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On Some Problems Concerning Expansions
by Non Integer Bases
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durch das w. M. Ludwig Reich)

Consider a real number 1\q\2 and take any expansions of 1 of the
form

1\
O

;
i\1

q[ni (1)

where ni is a strictly increasing sequence of natural numbers. Define
further

0\y0\y1\y2\ . . .

as the increasing sequence of real numbers y which have at least one
representation of form

y\e0]e1q]e2q 2] . . . ] enq
n (2)

where e1, . . . , enMM0, 1N. Such an ordering clearly exists since in bounded
intervals there are only finitely many y satisfying (2). If q varies, the
coefficients of yn\yn (q) in (2) may vary as well. For fixed q, define

l(q)\ lim inf
n]O

( yn]1[yn ), L (q)\ lim sup
n]O

( yn]1[yn ) . (3)

Clearly 0pl(q) for all q. More is given in [2], namely:



Theorem A [2].
a) L (q)p1 #q.
b) L(q)\1 if qqA :\(1]J5/2), i.e. yn]1[yn\1 for infinitely many n.
c) L(q)\0 (i.e. yn]1[yn]0) implies that there exists an expansion (1) satisfying

sup (ni]1[ni)\O. (4)

(This means that there are arbitrarily long sequences of consecutive 0 as digits in the
expansions of 1).

The essential point of the proof of c) is a recursive construction of the digits of (1)
based on the fact that there exists a large m, for which the quantity

qm · A1[
ik

;
i\1

q[niB
can be approximated from below by some yn with an error as small as we please. Hence
the same proof implies.

Theorem 1. Let 1\q\2 and suppose that for every x[0 and for every e[0
there exist m, nMN with

q m ·x[e\yn\q mx. (5)

Then there exists an expansion (1) of 1 satisfying

sup (ni]1[ni)\O .

Remark. If q is not algebraic, all numbers of the form (2) are different.
Since there are 2n numbers of the form (2) and the largest number
1]q] . . . ]qn\(qn]1[1)/(q[1) is much less than 2n for large n we
get that for transcendental q, l(q)\0. It is clearly enough that q is not
a zero of a polynomical with coefficients 0 and ^1. Hence

l(q)\0 for 1\q\2 (6)

with denumerable exceptions.
In [6], [1] much more is proved. We introduce the notion of Pisot-

numbers (PV–numbers in [4], [5]) as algebraic integers q[1 whose
conjugates are complex numbers with modulus \ 1. It is known that the
least Pisot number is the positive root q1 of the polynomial

x 3\x]1

and its approximate value is q1B1,324717957. There holds
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Theorem B ([6], [1]).
a) If qM (1, 2) is a Pisot-number then l(q)[0
b) If qM(1, 2) is the root of xr]1[&r

k\0xk\0 then l(q)\1/q. In particular,
for q\A we have l(q)\1/A.

Here the following question arises:

Problem 1. Find the converse of Theorem A. c)

Remark. Of course, sup (ni]1[ni)\O does not imply L (q)\0 since
for a.a.q : 1\q\2 we have sup (ni]1[ni)\O (see [8]) and for Aqq,
L(q)\1.

Problem 2. Does the coverse of Theorem 1 hold?
The implication holds for x\1 since if sup (ni]1[ni)\O then

#k &m : 0\1[
m

;
i\1

eiq
[i\q[m[k

with some eiMM0, 1N. This means that we have

q m[
1
q k

\
m

;
i\1

eiq
m[i\qm ,

i.e. (5) holds indeed with x\1. Then clearly

q m (1]d1q] . . . ]dnq n )[
1

q k
\

m

;
i\1

eiq
m[i]

m

;
j\1

djq
m]j

\q m(1]d1q] . . . ]dnq n)

hence x\1]d1q] . . . ]dnq n also satisfies (5) if diMM0, 1N is arbitrary.
If (5) holds for x then it holds also for x/q 1, x/q 2 ect. We thus get (5) for
every finite sum

;dj q
j

djMM0, 1N where the j are integer (positive or negative) indices. The set of
such sums is dense in (0, O) by Theorem A a). On the other hand the set
of ‘‘good’’ x,

X\Mx[0 :#e[0 &m, nMN with q mx[e\yn\q mxN

is a Gd-set, i.e. the intersection of countable many open sets Gk where

Gk\Z
m,n Gx[0 : q mx[

1
k
\yn\q mxH .
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Hence

X\
O

Y
k\1

Gk

is a dense Gd-set and thus (0, O)CX is a set of I. category.

