpected changes – in the lake area will enable disaster 
management teams to take further action. 

3.4 Detection of landslide dams and landslide-dammed lakes on DEMs 

We tested two approaches to identify the local influence of landslides on river courses by 
analysing only the shape of the landscape. In particular, we looked at the geometry of the 
river course. This can help to generate data about past landslide-river interactions that are 
not reported in historical records and cannot be tracked on satellite imagery. Likely, the 
number of such unwitnessed events is large and capturing their characteristics can add to 
more complete and versatile inventories.  

Flint’s Law (Flint, 1974) provides a simple theory to predict the differences in river course 
geometry that should result from local blocking or sediment input. In the case of a graded 
stream, channel slope and drainage area (as a proxy for run-off) follow a typical relation. 
Breaks in this relation hint at a disturbance, for example through a landslide. However, other 
disturbances, for example with a tectonic or climatic origin, could lead to similar signatures in 
landscape geometry. Thus, we aimed to assess whether landscape geometry allows the 
distinction between different influences.  

3.4.1 Theoretical view of a dammed valley landform 

Figure 16 shows idealized geometries of a landslide dam. Two variables strongly affected by 
a landslide dam are the slope and the valley cross-sectional profile. In the case of a dam with 
water or sediments accumulated upstream (Fig. 16b, 16d), the channel slope shows a positive 
anomaly on the downstream part of the dam and a negative on the upstream part. The slope 
is null on the lake surface, and only slightly positive on the deposited fluvial sediments. The 
valley cross-section has a wide and flat bottom on the dam, lake and lake sediment locations. 
For a broken dam fully incised (Fig. 16c, 16e), there are no changes in slope at a small scale 
anymore. At a larger scale, the valley bottom might remain perturbed by the eroded 
sediments from the dam. If there has been sedimentation in the lake (Fig. 16e), the slope 
anomaly migrated upstream in the lake sediments. Incision also coins the valley cross-section. 
In reality, surface (e.g., glacial erosion) and tectonic processes may have obscured the 
topographic signal. The river might have already incised through most of the landslide 
sediments, leaving no abrupt change of slope downstream of the landslide. The only visible 
pointer of a former dam is the river incision into the landslide sediments (Fig. 16c, 16e). To 
detect this, a calculation is done for the smallest window possible (3×3 pixels). The cross-
section is computed using a Python code. Several features and processes can interfere with 
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our detection algorithm. To list a few, natural and anthropological dams, lake-like features 
give similar landforms, and tectonics (faults, differential uplift) and lithology influence the 
topography similarly. 

 

Figure 16: States of a landslide dam over time (Argentin et al., 2020). A landslide forms a dam when its deposits block the 
river flow (1a). This state is very brief, as very soon, water will accumulate behind the dam (1b), leading either to its failure 
(1c) or to its filling with fluvial sediments (1d). The filled lake is then eroded by the river (1e). 

3.4.2 Approach 1: A normalized cross-section index 

We use a moving window to analyse the cross-sections of each valley segment in the drainage 
network on a gridded DEM. We compute the closest representation of the land surface in a 
3×3 cell neighbourhood by a second-order polynomial (Wood, 2008). This method is fast and 
allows us to find the most concave quadratic surface. The valley direction is found by getting 
rid of the xy term in the quadratic surface equation ax2+by2+cxy+dx+ey+f=0, through rotation. 
The quadratic surface gives a parabola in the direction of the cross-section (orthogonal to the 
valley direction): a′x2+b′x+c=0. We use a′ as the cross-section index C. 

Just like the slope along a river, the shape of the cross-section can be expected to depend on 
drainage area, with the typical V-shape of fluvial valley cross-sections widening with 
increasing drainage area. We thus defined a "normalized cross-section index" following the 
model of the normalized steepness index (Flint, 1974): kcn=CAθc with C the cross-section index, 
A the upstream drainage area and θc a constant. 

Unfortunately, the approach was too sensitive to different kinds of irregularities in the 
channel network, as well as changes in the geological and climatic setting, leading to a too 
large number of false positive and negatives. We thus did not further pursue this approach, 
although the theoretical foundation has some merit and should be explored further, for 
example in the frame of landscape evolution theory.   
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3.4.3 Approach 2: upstream region growing  

In approach 2, we simplified the theory on channel geometry to the utmost point to detect 
un-incised lakes and sediments. Upstream of a river blockage, the channel on a DEM should 
be flat or nearly flat. Thus, we ran a region growing algorithm with each flow path cell on a 
DEM as a starting cell. Beginning at the starting cell, the region is recursively grown upstream, 
iteratively enlarged by the cell with the largest drainage area of all upstream neighbouring 
cells. If a slope criterion along the flow length of the entire region is exceeded, the region 
dedicated to the starting cell has reached its maximum extent. If its area is larger than the 
minimum expected lake size, it is considered a dammed lake and the principal cell is 
considered the location of a dam.  

The approach worked well on a synthetic landscape designed to obey Flint’s Law. Further, it 
was able to detect all six landslides investigated by Finnegan et al. (2019) in California without 
any false negatives and an artificially levelled agricultural area as the only false positive (Fig. 
17a). We chose this study as a reference, because a Lidar-based DEM with very high quality 
and resolution was available for free. In any case, the generalization of this approach 
remained problematic. First, other influences such as glaciation and tectonics can produce 
flat reaches. Second, extensive, high quality DEMs would be needed to distinguish between 
the different influences on the river course but are hardly available for relevant study areas. 
One example is the Pamir region, home to some of the most prominent known river damming 
events but also shaped by vigorous tectonics and glacial erosion. Based on the SRTM DEM 
with 90 m resolution, the algorithm was able to detect 5 out of 6 prominent landslide dams 
but also produced numerous false positives at tectonics features such as faults and the rim of 
the Pamir plateau and glacial sedimentation plains (Fig. 17b).  

