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Abstract 

Drought is among the most common but least understood phenomena that affect an 

increasing number of people in the context of climate change. To understand underlying 

drought dynamics affecting the local agricultural production in Botswana, a broad 

database comprising climatic and remote-sensing data together with socioeconomic 

indicators was set up. A data science approach that includes statistical and machine 

learning methods was chosen to retrieve information applicable in a drought early-warning 

system. The aim of the study was to examine how data science can contribute to the 

understanding of drought risk through the integration of various data sources. Different 

regression models (including linear and OLS) were applied. Naïve Bayes classification and 

Random Forest regression were included, as was a change point analysis. The impacts of 

two variables in particular, the Standardized Precipitation Index (SPI) and the Southern 

Oscillation Index (SOI), on crop productivity could be observed, highlighting possible 

national and regional thresholds. Further development of the early warning system, including 

validation, should be accompanied by ground-truth information and work with local 

partners. 

Keywords: 
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1 Introduction  

Drought is a natural hazard characterized as ‘a significant decrease in water availability during 
a prolonged period of time over a large area’ (Keyantash & Dracup, 2002). If a drought occurs, 
the water balance turns negative and further impacts for systems relying on water should be 
expected. Immediate effects include high temperatures, high winds, and low relative humidity, 
as well as lower availability of surface and groundwater (Juana, 2014; Mishra & Singh, 2010; 
Wilhite, 2000). Further, there are significant impacts on natural, economic and social systems, 
including desertification and land degradation (Masih, Maskey, Mussá, & Trambauer, 2014). 
Droughts are considered among the most costly natural hazards, known to affect more people 
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than any other hazard (AghaKouchak, 2015). Understanding the dynamics of drought impacts 
and the knock-on effects on local natural and human systems is still a challenging task 
(Bachmair, Kohn, & Stahl, 2015): drought remains one of the least understood natural hazards 
(Wilhite, 2000). Central in this study is ‘agricultural drought’: a lack of rain and diminishing soil 
moisture, resulting in crop loss. It is the direct consequence of persistent meteorological 
anomalies of dryness over significant periods of time within the agricultural cycle of a region. 

Ambitious efforts exist to monitor dryness from space using drought indices or meteorological 
stations. Unfortunately, the long-term prediction of droughts remains a challenge, as the 
underlying dynamics of droughts are region-specific and important variables are only available 
in real-time. A Drought Early Warning System (DEWS) monitors and forecasts changes in 
temperature, precipitation, soil moisture and water bodies at the same time (World 
Meteorological Organization, 2006). A DEWS should integrate a wide range of indicators such 
as in-situ data (Bachmair, Stahl, et al., 2016), be comprehensive for immediate 
operationalization (Jain & Ormsbee, 2001), and consider the simultaneous occurrence of 
different impacts in different regions of the country (Wilhite, 2000). Remote sensing data and 
data science methods can be powerful tools to understand drought from statistical and 
environmental perspectives, and hence are used in this study.  

This paper develops a workflow to analyse drought dynamics; it also identifies relevant data 
sources to support the development of a DEWS for Botswana. The overall aim of the study 
is to provide local authorities with new and important information on the phenomenon, 
overcoming the shortcomings of common solutions. 

2 Research Area 

The research area is semi-arid Botswana (see Figure 1), where 80% of the population is 
engaged in rain-fed agriculture and is consequently highly dependent on precipitation 
(Byakatonda, Parida, Kenabatho, & Moalafhi, 2019). The mostly flat topography is dominated 
by the Kalahari Desert, tropical grasslands and savannas. The rainfall occurs mainly during the 
austral summers (November to January) (Batisani & Yarnal, 2010). Botswana has suffered 
from frequent droughts in recent decades, especially from 1981–1987, 1991–1999, 2001–2005, 
2007–2008, 2009–2010, 2010–2011, 2012–2013, 2014–2015, 2015–2016 and 2017–2019 
(Statistics Botswana, 2020b). The most vulnerable groups are herdsmen, female-headed 
households, and low-income groups living in rural and remote areas (Fako & Molamu, 1995; 
Mugari, Masundire, & Bolaane, 2020). Although public awareness of drought risk is high 
(Akinyemi, 2017) and the government’s efforts to import food have had positive effects on 
food security in the country, the vulnerability to droughts has not yet been reduced 
(Thinkhazard, 2020). Currently, the only sources of relevant information are a governmental 
drought monitoring system based on rainfall data, and a monthly meteorological bulletin. No 
information is available to anticipate developments over periods of several months 
(Department of Meteorological Service Agro-met Office). 
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Figure 1: Map of research area showing the mean production of wheat, sorghum, millet and pulses in 

kg/ha. 