Problem 2. (reformulated). If there exists an expansion (1) with
sup (ni]1[ni)\O then X\(0, O).

Problem 3. It is ture that

X\(0, O)Ql(q)\0 ?

Problem 3@. There exists an expansion (1) with sup (ni]1[ni)\OQ
l(q)\0.

Remark. This last conjecuture holds a.c. since for a.a. qM (1, 2) both
parts of the equivalence are true. The only if part of Problem 3@ is trivial;
we have seen that if sup (ni]1[ni)\O then qm can be well approximated
from below by some yn, hence l (q)\0 holds indeed. To see the converse
it would be enough to show the only if part of Problem 3, i.e. that l (q)\0
implies X\(0, O).

Problem 4.

l(q)[0Qq is Pisot.

The if part is already mentioned in Theorem B. Concerning the only if
part the following result of Y. Bugeaud [3] is to be mentioned:

Theorem C [3] qM(1, 2) Pisot Q lim infn]O( y
(k)
n]1[y

(k)
n )[0 for all natural

integers k where

0\y
(k)
0 \y

(k )
1 \ . . .

is the increasing rearrangement of all y having at least one representation

y\e1q] . . . ]enq n ; e1, . . . , enMM0, 1, . . . , kN.

To see the basic ideas used here (borrowed from the theory of automata) we need the
following notions.

Let c M N, C\M[ c, . . . , 0, . . . , cN and

Z (q, c)\Gs\(sn)nq0MC N : ;
nq0

snq
[n\0H ,
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formed by the infinite words in C N which correspond to 0 in the basis q. Let further be

C *\
O

Z
n\1

C n

the set of finite words over the alphabet C and

LF(Z(q, e))\Mw MC* : &s MC N with ws MZ(q, c)N

be the set of left factors (i.e. the ‘beginnings’) of the words which correspond to 0 in the
basis q. To every element (s0, . . . , sn) M LF(Z(q, c)) we associate a polynomial
F(x)\s0xn] . . . ]sn . Clearly F(q) is the remainder of the Euclidean division of
F(x) by x[q. The values F(q) are bound for fixed q since there are sn]1, sn]2, . . .
with &O

0 si q
i\0, hence

DF(q) D\ K[
O

;
n]1

siq
n[i Kpc

O

;
n]1

qn[i\
c

q[1
.

In the theory of automata the following result it is known:

Theorem D ([9], [10]). q M(1, 2) is Pisot Q For every c MN the set of the
remainders F(q) is finite where F runs over all polynomials associated to F(Z(q, c)).

In fact, in [9] and [10] it is proved that both statements are equivalent to the
statement that Z(q, c) is recognizable by a finite automaton. This notion is defined as
follows. A finite automaton

A\(C, Q, I, T )

over the alphabet C is a (not necessarily complete) directed graph whose edges are labeled
by letters of C, Q is the ( finite) set of vertices called states, I\Q is a subset of the
so-called initial states, T \Q consists of the terminal states. Denote again by C* the
set of all finite words in C. A word w MC* is recognized byA if it is the label sequence
of a path in A starting from I and arriving in T . A subset E of C* is called
recognizable if there exists a finite automaton A over the alphabet C such that E
is the set of all words recognized by A.

Remark. The condition of Theorem D can be reformulated as follows:
[s0\&O

1 siq
[i implies the numbers xk\&iPksiq

k[i give only finitely
many different values for all k MN and for all expansions [s0\&O

1 siq
[i,

Dsi Dp c. Almost the same has been proved earlier in [11] (with s0\[1,
si MM0, 1N for iq1) for Pisot numbers. The converse implication is not
investigated in [11], therefore we pose it as a problem:

Problem 5. qM(1, 2) is Pisot Q the set of all xk\ek](ek]1/q)]
(ek]2/q 2)] . . . , k MN for every expansion 1\&O

i\1eiq
[i is finite.
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Remark. If Problem 5 is true it almost solves also Problem 4. Indeed, if
q is not Pisot then there are infinitely many different values xk. Since

0pxkp1]
1
q
]

1
q2] . . .\

1

1[
1
q

is bounded, then for every e[0 there exist integers k, l with

0\Dxk[x8 l D\e

where x8 l is the l-th truncation of another expansion of 1. On the other
hand

xk\q k[
k

;
i\1

eiq
k[i, ei MM0, 1N .