 

Figure 17: Locations of existing landslide dams identified by a region growing algorithm. a) Franciscan Mélange area in 
California, b) Pamir Mountain range. Pink dots denote classified dams, green circles mark reported damming. 

Due to the issues with other influences obscuring flow path geometry in conjunction with too 
low DEM quality, we did not further pursue the automated detection of landslide-river 
interactions solely on DEMs but chose another approach to learn about the distribution of 
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landslide-dammed lakes and controlling variables based on digital topography: We 
numerically simulated the occurrence of landslides and their interaction with rivers on real-
world topography.  

3.5 Simulation of landslide-dammed lake occurrence on DEMs 

We simulated landslide-dammed lakes on DEMs to get a comprehensive picture of the 
reasons why a landslide dam form, how potential landslide-dammed lakes are distributed 
across a mountain range, and how dam and lake characteristics are related and vary regionally 
as a function of drainage area, topography and rock type. While landslides and their 
occurrence have been extensively studied, supported by monitoring techniques ranging from 
remote sensing to geophysics (e.g., Nichol and Wong, 2005; Hölbling et al., 2012; Stähli et al., 
2015), and modelling of landslide distribution (Hergarten, 2012) and susceptibility 
(Reichenbach et al., 2018), potential damming of rivers by landslides and resulting lakes 
received less attention Korup (2005).  By simulating the development of landslide-dammed 
lakes, we were able to overcome data scarcity and determine new and complement 
established relationships between landslides, lakes, topography, and the drainage network.  

 

Figure 18: Comparison of the distribution of modelled landslides and reported large mass movements in Austria (Argentin et 
al., 2020). Last glacial maximum ice extent is depicted by a blue line (Ehlers and Gibbard, 2004). DEM data obtained from 
OpenData Österreich (starting 2015). 

To simulate landslide release areas, resulting dams and dammed lakes, we combined three 
modelling techniques to a new approach. We determined landslide release areas based on 
landscape geometry and probability following Hergarten (2012). We then modelled the 
progression of the landslides and deposition of the landslide dams with a fluid dynamic model 
(Popinet, 2003). Finally, we filled the retention space upstream of the deposits with a sink fill 
approach with GRASS GIS. We applied this approach in two studies. 
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3.5.1 Study 1: Potential landslide-dammed lakes in Austria 

In the first study, we investigate the influence of topography and glacial imprint on the 
potential occurrence of landslide dams and landslide-dammed lakes in Austria. The study was 
published in Argentin et al. (2020). Further, we quantitatively investigated landslide and lake 
characteristics. This has not been done before in Austria. In fact, an exhaustive database of 
large, rapid mass movements in Austria does not exist and existing heterogeneous landslide 
collections lack crucial information such as release area or volume (Kuhn, 2020).  For dammed 
lakes, no data collection exists to our knowledge. 

 

 

Figure 19: Spatial distribution of modelled landslide-dammed lakes in Austria Alps (Argentin et al., 2020) plotted on a map of 
tectonic units modified after Bousquet et al. (2012). Last glacial maximum ice extent is depicted by a blue line (Ehlers and 
Gibbard, 2004). 

3.5.1.1 Distribution of modelled landslides and lakes 

We modelled approximately 1000 landslides and lakes in Austria, more than 20 times the 
amount of large mass movements collected by Kuhn. Landslide distribution predicted by our 
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model conforms to observations (Kuhn, 2020). This confirms that slope and relief are 
reasonable predictors for the occurrence of rapid mass movements (see also e.g. Hergarten, 
2012) (Fig. 18). Most efficient damming, i.e., dammed lakes with exceptionally large volumes 
relative to the deposit volumes, is predicted in several regions across Austria, all characterized 
by exceptional valley relief. In particular, very large lakes are formed by landslides damming 
relatively narrow valleys downstream of wider and flatter valley sections (red dots mark 
examples in Fig. 19). This highlights the role of valley geometry in controlling the efficiency of 
damming. Further, our results suggest that a change of tectonic units and thus rock strength 
along a river leading to a narrow section at the damming location and a wider section 
upstream favours efficient damming and the formation of very large lakes. In the Austrian 
Alps such settings occur in the Northern Calcareous Alps (e.g., Enns river, Salzach river). 

3.5.1.2 Controls on lake volumes 

Our results imply that the range of landslide-dammed lake volumes is commonly 
underestimated in existing databases. Small landslide dams and lakes often remain 
undiscovered in the field as they may only exist for a short time. While they can hardly be 
accounted for in field surveys (Dufresne et al., 2018; Korup, 2004; Costa and Schuster, 1988; 
Fan et al., 2020), they can be simulated leading to a wider range of modelled lake volumes 
(Fig. 20a) and thus in the widely used Impoundment Index (e.g. Korup, 2004).  

Glacial imprint has a strong influence on the occurrence and size of predicted landslides and 
lakes. The landslides in glacial terrain were 2.8 times more voluminous and dammed 2.5 times 
bigger lakes, but generally with a reduced damming efficiency. We again attribute these 
differences to valley shape. The wide valley floors in glaciated areas demand for higher 
landslide volumes to dam the entire valley. Thus, partial damming is more common. On 
average, the much higher release volumes in glacial landscapes almost compensate the wide 
valley floors. This in conjunction with flat and wide valley floors leads to the formation of 
bigger but shallower lakes. 
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Figure 20: a) Modelled Landslide and lake volumes compared to real world data and reported values of the impoundment 
Index (Argentin et al., 2020). b) Predicted (Vp lake) vs. modelled (Vlake) landslide-dammed lake volume. Circle size represents 
dammed lake volume. 1:1 relation depicted by dashed line. Colours depict damming efficiency (yellow: low; red: high). 