3 Methodology 

Data science generally refers to the application of versatile, both quantitative and qualitative, 
statistical methods to solve a problem. Machine learning (ML) is one of the most important 
techniques for predicting outcomes (Waller & Fawcett, 2013) as it overcomes the problems of 
traditional methods for handling huge amounts of data (Reichstein et al., 2019). Data Science 
approaches are iterative and must be repeated whenever research questions are modified, or 
new data is introduced. The analysis presented in this paper was conceptualized to examine 
three pillars of a DEWS: understanding, anticipating, and operationalizing actions to cope with 
drought risk (see Figure 2). To successfully mitigate and reduce the impact of droughts, a better 
understanding of local characteristics is needed. 
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A wide variety of data sources were combined to approach the research question broadly. The 
study period was from 1985 to 2020, while the research area included all agricultural districts 
of Botswana (see Figure 1). 

The analysis was performed using the cloud-computing platform Google Earth Engine (GEE) 
and a script in Python 3.8. 

 

Figure 2: Contribution of Data Science methods to Drought Early Warning System (DEWS) 

3.1  Data sources 

A variety of datasets on climatic and vegetation conditions were combined with economic 
information on the agricultural production in the research area (see Table 1). The choice of 
variables was based on their presence in the research literature and their availability for the 
research area (Bachmair, Stahl, et al., 2016; Mishra & Singh, 2011).  

Important seasonal changes in the precipitation regime were taken into account by creating a 
long-term and short-term variable for each indicator. ‘Long-term’ refers to the average values 
over 12 months from January to December; ‘short-term’ refers to the months from December 
to February. The sowing season in Botswana is limited to the summer rainy season (Food and 
Agriculture Organization of the United Nations, 2020). November and December are the most 
important months for crop planting, while December, January and February are the most 
important months for crop growth (Maruatona & Moses, 2021; Mugari et al., 2020). 
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Missing values were imputed using mean values; outliers of the 1.5 interquartile range were 
removed in order to obtain a more homogeneous data structure that permits easier regression 
analysis, and in order to reveal more relevant information (Wong & Wang, 2003). The shape 
of the dataset after the first cleansing was 40 variables and 791 rows. As some variables had 
large value differences, a standard scaler was applied to normalize the dataset in order to ensure 
that the models behaved well (Morid, Smakhtin, & Bagherzadeh, 2007). 

Table 1: Overview of variables used in the study 

variable source 

Crop production kg/ha Statistics Botswana, 2020a 

Drought period Em-dat, C. R. E. D., 2010 

Imports Food and Agriculture Organization of the United 
Nations, 2021 

Temperature based on ERA-5 by Copernicus Climate Change 
Service, 2019 

Precipitation based on Chirps by Fick & Hijmans, 2017 

Wind Speed based on The Global Land Data Assimilation Project 
by Rodell et al., 2004 

Southern Oscillation Index (SOI) National Oceanic and Atmospheric Administration, 
2021 

North Atlantic Oscillation Index 
(NAOI) 

National Oceanic and Atmospheric Administration, 
2021 

Palmer Drought Severity Index 
(PDSI) 

based on TerraClimate by Abatzoglou, Dobrowski, 
Parks, & Hegewisch, 2018 

Temperature Condition Index (TCI) based on Temperature 

Standardized Precipitation Index 
(SPI) 

Funk et al., 2015 

Normalized Differential Vegetation 
Index (NDVI) 

based on Landsat 5, 7 & 8 by U.S. Geological Survey 
& NASA, 2021 

Normalized Differential Water 
Index (NDWI) 

based on Landsat 5, 7 & 8 by U.S. Geological Survey 
& NASA, 2021 

Enhanced Vegetation Index (EVI) based on Landsat 5, 7 & 8 by U.S. Geological Survey 
& NASA, 2021 