Hence in xk[x8 l all coefficients are in M[1, 0, 1N and at most one
coefficient can be ^2. Hence lim infn]O ( y

(2)
n]1[y

(2)
n )\0 follows and if

there were cases where the ‘bad’ coefficient ^2 does not occur then
l(q)\0 would also follow.

It is interesting to investigate the connection between l(q) and L(q).
We know that 0pl (q)pL(q)p1, that l(q)\0 with countably many
exceptions and that L(q)\1 for qqA. We have further:

Theorem E[1].

1\q\J2, l (q2)\0]L(q)\0.

The basic idea for the proof comes from the following:

Lemma [1]. If l(q)\0, q M(1, 2) then for every e[0 and D[0 there exists
a finite subsequence

w0\w1\ . . .\wm

of the sequence yk such that

wm[w0[D, wi[wi[1\e (i\1, . . . , m).

By this Lemma, we can prove Theorem E by using the odd powers of q for the rough
approximation, then the even powers for the fine approximation. Namely, if
l(q 2)\0, we build a sequence w0\ . . .\wm using the powers q 2 with D[q.
Now if x[w0]q, there exists a sum

y2k]1\e1q]e3q 3] . . .]e2n]1q 2n]1
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with the property

w0]y2k]1pxpw0]y2k]1]qpwm]y2k]1

since L(q 2)p1. By the Lemma, there exists a j : 0p jpm with

Dyl[x D\ Dwj]y2k]1[x D\e

if x[w0]q, hence L(q)\0 indeed.
In the above proof we used only finitely many digits of even indices ( for fixed e[0)

and we have some freedom in choosing these digits. This freedom might be enough to
prove

Problem 6.

1\q\A, l (q)\0]L(q)\0

As we have mentioned, for q[A this can not be true since L(q)\1 and
l(q)\0 a.e.q. We know further that l (q)\0 with countable many
exceptions; the smallest known (for us) values q with l(q)[0 is the least
Pisot-number q1.

Problem 7. If

1\q\q1 does then follow l(q)\0?

If this is true, it implies that L(q)\0 for 1\q\Jq1. This would answer
a problem from [1] stating that for the q near 1 we have L (q)\0. The
largest interval possible where L(q)\0 is (1, q1) where q1 is the smallest
Pisot number. Since q1\J2, the problem of [1] stating that L(q){0 for
q\J2, fails.

We can attack Problem 7, e.g. by ‘‘principle of boxes’’ : in the interval

(0, 1]q] . . .]q
n[1);

there are 2 n formally different sums e0]e1q] . . . ]en[1q
n[1, so in

a segment of length 0(qn ), 2n values are distributed. If l (q)[0 then there
are values y\yk having q (q[1)(2/q)n different representations. Sub-
stracting any two representations we get a polynomial with coefficients
0 or ^1 having the value 0 for x\q. Such a polynomial can be divided by
the minimal polynomial of q. So the following question arises.

Problem 8. Given any polynomial p0(x)\a0xk] . . .]ak with integer
coefficients and with a0\1, determine the number of polynomials
p(x)\e0x

n
] . . .]en, ei MM[1, 0, 1N satisfying p0 D p. To have the growth

rate of this numbers would be sufficient.
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This growth clearly depends on p0. We know that if q approaches 1, the
degree of p0 tends to infinity. We guess that it happens rarely that p0 D p. If
the number of these p is p (1]d)n for large n then

(1]d)nq(q[1) A
2
qB

n

[1

which is impossible if dp(2/q)[1.

Remark. Recently, A. Joó [11] investigated in detail results known in the
theory of finite automata from the point of view of Number Theory.
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