Our results allow to establish a new simple approach to predict landslide-dammed lake 
volumes from landslide volumes and drainage area (Fig. 20b). The lake volumes are 
proportional to the volumes of the triggering landslides (Vlandslide) and the drainage area (Ab) 
of the location of formation, such that  

Vp lake∼α·Vlandslide
0.98·Ab

0.92×10−6 

This relation holds for α=0.003 with R2=0.69 for all modelled lakes in Austria and works 
particularly well for efficient damming (Fig. 20b, red dots). We hence attribute most of the 
remaining variability in lake volumes to valley shape. The exponents on Ab and Vlandslide can be 
simplified to 1 without losing much accuracy (Fig. 20b, dashed line). This new relation can 
provide a first estimation of potential dammed lake volume from only two variables. Drainage 
area can be easily obtained with standard DEM tools. Thus, for locations with given Ab, 
different landslide and lake scenarios can be quickly evaluated. 
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3.5.2 Study 2: Global scaling of landslide and dammed lake characteristics 

Figure 21: Comparison of the obtained probability densities of landslide-dammed lake volumes (a, b), and of the inverse 
cumulative probabilities (Argentin et al., in review). The results are binned using logarithm base 10 and bins of 0.1. 

In the second study, we investigate the scaling of landslide-dammed lakes. We modelled 
almost eight million landslides and more than 50 thousand dammed lakes across eight 
mountain ranges worldwide with differing tectonic and climatic conditions. The study is 
currently under review in Earth and Planetary Science Letters (Argentin et al, in review). 

It has been shown that the frequency-magnitude distribution of landslides follows a power-
law (see Section 0Fehler! Verweisquelle konnte nicht gefunden werden.). We simulated 
landslides and lake formation in different mountain ranges around the globe to assess if lake 
sizes show a similar pattern, and it differs between mountain ranges. We used DEMs from the 
shuttle radar topography mission with a resolution of 1 arc-second (~30m at the equator). 
Again, we employed our model to circumvent data scarcity. In particular, the number of 
reported large, dammed lakes is small, even globally, and thus such an analysis is tricky. 
However, we did use existing data for comparison.  
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We found that the scaling of landslide-dammed lakes follows a power-law, similar to that of 
landslides (Fig. 20). Steep distributions (high exponents) indicate a tendency to small lakes 
and vice versa. Glacial and fluvial mountain ranges feature different distributions. Further, 
precipitation is a key control on the landslide distribution but not on the lake distribution in 
fluvial mountains. In further contrast to landslides, the scaling of landslide-dammed lakes is 
less sensitive to mountain relief and valley shape. Since landslide-dammed lake volumes 
depend on landslide volumes but also on drainage area, damming efficiency and valley and 
dam geometry, the scaling of landslide-dammed lakes does not have to be identical to the 
scaling of landslides. Our results thus indicate that efficient damming in fluvial mountain 
ranges makes up for smaller landslides and that they are equally susceptible to the formation 
of large landslide-dammed lakes as glacial mountain ranges. They may either be more 
susceptible to dam breaks and catastrophic flooding and efficient dams (damming a large 
water volume compared to the dam volume) show a higher tendency to fail. 

Further, we find that the NZ Southern Alps show a tendency towards larger landslide-dammed 
lakes than the European Alps, despite similar glacial history. This is consistent with the 
findings of Korup (2005) and could be caused by tectonics, which also exerts a strong influence 
on slope and relief. Parts of the NZ Southern Alps exhibit much higher uplift rates than the 
European Alps (e.g., Herman et al., 2013). 

We conclude that tectonics and climate control the potential and formation for landslide-
dammed lakes. It follows that the parameters of the law to estimate dammed lake volume 
from drainage area and landslide volume found in study 1 differ between mountain ranges.  

The found scaling can help develop a statistical assessment of risk and an estimate of the 
recurrence time depending on magnitude and mountain range characteristics, in particular 
for big events, where data is scarce. The consequences of this landslide-dammed lake scaling 
can also be interpreted in terms of sediment transport and resulting effects on terrain 
downstream (Cossart, et al. 2008). 

3.6 Other findings 

3.6.1 The Hintersee landslide-dammed lake 

We conducted a case study on the Hintersee lake in Bavaria, Germany, in the frame of a 
master thesis. The lake is located 15 km west of Berchtesgaden. Its surface is around 0.146 
km2, its actual volume is 1.148.000 m3. The lake has been formed after a major landslide 
event. Mapping and analyses of the composition of the deposited mass allowed to 
reconstruct the landslide source area. The valley flank is west-facing and inclined between 
35° and 45°. The Dachstein limestone forms compact layers of parallel exposed sediments. 
The initial thickness of the landslide mass was between 70-100 meter with a reconstructed 
volume of 12-16 M m3 (Klappacher & Knapzyk, 1979). 

The master thesis project is currently ongoing. It aims to reconstruct the landslide, the 
deposition of the dam and the formation of the lake in a detailed study based on the 
modelling approach described earlier. For this, the landslide deposits and lake sediments are 
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removed from the current land surface by extrapolating the valley flanks into the deposits 
(e.g., Schrott et al., 2003). Extrapolation is done along one longitudinal valley profile and 20 
valley cross-sections (Figure 22) and further constrained by taking a neighbouring valley of 
similar size as a reference template. In this way, we arrive at several scenarios, which allow 
us to study the progression of the landslide and estimate a range of possible lake volumes.  

 

Figure 22: Map of the source area of the landslide (red), upper deposit area (orange), landslide dam and lake sediment 
(yellow) and current extent of the landslide-dammed Hintersee lake (blue). First 8 cross-sectional profiles of the 21 made in 
the area to reconstruct the topography prior to landsliding. 
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3.6.2 Assessment of landslide-induced geomorphological changes using Sentinel-1 and 
Sentinel-2 data 

We developed an OBIA approach to map geomorphological features in a study area in Iceland, 
where a recent landslide, the Hítardalur landslide dammed a river and led to the creation of 
a dammed lake and changes in the watercourse using optical and synthetic aperture radar 
(SAR) data from Sentinel-2 and Sentinel-1, respectively (Dabiri et al., 2020). The Hítardalur 
landslide occurred on the 7th of July 2018, in western Iceland. It was estimated that 
approximately 7 million m³ of material were released and a total of 10-20 million m³ of 
material were displaced, with a runout length of about 1.6 km (Helgason et al., 2019). The 
Hítardalur landslide is considered as one of the largest landslides in Iceland in historical time. 
For this analysis, we used pre-event Sentinel-1 and Sentinel-2 images (Figure 23).  