Vegetation Condition Index (VCI) based on NDVI 

Vegetation Health Index (VHI) based on VHI & TCI after Aksoy, Gorucu, & Sertel, 
2019 

Soil Moisture based on The Global Land Data Assimilation Project 
by Rodell et al., 2004 
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3.2  Data analysis 

Understanding the risk 

A simple linear regression model was calculated for all variables in the dataset and presented 
in a correlation matrix (Figure 3). An Ordinary Least Squares model (OLS) was employed as a 
multiple linear regression (Pohlman & Leitner, 2003). For the evaluation of the model, R² and 
the Akaike information criterion (AIC) (Anderson & Burnham, 2002) were used. The 
Condition number (CN) (Dormann et al., 2013) and the Variance Inflation Factor (VIF) 
(Altman & Krzywinski, 2016) were used as checks for multicollinearity. Different 
combinations of variables were used, taking into account earlier results of the OLS and 
multiple linear regression models. 

In order to reveal the possible dynamic nature of the variables, the polynomial regression was 
chosen as a non-linear approach (Ostertagová, 2012). It was conducted using degrees ranging 
from quadratic to higher-dimensional curves (Budescu, 1980).  

Drought classification was realized using the information given in the Emdat database. The 
aim was to understand whether the variables differ substantially between periods of drought 
(marked 1) and non-drought (marked 0), and whether new data points could be classified 
correctly into the two categories. 

Logistic Regression is ideal when handling dichotomous outcomes and has the advantage of 
being relatively simple to perform and interpret (Lever, Krzywinski, & Altman, 2016). 
Equation 1 describes a logistic regression (Sperandei, 2014), where π indicates the probability 
of an event and βi are the regression coefficients with the reference group, and xi is the 
explanatory variable. 

Equation 1:  

log (
𝜋

1 − 𝜋
) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑚𝑥𝑚 

The training data size was set to 70%, a common threshold (Dobbin & Simon, 2011). Mean 
squared error (MSE) and root-mean-square error (RMSE) were used as measures of the error 
size (Ostertagová, 2012), as they are very common in ML (Dormann et al., 2013). 

The Naive Bayes (NB) classifier was chosen as another approach to classify the dataset. The 
NB follows the Bayes theorem, which takes outcome probabilities of related or dependent 
events into account by looking at conditional probabilities. Formula 2 (López Puga, 

Krzywinski, & Altman, 2015) indicates the posterior probability 𝑃(𝐴|𝐵) using the prior 

probability of A, the probability of B, and the likelihood of a hypothesis of 𝑃(𝐵|𝐴).  
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Equation 2: 

𝑃(𝐴|𝐵) =  𝑃(𝐵|𝐴) ×
𝑃(𝐴)

𝑃(𝐵)
 

The Gaussian NB classifier was trained with 70% of the data points, and the accuracy score 
for the testing data of the model was calculated. 

Anticipating the risk 

A common ML algorithm applied for the prediction of numerical values is the random forest 
regression (RF). The RF is an ensemble of so-called regression trees in which several decision 
trees are combined (Strobl, Malley, & Tutz, 2009). Breiman (2001) suggests a formula that 
describes the random forest: 

Equation 3: 

𝑚𝑀,𝑛(𝑋; 𝜃1, … , 𝜃𝑚, 𝒟𝑛) =  
1

𝑀
∑ 𝑚𝑛(𝑥; 𝜃𝑗,

𝑀

𝑗=1

𝒟𝑛) 

where mn is the predicted value, 𝜃 is a random variable, and Dn an independent variable. M 
represents the collection of trees fitted randomly with values in the dataset according to the 
input variables (Biau & Scornet, 2016). 

For performance measures, the MSE, RMSE and R² were used (Bachmair, Svensson, 
Hannaford, Barker, & Stahl, 2016). Lastly, the percentage of correctly predicted values was 
calculated. A Randomized Search Cross-Validation was conducted with 3 folds on each of the 
following parameters: the number of trees, the depth of trees, the minimum samples per split, 
and the minimum samples per leaf. The result of this validation identified the best-performing 
parameters for the chosen independent variables (Koehrsen, 2018).  