 

Figure 23: Sentinel-1 and Sentinel-2 datasets used for geomorphological features mapping. The upper row shows the 

intensity layer for Sentinel-1 VV polarization for the following image acquisition dates: (a) 2018/07/05; (b) 2018/07/17; and 

(c) 2019/08/05. The lower row shows the true color composites of the Sentinel-2 images with the following acquisition dates: 

(d) 2018/06/20; (e) 2018/07/17; and (f) 2019/08/01. From Dabiri et al. (2020).    
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The mapping of geomorphological features focused on the Hítardalur landslide, the landslide-
dammed lake, and the riverbed with flowing water. Additionally, we differentiated between 
landslide source and deposition area and identified changes in the watercourse based on the 
pre-and post-event images. We used an OBIA approach and created a knowledge-based 
classification ruleset in eCognition (Trimble) software, integrating Sentinel-1 and Sentinel-2 
datasets. We used spectral indices derived from the Sentinel-2 data, including a brightness 
layer (average of the three visible spectral bands blue (B2), green (B3), red (B4)) and the NDVI. 
For the detection of riverbeds we calculated an edge extraction layer based on the Sentinel-
2 NIR (B8) spectral band using the Lee Sigma (Lee, 1983) algorithm. We also used the intensity 
information from the pre- and the post-event Sentinel-1 VV, and VH polarization intensity 
images to create subtraction layers for 2018 and 2019. The Sentinel-1 intensity subtraction 
layers and the edge extraction layers derived from band B8 used for the object-based 
classification for 2018 and 2019 are shown in Figure 24. 

 

Figure 24: Examples of the layers extracted from the Sentinel-1 and Sentinel-2 datasets. (a) and (b) show the subtraction 

layers using pre- and post-event Sentinel-1 VV polarization intensity images for 2018 and 2019, respectively. The Hítardalur 

landslide (white) and the landslide-dammed lake (black) are distinguishable. (c) and (d) show the edge extraction layers 

derived from the post-event Sentinel-2 images (NIR band (B8)) for 2018 and 2019, respectively. From Dabiri et al. (2020).    

The results of the geomorphological features mapping are shown in Figure 25. The pre-event 
result shows the original Hítará riverbed with water (Figure 25a). The post-event results 
(Figure 25b for 2018 and Figure 25c for 2019) show the landslide, the landslide-induced 
changes in the watercourse, and the landslide-dammed lake. The reference map from NLSI 
(National Land Survey of Iceland, 2020), which was used for comparison, is shown in Figure 
25d.  
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Figure 25: The results of object-based geomorphological features mapping using Sentinel-1 and Sentinel-2 datasets. (a) 

shows the riverbed with water before the Hítardalur landslide happened using the pre-event Sentinel-2 image only; (b) 

shows the landslide, the landslide-dammed lake, and the riverbeds with water after the landslide event in 2018; (c) shows 

the landslide, the landslide-dammed lake, and the riverbeds with water in 2019; (d) shows the reference map from the 

National Land Survey of Iceland (IS 50V 24/12 2019 Vatnafar Flakar; available online: https://www.lmi.is). The hillshade 

derived from the ArcticDEM was used as a background layer. From Dabiri et al. (2020). 

As shown in Figure 25, the water flowing out from the dammed lake found a new way towards 
the south, leading to more water flowing in this riverbed than before the landslide happened. 
The landslide area was estimated to be approximately 2,000 ha for 2018 and 2019. Slight 
differences in the landslide areas likely results from variations in the image segmentation. We 
estimated the lake area of 58 ha for 2018 and 47.1 ha for 2019. The reference value for the 
lake area reported by Helgason et al. (2019) is approximately 47 ha. This reveals an 
overestimation of the OBIA result for the year 2018. This can be associated with a high 
moisture content near the lakeshore and shallow water areas with high sediment load, which 
introduce uncertainty in the segmentation and classification (Hölbling et al., 2020). The lower 
value for 2019 can be associated with the warm summer in 2019 that caused the discharge 
for some rivers to be low for a few weeks (Iceland Met Office (IMO), 2020). The maximum 
width of the landslide deposition is approximately 1.5 km, and the overall runout length of 
the landslide is approximately 2.3 km. These results are in line with the numbers reported by 
Helgason et al. (2019).   

Although many applications use EO datasets for landslide mapping, studies for integrating 
intensity information derived from Sentinel-1 SAR data with spectral information from 
Sentinel-2 optical data are still rare. This study shows that the combined use of Sentinel-1 
radar and Sentinel-2 optical data offers remarkable opportunities for assessing landslides and 
their interaction with the river channel system. Moreover, the high spatial and temporal 
resolution, free availability, and the integrated and effective use of Sentinel-1 and Sentinel-2 
datasets can contribute enormously to analyzing such events and their consequences (Dabiri 
et al., 2020).  
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3.6.3 Additional case studies 

The concepts and methods developed in RiCoLa could partly be transferred and applied to 
other studies that addressed related thematic areas and research questions. By that, we could 
demonstrate the value of the research done in RiCoLa in a broader sense. This includes, for 
example, a study on the comparison of pixel-based and object-based methods for landslide 
susceptibility mapping in Salzburg, Austria (Gudiyangada Nachappa et al., 2020). The results 
showed that the object-based approach led to a higher accuracy than the pixel-based 
approach. Another landslide susceptibility study used two methods for landslide susceptibility 
assessment, i.e., Landslide Statistical Index (LSI) and Analytical Hierarchy Process (AHP), for a 
study in Freetown, Sierra Leone (Restrepo Ruiz et al., 2021). In another study shoreline 
dynamics in the Hangzhou Bay in China were mapped using multi-temporal EO data (Chu et 
al., 2020). This work quantified both the spatial and temporal shoreline changes and assessed 
the link between shoreline changes and anthropogenic activities in a coastal 
area. Additionally, we conducted case studies in New Zealand dealing with the development 
of OBIA method to map landslides on time series of aerial photography. This included the 
assessment of revegetation rates of landslide scars (Spiekermann and Hölbling, 2019), and 
quantifying the effectiveness of erosion mitigation works, i.e., tree plantings, in pastoral hill 
country (Hölbling et al., 2019; Spiekermann et al., 2019). Small secondary studies dealt with 
the comparison and assessment of existing landslide inventories created after the 2015 
Gorkha earthquake in Nepal (Meena et al., 2019a, 2019b). Moreover, a preliminary study 
aimed to gain a better understanding of morphometric control on the occurrence of 
landslides through process geomorphology and information derived from DEMs (Naranjo 
Bedoya et al., 2021).  

4 Outreach 

4.1 Project website, logo and flyer 

We implemented a dedicated RiCoLa website (https://landslides-and-rivers.sbg.ac.at/) that 
provides all the necessary information about the project, including a news blog and a list of 
the publications and presentation (Figure 26). The news blog was regularly updated during 
the project lifetime, highlighting important project outcomes and events.  

https://landslides-and-rivers.sbg.ac.at/
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Figure 26: RiCoLa website (https://landslides-and-rivers.sbg.ac.at/).  

4.2 Peer-reviewed publications 

The outcomes of RiCoLa were published both in journals as well as conference proceedings. 
A range of publications, including six journal papers and 19 conference papers, have been 
produced to disseminate our final and intermediate results among the scientific community. 
Concepts and methods developed in RiCoLa could also be applied in thematically related 
studies, and thus, the value of the research in RiCoLa could be further demonstrated. 

4.2.1 Journal papers 

The following journal papers have been published or are currently in review: 

1.) Abad, L., Hölbling, D., Spiekermann, R., Prasicek, G., Dabiri, Z., Argentin, A.-L., in review. 
Detecting landslide-dammed lakes on Sentinel-2 imagery and monitoring their spatio-
temporal evolution after the Kaikōura earthquake in New Zealand. Natural Hazards. 

2.) Argentin, A. L., Prasicek, G., Robl, J., Hergarten, S., Hölbling, D., Abad, L., & Dabiri, Z., in 
review. The scaling of landslide-dammed lakes. Earth and Planetary Science Letters. 

3.) Argentin, A. L., Robl, J., Prasicek, G., Hergarten, S., Hölbling, D., Abad, L., & Dabiri, Z., 
2020. Controls on the formation of potential landslide dams and dammed lakes in the 
Austrian Alps. Natural Hazards and Earth System Sciences Discussions, 1-29. 
https://doi.org/10.5194/nhess-2020-326 

4.) Dabiri, Z., Hölbling, D., Abad, L., Helgason, J.K., Sæmundsson, Þ., Tiede, D., 2020. 
Assessment of Landslide-Induced Geomorphological Changes in Hítardalur Valley, 
Iceland, Using Sentinel-1 and Sentinel-2 Data. Applied Sciences, 10, 5848. 
https://doi.org/10.3390/app10175848 

5.) Hölbling, D., Abad, L., Dabiri, Z., Prasicek, G., Tsai, T.-T., Argentin, A.-L., 2020. Mapping 
and Analyzing the Evolution of the Butangbunasi Landslide Using Landsat Time Series 

https://landslides-and-rivers.sbg.ac.at/
https://doi.org/10.5194/nhess-2020-326
https://doi.org/10.3390/app10175848
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with Respect to Heavy Rainfall Events during Typhoons. Applied Sciences, 10(2), 630. 
https://doi.org/10.3390/app10020630 

6.) Gudiyangada Nachappa, T., Kienberger, S., Meena, S.R., Hölbling, D., Blaschke, T., 2020. 
Comparison and validation of per-pixel and object-based approaches for landslide 
susceptibility mapping. Geomatics, Natural Hazards and Risk, 11(1), 572-600. 
https://doi.org/10.1080/19475705.2020.1736190 

7.) Chu, L., Oloo, F., Sudmanns, M., Tiede, D., Hölbling, D., Blaschke, T., Teleoaca, I., 2020. 
Monitoring long-term shoreline dynamics and human activities in the Hangzhou Bay, 
China, combining daytime and nighttime EO data. Big Earth Data, 4(3), 242-264. 
https://doi.org/10.1080/20964471.2020.1740491  

4.2.2 Conference contributions 

The following conference papers were published, including full and short papers, as well as 
abstracts: 

1.) Argentin, A. L., Prasicek, G., Robl, J., Hergarten, S., Hölbling, D., Abad, L., & Dabiri, Z., 
2021. Size-frequency distribution of landslide-dammed lakes from a simulation 
approach (No. EGU21-9862). Copernicus Meetings. 

2.) Hauthaler, T., Argentin, A. L., Robl, J., Prasicek, G., Hölbling, D., Hergarten, S., ... & 
Dabiri, Z., 2021. Landslide dams acting as sediment traps: Example of the lake 
Hintersee, Berchtesgadener Land, south-eastern Germany (No. EGU21-12149). 
Copernicus Meetings. 

3.) Naranjo Bedoya, K., Aristizábal, E., Hölbling, D., García, J., Aguilar, A., Ortiz, D., 2021. 
Approach for analyzing landslide and torrential flow hazard conditions in relation to 
landscape evolution in the northern Colombian Andes (No. EGU21-8508). Copernicus 
Meetings. 

4.) Restrepo Ruiz, E., Lateltin, O., Linero Molina, C., Hölbling, D., 2021. Comparing two 
approaches for landslide susceptibility mapping – a case study in Freetown, Sierra 
Leone. XIII International Symposium on Landslides, 22-26 February, 8 p. 