Operationalize against risk 

There is no universal threshold of any indicator to identify the onset of a drought (Botterill & 
Hayes, 2012). Thresholds are not only specific to certain impact categories or affected sectors 
(Bachmair et al., 2015), but are also difficult to interpret when the underlying ecosystems are 
characterized by dynamic changes that follow the disequilibrium paradigm (see Skarpe, 1992). 
The following threshold concepts were considered for this work, based on Bachmair et al. 
(2015), Bachmair, Stahl, et al. (2016), and Chahuán-Jiménez, Rubilar, La Fuente-Mella, & Leiva 
(2021): 

- median SPI values during drought periods of different agricultural districts 
- median SOI and NAOI values during drought periods as long-term prediction 

indicators 
- behaviour of variables around change points in crop yield data. 
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4 Results 

4.1   Understanding the risk of drought impacts 

The results of the linear regression are shown in Figure 3. 

The overall performance of the OLS models was quite low regarding the R² values. The best 
fit of R²=0.193 was achieved by a model using the SPI, SOI, Soil Moisture, NAOI, PDSI and 
TCI. It also scored better overall in the AIC. The CN and VIF values were always much lower 
than the threshold of 10 set by theory, indicating that there was no problem of multicollinearity 
(Salmerón, García, & García, 2018). The R² scores tended to rise with the number of variables 
but did not change substantially. 

The accuracy scores of the polynomial regression ranged between -0.03 and +0.1. For the 
SPI_12, the highest score was achieved using a degree of 5. For the SOI_12, the highest value 
was attained using a degree of 2. Nevertheless, all accuracy scores showed low values (i.e. of 
less than 0.15).  The overall performance of the Logistic Regression classifier showed accuracy 
values above 0.8, and MSE and RMSE values below 0.5. The PDSI and SPI in particular 
showed considerable differences between drought and non-drought periods. The average 
precipitation during droughts was roughly 25% lower than usual, and the temperature was 
slightly higher. The model using the TCI_12, SOI_12 and PRECIPITATION_12 variables 
had an accuracy of 0.96, and RMSE values of 0.2. Another model used the TCI_12 and 
SOI_12 variables and was evaluated as having an accuracy of 0.95. This result can be explained 
by the large differences between the drought and non-drought categories (see Appendix, Table 
8). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Correlation matrix 
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The NB classifier showed slightly lower accuracy values than the Logistic Regression. The 
highest-scoring models, with an accuracy of 0.89, used SOI both alone and in combination 
with rainfall data and NAOI. Accordingly, 89% of the testing data was classified correctly into 
drought and non-drought periods.  

Table 1: Results of NB classifier & logistic regression 

model 
variables logistic regression NB 

dependent independent accuracy MSE RMSE accuracy 

1 drought_emdat SOI_3, SOI_12 0.91 0.092 0.30 0.89 

2 drought_emdat SOI_12, PRECIPITATION_3, 
NAOI_12 

0.89 0.105 0.324 0.89 

3 drought_emdat SOI_12, PRECIPITATION_3, 
TCI_12 

0.92 0.080 0.283 0.84 

4 drought_emdat PRECIPITATION_12, 
yield_kgha, SOI_12, TCI_12 

0.92 0.084 0.290 0.81 

5 drought_emdat TCI_12, SOI_12 0.95 0.046 0.215 0.88 

6 drought_emdat TCI_12, SOI_12, 
PRECIPITATION_12 

0.96 0.042 0.205 0.87 

4.2   Anticipating the risk of drought 

Table 3 summarizes the results of the random forest regression. All models using the 
parameters derived from the Randomized Search Cross-Validation performed slightly better 
than the default model. However, the accuracy values range on a lower level, between 24% 
and 26%. The R² values range between 0.3 and 0.36.  