5.) Dabiri, Z., Hölbling, D., Abad, L., Helgason, J.K., Sæmundsson, Þ., Tiede, D., 2020. 
Generation of Multi-temporal DEMs from Sentinel-1 for Assessing Geomorphological 
Changes in the Hítardalur Valley, Western Iceland. GSA 2020 Connects Online. 
Geological Society of America Abstracts with Programs, 52, 6, 194-8. 

6.) Abad, L., Hölbling, D., Spiekermann, R., Dabiri, Z., Prasicek, G., Argentin, A.-L., 2020. 
Mapping and monitoring of landslide-dammed lakes using Sentinel-2 time series – a 
case study after the 2016 Kaikōura Earthquake in New Zealand. EGU General Assembly 
2020: Sharing Geoscience Online, EGU2020-572. 

7.) Argentin, A.-L., Prasicek, G., Robl, J., Hölbling, D., Abad, L., Dabiri, Z., 2020. Landslide 
dam susceptibility in the Austrian Alps inferred from modelled landslides, potential 
valley damming and lake formation. EGU General Assembly 2020: Sharing Geoscience 
Online, EGU2020-8040. 

8.) Dabiri, Z., Hölbling, D., Abad, L., Prasicek, G., Argentin, A.-L., Tsai, T.-T., 2019. An Object-
based Approach for Monitoring the Evolution of Landslide-Dammed Lakes and 
Detecting Triggering Landslides in Taiwan. The International Archives of the 

https://doi.org/10.3390/app10020630
https://doi.org/10.1080/19475705.2020.1736190
https://doi.org/10.1080/20964471.2020.1740491
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Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W8, 103-
108. 

9.) Dabiri, Z., Hölbling, D., Abad, L., Tiede, D., 2019. Assessment of Landslide-Induced 
Morphology Changes Using an Object-Based Image Analysis Approach: A Case Study of 
Hitardalur, Iceland. The International Archives of the Photogrammetry, Remote Sensing 
and Spatial Information Sciences, XLII-3/W8, 109-114. 

10.) Hölbling, D., Dabiri, Z., Tsai, T.-T., Prasicek, G., Tsui, C.Y., Schäffer, L., Argentin, A.-L., 
Abad, L., 2019. Mapping the Evolution of the Butangbunasi Landslide, Taiwan, using 
Landsat Time Series. 27th IUGG General Assembly, Montreal, Canada, 8-18 July. 

11.) Spiekermann, R., Hölbling, D., 2019. Semi-automated Farm-scale Assessment of 
Revegetation of Landslide Scars. 27th IUGG General Assembly, Montreal, Canada, 8-18 
July. 

12.) Chu, L., Oloo, F., Hölbling, D., Blaschke, T., 2019. Monitoring Long-term Influence of 
Human Activities on Shoreline Dynamics in the Hangzhou Bay, China, Using Google 
Earth Engine. ESA Living Planet Symposium 2019, Milan, Italy, 13-17 May. 

13.) Meena, S.R., Ghorbanzadeh, O., Hölbling, D., 2019. Comparison of event-based 
landslide inventories: a case study from Gorkha earthquake 2015, Nepal. ESA Living 
Planet Symposium 2019, Milan, Italy, 13-17 May. 

14.) Argentin, A.-L., Prasicek, G., Robl, J., Hölbling, D., 2019. Automated detection of past 
river-blocking landslides based on valley geometry. Geophysical Research Abstracts, Vol. 
21, EGU General Assembly 2019-8617, Vienna, Austria. 

15.) Hölbling, D., Spiekermann, R., Betts, H., 2019. Monitoring landslide erosion in 
dependence on land cover using advanced remote sensing techniques at multiple 
scales. Geophysical Research Abstracts, Vol. 21, EGU General Assembly 2019-3398-1, 
Vienna, Austria. 

16.) Meena, S.R., Tavakkoli Piralilou, S., Hölbling, D., Blaschke, T., 2019. Qualitative and 
quantitative evaluation of earthquake-triggered landslide inventories in Nepal. 
Geophysical Research Abstracts, Vol. 21, EGU General Assembly 2019-4465, Vienna, 
Austria. 

17.) Spiekermann, R., Hölbling, D., Betts, H., 2019. Hindcasting the impact of bio-physical 
erosion mitigation. Geophysical Research Abstracts, Vol. 21, EGU General Assembly 
2019-3426-1, Vienna, Austria. 

18.) Argentin, A.-L., Prasicek, G., Robl, J., Hölbling, D., Friedl, B., 2019. Influence of landslide 
dam history on the landform persistence. 18th ANZGG Conference, Inverloch, Australia, 
4-8 February. 

19.) Hölbling, D., Prasicek, G., Argentin, A.-L., Friedl, B., 2018. Detection of Landslide-induced 
River Course Changes and Lake Formation on Remote Sensing Data. AGU Fall Meeting 
2018, Washington, D.C., USA, 10-14 December 2018. 

20.) Argentin, A.-L., Prasicek, G., Robl, J., Hölbling, D., Friedl, B., 2018. A spatial causality 
method to identify the landslide-induced natural hazard cascades. IAMG 2018 – 19th 
Annual Conference, Olomouc, Czech Republic, 2-8 September 2018. 

21.) Argentin, A.-L., Prasicek, G., Robl, J., Hölbling, D., Friedl, B., 2018. Detecting landslide-
induced paleolakes and their impact on river course. Geophysical Research Abstracts, 
Vol. 20, EGU General Assembly 2018-6349-3, Vienna, Austria. 
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22.) Friedl, B., Hölbling, D., Prasicek, G., Argentin, A.-L., Tsai, T.-T., 2018. Detection of 
landslide-dammed lakes and triggering landslides in Taiwan using Landsat imagery. 
Geophysical Research Abstracts, Vol. 20, EGU General Assembly 2018-14915, Vienna, 
Austria. 

23.) Prasicek, G., Hölbling, D., Argentin, A.-L., Friedl, B., 2018. Detection and analysis of River 
course changes and lake formation – The RiCoLa Project. Geophysical Research 
Abstracts, Vol. 20, EGU General Assembly 2018-7768, Vienna, Austria. 

4.3 Presentations 

The project team members presented their research at several reputable, international 
conferences. Moreover, we gave invited talks that included a presentation of RiCoLA and the 
corresponding outcomes, for example, at Manaaki Whenua – Landcare Research in New 
Zealand, at the Czech Academy of Sciences in Czech Republic, and the University of Bergen in 
Norway, and presented outcomes at guest lectures at the University of Salzburg.  

4.3.1 Oral presentations 

1.) Hauthaler, T., Argentin, A.-L., Robl, J., Prasicek, G., Hölbling, D., Hergarten, S., Abad, L., 
Dabiri, Z., 2021. Landslide dams acting as sediment traps: Example of the lake 
Hintersee, Berchtesgadener Land, south-eastern Germany. EGU General Assembly 2021, 
April, 29. 

2.) Argentin, A.-L., Prasicek, G., Robl, J., Hergarten, S., Hölbling, D., Abad, L., Dabiri, Z, 2021. 
Size-frequency distribution of landslide-dammed lakes from a simulation approach. EGU 
General Assembly 2021, April 27. 

3.) Abad, L., Hölbling, D., 2020. Mapping and monitoring landslide-dammed lakes in 
Kaikōura, New Zealand, using the Google Earth Engine. Geo for Good Summit 2020, 
October 22. 

4.) Abad, L., 2020. The role of geospatial technologies for mapping and monitoring natural 
hazards. Voices of Environmental Engineering, September 19. 

5.) Hölbling, D., 2020. Landslide investigation with remote sensing. Presentation at 
“Lectures in GIScience: research progress and frontiers”, University of Salzburg, Salzburg, 
Austria, May 18. 

6.) Hölbling, D., 2020. Remote Sensing and OBIA for Landslide Mapping. Invited talk at 
Manaaki Whenua – Landcare Research, Palmerston North, New Zealand, February 11. 

7.) Hölbling, D., 2019. Remote Sensing for Landslide Mapping: Examples, Opportunities and 
Challenges. Invited talk at the Department of Remote Sensing, CzechGlobe, Czech 
Academy of Sciences, Brno, Czech Republic, October 15. 

8.) Dabiri, Z., Hölbling, D., Abad, L., Prasicek, G., Argentin, A.-L., Tsai, T.-T., 2019. An Object-
based Approach for Monitoring the Evolution of Landslide-Dammed Lakes and 
Detecting Triggering Landslides in Taiwan. Gi4DM, Prague, Czech Republic, 3-6 
September. 

9.) Dabiri, Z., Hölbling, D., Abad, L., Tiede, D., 2019. Assessment of Landslide-Induced 
Morphology Changes Using an Object-Based Image Analysis Approach: A Case Study of 
Hitardalur, Iceland. Gi4DM, Prague, Czech Republic, 3-6 September. 
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10.) Hölbling, D., 2019. Landslide research @ Z_GIS: Landslide mapping and monitoring 
using remote sensing. Presentation at “Lectures in GIScience: research progress and 
frontiers”, University of Salzburg, Salzburg, Austria, March 18. 

11.) Argentin, A.-L., Prasicek, G., Robl, J., Hölbling, D., 2019. Influence of landslide dam 
history on the landform persistence. 18th ANZGG Conference, Inverloch, Australia, 
February 5. 

12.) Hölbling, D., 2018. Landslide mapping using remote sensing: examples, opportunities 
and challenges. Invited talk at the Department of Geography, University of Bergen, 
Norway, September 27. 

13.) Hölbling, D., 2018. Landslide Mapping. EO4Alps Summer School, Salzburg, Austria, 24 
June – 6 July. 

14.) Hölbling, D., 2018. Landslide research @ Z_GIS: Remote sensing based landslide 
mapping and assessment. Presentation at “Lectures in GIScience: research progress and 
frontiers”, University of Salzburg, Salzburg, Austria, April 23. 

4.3.2 Poster presentations 

1.) Abad, L., Hölbling, D., Spiekermann, R., Dabiri, Z., Prasicek, G., Argentin, A.-L., 2020. 
Mapping and monitoring of landslide-dammed lakes using Sentinel-2 time series – a 
case study after the 2016 Kaikōura Earthquake in New Zealand. EGU General Assembly 
2020: Sharing Geoscience Online, 4-8 May. 

2.) Argentin, A.-L., Prasicek, G., Robl, J., Hölbling, D., Abad, L., Dabiri, Z., 2020. Landslide 
dam susceptibility in the Austrian Alps inferred from modelled landslides, potential 
valley damming and lake formation. EGU General Assembly 2020: Sharing Geoscience 
Online, 4-8 May. 

3.) Hölbling, D., Dabiri, Z., Tsai, T.-T., Prasicek, G., Tsui, C.Y., Schäffer, L., Argentin, A.-L., 
Abad, L., 2019. Mapping the Evolution of the Butangbunasi Landslide, Taiwan, using 
Landsat Time Series. 27th IUGG General Assembly, Montreal, Canada, 8-18 July. 

4.) Spiekermann, R., Hölbling, D., 2019. Semi-automated Farm-scale Assessment of 
Revegetation of Landslide Scars. 27th IUGG General Assembly, Montreal, Canada, 8-18 
July. 

5.) Argentin, A.-L., Prasicek, G., Robl, J., Hölbling, D., 2019. Automated detection of past 
river-blocking landslides based on valley geometry. EGU General Assembly, Vienna, 
Austria, 7-12 April. 

6.) Hölbling, D., Spiekermann, R., Betts, H., 2019. Monitoring landslide erosion in 
dependence on land cover using advanced remote sensing techniques at multiple 
scales. EGU General Assembly, Vienna, Austria, 7-12 April. 