Table 3: Results of random forest regression 

Model Variables RMSE R² Accuracy 

default all 0.246 0.34 24.6 

n_estimators = 1800, 
max_depth = 90,  

max_features = 'sqrt', 

bootstrap = True. 

min_samples_split = 2, 
min_samples_leaf = 4 

all 0.251 0.31 25.1 

default SOI_12, TMIN_3, TAVG_3, 
EVI_12 

0.247 0.34 24.72 

bootstrap=False, 
max_depth=10,  

max_features='sqrt', 

min_samples_leaf=2, 
min_samples_split=5, 

n_estimators=1200 

SOI_12, TMIN_3, TAVG_3, 
EVI_12 

0.2493 0.32 24.93 

default SPI_12 0.241 0.36 24.19 

max_depth=50,  SPI_12 0.251 0.31 25.14 
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max_features='sqrt', 

min_samples_leaf=4, 

min_samples_split=10, 
n_estimators=800 

default NDWI_12 0.243 0.35 24.38 

default SPI_12, SOI_12, PDSI_12, 
NAOI_12 

0.246 0.34 24.61 

n_estimators: 400, 

min_samples_split: 10, 

min_samples_leaf: 4, 

max_features: 'sqrt', 

max_depth: 90, 

bootstrap: True 

SPI_12, SOI_12, PDSI_12, 
NAOI_12 

0.253 0.3 25.3 

4.3  Operationalize against drought risk 

The median values of the SPI_12 variable during drought periods showed negative values 
ranging from -0.23 to -0.61. Lower SPI values were found in the surrounding districts, and the 
highest values (around -0.3) were found in the east and southeast of Botswana. The lowest 
value was found for Ngamiland district. The districts with the highest median values during 
drought periods were Bamalete-Tlokweng, Palapye, Bobonong and Barolong. Lower values 
were found in the northwest and higher values in the southwest. The values were lower than 
in non-drought conditions. 

 

Figure 4: SPI_12 median values in drought years 
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As a second step to finding thresholds, the median SOI and NAOI values during drought 
periods were identified, as they were the only long-term prediction indicators in the database. 
The NAOI_3 was 0.48 during drought conditions and 0.645 in non-drought conditions. The 
NAOI_12 was 0.15 during droughts and 0.12 during normal conditions. The SOI shifted 
between negative and positive values. While the SOI_12 values were positive during normal 
conditions, the values dropped from 0.2 to -0.2 and -0.65 during drought conditions. Negative 
SOI values are associated with the onset of El Niño, and for this reason SOI values should be 
given high importance in establishing the DEWS. 

Table 4: Thresholds derived from literature research 

variable drought onset drought cessation 

thresholds derived from median values of past drought events 

SOI_3 ≤ 0 > 0 

SOI_12 ≤ 0 > 0 

thresholds derived from median regional values of past drought events 

SPI_12 ≤ -0.5 for Northwest 

≤ -0.2 for Southeast 

≤ -0.3 for all other areas 

> -0.5 for Northwest 

> -0.2 for Southwest 

> -0.3 for all other areas 

SPI_3 ≤ -1.4 for Barolong & Ngwaketse S. 

≤ -1.2 for Northwest and Southeast 
(except Barolong & Ngwaketse S.) 

≤ -1.0 for Southwest and Centre 

≤ -0.8 for East 

> -1.4 for Barolong & Ngwaksetse S. 

> -1.2 for Northwest and Southeast 
(except Barolong & Ngwaketse S.) 

> -1.0 for Southwest and Centre 

> -0.8 for East 

 

5 Discussion 

Being a broad, flexible and globally applicable approach, the proposed workflow presents a 
wide range of statistical and ML methods that support the development of a DEWS for 
Botswana. Determining the most important variables influencing crop production in Botswana 
and further investigating their relationships and possible thresholds support an improved 
understanding of drought risk. This understanding can be used to monitor key variables and 
report important trend changes to the public. The approach presented here using Spatial Data 
Science for Early Warning is innovative, as scholars have previously focused, rather, on the 
prediction of indicators (see Chakrabarti, Bongiovanni, Judge, Zotarelli, & Bayer, 2014; Elliott, 
2013; Kogan, Guo, & Yang, 2019; Potop, 2011). There are, however, some general restrictions 
on data quality and availability. Dividing the research area into smaller units or using a pixel-
based approach could further enhance the precision of the analysis, as could including spatial 
data for the exact crop areas, if available.  
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The statistical analysis chosen was appropriate to the study case, using tried-and-tested, reliable 
methods. Regarding the regression analysis, the results showed surprisingly low correlations. 
This hints at a more complex relationship between the variables, or an issue with the quality 
of the data for agricultural production. Using the logistic regression and NB classifier was 
successful in both cases. Rather low accuracy values for the Random Forest indicated that a 
numerical prediction of the dependent variable was challenging in the heterogeneous dataset, 
yet low error measures demonstrated that the prediction was generally close to the value. The 
thresholds derived from change point analysis showed reasonable values in relation to other 
research findings that highlighted differences between regions. Including variables like the 
NAOI and SOI that can be forecast is highly to be recommended for a DEWS. Because of 
global trends like climate change, these thresholds should be verified and updated in the future. 
This is necessary as the rising temperature will affect all other variables, and thresholds that 
are reliable now may no longer be so in the future. 