7.) Spiekermann, R., Hölbling, D., Betts, H., 2019. Hindcasting the impact of bio-physical 
erosion mitigation. EGU General Assembly, Vienna, Austria, 7-12 April. 

8.) Hölbling, D., Prasicek, G., Argentin, A.-L., Friedl, B., 2018. Detection of Landslide-induced 
River Course Changes and Lake Formation on Remote Sensing Data. AGU Fall Meeting 
2018, Washington, D.C., USA, 10-14 December. 

9.) Argentin, A.-L., Prasicek, G., Robl, J., Hölbling, D., Friedl, B., 2018. A spatial causality 
method to identify the landslide-induced natural hazard cascades. IAMG 2018 – 19th 
Annual Conference, Olomouc, Czech Republic, 2-8 September. 
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10.) Argentin, A.-L., Prasicek, G., Robl, J., Hölbling, D., Friedl, B., 2018. Detecting landslide-
induced paleolakes and their impact on river course. EGU General Assembly, Vienna, 
Austria, 8-13 April. 

11.) Friedl, B., Hölbling, D., Prasicek, G., Argentin, A.-L., Tsai, T.-T., 2018. Detection of 
landslide-dammed lakes and triggering landslides in Taiwan using Landsat imagery. EGU 
General Assembly, Vienna, Austria, 8-13 April. 

12.) Prasicek, G., Hölbling, D., Argentin, A.-L., Friedl, B., 2018. Detection and analysis of River 
course changes and lake formation – The RiCoLa Project. EGU General Assembly, 
Vienna, Austria, 8-13 April. 

4.4 Workshops  

4.4.1 Visit at the Disaster Prevention Education Center in Taiwan 

An important project milestone and dissemination activity was a 10-day research visit at the 
Disaster Prevention Education Center in Tainan, Taiwan, in mid-November 2018. During the 
visit several dissemination actitivites took place, feedback from local experts was gathered 
during workshops and field trips, and ideas for further collaboration were collected. For 
details see section 2.3.1. 

4.5 Further dissemination activities 

4.5.1 Online dissemination  

Next to the project website, online visibility was achieved by project summaries presented at 
the institutional websites (http://geomorphology.sbg.ac.at/research/projects/ricola/ and 
https://zgis.at/ricola-2017-2020/), and through a respective page on ResearchGate 
(https://www.researchgate.net/project/RiCoLa-Detection-and-analysis-of-landslide-
induced-river-course-changes-and-lake-formation). RiCoLa was also presented in the Z_GIS 
Newsletter of January 2018. Moreover, the research conducted on the Butangbunasi 
landslide in Taiwan (Hölbling et al., 2020)  has been highlighted in the Trimble eCognition blog 
(https://ecognition.blog/mapping-the-evolution-of-a-landslide/). 

The results presented at the EGU 2020: Sharing Geoscience Online have been highlighted on 
the websites of the ORF (Austrian Broadcasting Corporation) – “Risikolandkarte für 
Flussblockaden“ (https://science.orf.at/stories/3200699/), Der Standard (Austrian daily 
newspaper) – “Wo Erdrutsche zu gefährlichen Flussblockaden führen können” 
(https://www.derstandard.at/story/2000117289457/wo-erdrutsche-zu-gefaehrlichen-
flussblockaden-fuehren-koennen) and the Austria Press Agency (APA) – “Forscher zeichneten 
Risiko-Landkarte für Erdrutsch-Flussblockaden“ 
(https://science.apa.at/rubrik/natur_und_technik/Forscher_zeichneten_Risiko-
Landkarte_fuer_Erdrutsch-Flussblockaden/SCI_20200505_SCI39391351454441262) . 

http://geomorphology.sbg.ac.at/research/projects/ricola/
https://zgis.at/ricola-2017-2020/
https://www.researchgate.net/project/RiCoLa-Detection-and-analysis-of-landslide-induced-river-course-changes-and-lake-formation
https://www.researchgate.net/project/RiCoLa-Detection-and-analysis-of-landslide-induced-river-course-changes-and-lake-formation
https://www.researchgate.net/project/RiCoLa-Detection-and-analysis-of-landslide-induced-river-course-changes-and-lake-formation
https://ecognition.blog/mapping-the-evolution-of-a-landslide/
https://science.orf.at/stories/3200699/
https://www.derstandard.at/story/2000117289457/wo-erdrutsche-zu-gefaehrlichen-flussblockaden-fuehren-koennen
https://www.derstandard.at/story/2000117289457/wo-erdrutsche-zu-gefaehrlichen-flussblockaden-fuehren-koennen
https://science.apa.at/rubrik/natur_und_technik/Forscher_zeichneten_Risiko-Landkarte_fuer_Erdrutsch-Flussblockaden/SCI_20200505_SCI39391351454441262
https://science.apa.at/rubrik/natur_und_technik/Forscher_zeichneten_Risiko-Landkarte_fuer_Erdrutsch-Flussblockaden/SCI_20200505_SCI39391351454441262
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4.5.2 Project flyer and logo 

We created a project brochure, which is available both in digital format at the project website 
and as a printed edition (Figure 27). The printed brochure was disseminated at conferences 
and workshops. Moreover, a project logo was designed that was used on the website and in 
presentations to ensure a corporate identity. 

 
Figure 27: RiCoLa brochure.  

4.5.3 Popular science story 

“Shifting approaches to landslides” – a cover story by M. J. Wagner about D. Hölbling's work 
on landslide research using remote sensing data was published in the LIDAR Magazine 
(Oct/Nov 2017 Issue; https://lidarmag.com/2017/10/25/shifting-approaches-to-landslides/) 
and the American Surveyor Magazine (Nov 2017 Issue; 
https://amerisurv.com/2017/10/21/shifting-approaches-to-landslides/). The article 
highlights also the research conducted in the frame of RiCoLa. 
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