Another significant shortcoming lies in the absence of ground-truth data. Therefore, the 
investigation of local coping strategies, the calendar shift of the analysis months to austral 
summers, and the validation of the proposed workflow with rural and even indigenous 
communities are potentials that could be explored in the future. Further, the disaster context 
was very specifically focused on droughts. Multi-hazards or cascading effects should be 
considered in subsequent studies (see Gill & Malamud, 2016; Pescaroli & Alexander, 2018).  

6 Conclusion 

A methodology using different statistical and ML methods following a data science approach 
was applied to the case of a DEWS for Botswana. Droughts being a highly relevant topic for 
local agriculture, important findings were made, using several globally available datasets, 
regarding the negative effects on crop yield. The most important threshold for drought onset 
is 0 for the SOI, which could be used in combination with the SPI. Ground truth verification 
and validation should be envisioned for future developments of the DEWS in Botswana. To 
be highlighted is the applicability, in different research areas, of this methodology regarding 
the identification of thresholds.  
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Appendix 

Table 5: Overview of variables 

variable mean minimum median maximum 

yield_kgha 172.71 0 92.49 7,723.92 

import 11,1287.71 0 90720 246,657 

NAOI_3 0.42 -1.67 0.56 1.66 

NAOI_12 0.04 -1.9 0.13 2.63 

SOI_3 0.06 -1.9 0.13 2.63 

SOI_12 0.08 -0.93 -0.02 1.4 

EVI_3 0.28 0.09 0.28 0.50 

EVI_12 0.21 0.09 0.20 0.35 

NDVI_3 0.28 0.09 0.28 0.47 

NDVI_12 0.23 0.11 0.23 0.4 

NDWI_3 -0.01 -0.19 -0.01 0.24 

NDWI_12 -0.08 -0.21 -0.09 0.053 

PRECIPITATION_3 240.37 41.98 216.45 698.44 

PRECIPITATION_12 406.94 133.73 392.93 783.06 

TMIN_3 19.23 16.38 19.27 21.37 

TMIN_12 13.86 10.59 13.76 17.08 

TAVG_3 26.07 22.10 26.08 30.72 

TAVG_12 22.32 18.78 22.34 25.63 

TMAX_3 32.55 28.51 32.55 37.08 

TMAX_12 49.39 26.33 30.17 387.63 

SOILMOISTURE_3 19.68 4.48 18.84 77.6 

SOILMOISTURE_12 16.19 4.71 16.19 31.97 

WINDSPEED_3 5.51 3.97 5.45 7.35 

WINDSPEED_12 5.82 4.81 5.83 6.99 

PDSI_3 -30.23 -518.94 -30.27 649.73 

PDSI_12 -47.38 -434.63 -81.13 950.01 

VCI_3 0.5 0 0.5 1 

VCI_12 0.53 0 0.53 1 

TCI_3 0.5 0 0.49 1 

TCI_12 0.5 0 0.49 1 

VHI_3 0.5 0 0.50 0.99 

VHI_12 0.51 0.08 0.51 0.99 

SPI_3 -0.43 -1.93 -0.63 2.88 

SPI_12 0 -1.09 -0.07 1.63 
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Table 6: OLS performance 

No. r² adj. R² AIC CN VIF 

1 0.105 0.103 249.9 2.58 SOI_3 

SPI_12 

1.02 

2 0.133 0.131 225.2 2.9 SOI_12 

SPI_12 

1.16 

3 0.079 0.076 273.1 3.31 PRECIPITATION_3 

VHI_3 

1.23 

4 0.111 0.108 245.2 3.69 PDSI_12 

SPI_12 

1.46 

5 0.108 0.105 248 3.49 VHI_12 

SPI_12 

1.49 

6 0.105 0.102 250.5 3.18 TCI_12 

SPI_12 

1.33 

7 0.134 0.131 226.3 3.45 SPI_12 

SOI_12 

TCI_12 

1.39 

1.26 

1.45 

8 0.133 0.130 227.1 3.79 SPI_12 

SOI_12 

VHI_12 

1.54 

1.26 

1.61 

9 0.192 0.188 173.7 4.25 SPI_12 

SOI_12 

PDSI_12 

NAOI_12 

1.59 

1.27 

1.55 

1.07 

10 0.189 0.185 176.4 3.82 SPI_12 

SOI_12 

TCI_12 

NAOI_12 

1.49 

1.29 

1.46 

1.08 

11 0.155 0.150 209 4.34 SPI_12 

TCI_12 

PDSI_12 

NAOI_12 

1.768 

1.40 

1.51 

1.05 

12 0.192 0.187 175.6 4.64 SPI_12 

SOI_12 

TCI_12 

NAOI_12 

PDSI_12 

1.80 

1.34 

1.48 

1.08 

1.57 

13 0.192 0.187 175.3 4.57 SPI_12 

SOI_12 

VHI_12 

NAOI_12 

1.83 

1.32 

1.78 

1.08 
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PDSI_12 1.69 

14 0.192 0.186 176.9 5 SPI_12 

SOI_12 

VHI_12 

NAOI_12 

PDSI_12 

TCI_12 

1.91 

1.36 

2.09 

1.08 

1.69 

1.74 

15 0.193 0.187 176.4 4.81 SPI_12 

SOI_12 

SOILMOISTURE_12 

NAOI_12 

PDSI_12 

TCI_12 

1.81 

1.35 

1.22 

1.1 

1.59 

1.75 

 

Table 7: Polynomial regression 

variable degrees score variable degrees score 

SPI_12 2 

3 

4 

5 

6 

0.102308 

0.098425 

0.104660 

0.103773 

0.102503 

NAOI_12 2 

3 

4 

5 

6 

0.014810 

-0.00583 

0.024961 

0.027001 

0.046439 

SOI_12 2 

3 

4 

5 

6 

-0.02483 

-0.024737 

-0.047782 

-0.008321 

-0.007743 

VHI_12 2 

3 

4 

5 

6 

0.048829 

0.031246 

0.027365 

0.018343 

0.018299 

TCI_12 2 

3 

4 

5 

6 

0.023017 

0.063382 

0.066476 

0.070053 

0.072128 

TAVG_12 2 

3 

4 

5 

6 

0.016366 

0.007817 

0.006015 

-0.018565 

-0.01859 

PRECIPITATION_12 2 

3 

4 

5 

6 

0.087858 

0.088270 

0.086982 

0.089702 

0.087151 

NDVI_12 2 

3 

4 

5 

6 

-0.030134 

-0.030066 

-0.031589 

-0.031800 

-0.061702 
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Table 8: Differences between drought and non-drought periods 

variable mean 

non-drought 
(Emdat) 

mean drought 
(Emdat) 

median non-
drought 
(Emdat) 

median 
drought 
(Emdat) 

yield kg/ha 659.0 132.0 146.3 59.2 

import 107,250 131,581 90,720 93,171 

NAOI_12 0.0531 -0.0467 0.15 0.15 

SOI_12 0.18968 -0.4683 0.17 -0.645 

EVI_12 0.2 0.2 0.2 0.2 

NDVI_12 0.23 0.22 0.23 0.23 

NDWI_12 -0.086 -0.064 -0.08 -0.08 

PRECIPITATION_12 425.03 316.61 412.6 318.87 

TMIN_12 13.86 13.87 13.74 13.86 

TAVG_12 22.16 23.1 22.16 23.17 

SOILMOISTURE_12 16.4 15.16 16.19 15.11 

WINDSPEED_12 5.82 5.88 5.82 5.86 

PDSI_12 -9.72 -235.41 -47.4 -250.4 

VCI_12 0.53 0.52 0.52 0.53 

TCI_12 0.55 0.26 0.55 0.25 

VHI_12 0.53 0.39 0.53 0.39 

SPI_12 0.07 -0.42 0.02 -0.39 

 


