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On Some Problems Concerning Expansions
by Non Integer Bases

By
I. Joo6 and F. J. Schnitzer

(Vorgelegt in der Sitzung der math.-nat. Klasse am 7. Mirz 1996
durch das w. M. Ludwig Reich)

Consider a real number 1 <¢<2 and take any expansions of 1 of the
form

1=Yq" M

where 7, is a strictly increasing sequence of natural numbers. Define
further

0=y, <y <p<...

as the increasing sequence of real numbers y which have at least one
representation of form

]=80+81q+82q2+...—|—8ﬂq” @

where &, ..., ¢,€{0, 1}. Such an ordering clearly exists since in bounded
intervals there are only finitely many y satistying (2). If ¢ varies, the
coefficients of y, = y,(¢g) in (2) may vary as well. For fixed ¢, define

/() =lim inf (3,.,—2,), L(Q=limsup(y,.1—2). O

Cleatly 0 < /(g) for all g. More is given in [2], namely:
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Theorem A [2].
a) L(g<1Vq.

b Lig=1i9g=A:=(1 +\/g/2), ie. 9,1 —0, =1 for infinitely many n.
o L(g) =0 (iey, , —y,—0) implies that there exists an expansion (1) satisfying
sup (i, — ) = 0. )

(T'his means that there are arbitrarily long sequences of consecutive O as digits in the

expansions of 1).
The essential point of the proof of ¢) is a recursive construction of the digits of (1)
based on the fact that there exists a large m, for which the quantity

[/
q/// . <1 _ Zq—ﬂ,)
i=1

can be approximated from below by some y, with an error as small as we please. Hence
the same proof tmplies.

Theorem 1. Let1 < g<<2 and suppose that for every x > 0 and for every € > 0
there exist m, n€ N with

g x—e<y,<q"x. 5)
Then there exists an expansion (1) of 1 satisfying

sup (#,4 — 1) = 0.

Remark. If ¢is not algebraic, all numbers of the form (2) are different.
Since there are 2" numbers of the form (2) and the largest number
Tl+g+...+¢"=(q""" —1)/(g— 1) is much less than 2" for large 7 we
get that for transcendental ¢, £ (¢) = 0. It is cleatly enough that ¢ is not
a zero of a polynomical with coefficients 0 and + 1. Hence

=0 for 1<¢g<2 (6)

with denumerable exceptions.

In [6], [1] much more is proved. We introduce the notion of Pisot-
numbers (PV—numbers in [4], [5]) as algebraic integers ¢ >1 whose
conjugates are complex numbers with modulus < 1. It is known that the
least Pisot number is the positive root ¢, of the polynomial

=x+1

and its approximate value is ¢, & 1,324717957. There holds
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Theorem B ([6], [1]).

a) If qe(1, 2) is a Pisot-number then £ (q) >0

by Ifqe(1,2) is the root of X' — X x* =0 then £ (9) = 1/q. In particular,
Jor g =A we have { (q) =1/A.

Here the following question arises:
Problem 1. Find the converse of Theorem A. ¢)

Remark. Of course, sup (7., — #) = o0 does not imply L(g) = 0 since
fora.a.g: 1 <g<2we have sup (#,,, — n) = 00 (see [8]) and for 4 > ¢,
Lig=1.

Problem 2. Does the coverse of Theorem 1 hold?
The implication holds for x =1 since if sup (#,,;, — #) = o0 then

V£ 37%:0<1—Zglq—5<q—w—k

i=1
with some &,€{0, 1}. This means that we have

l - —i 7
q”‘—;<281~q”’ <q,

i=1
i.e. (5) holds indeed with x = 1. Then clearly
1 Z R :
g"(1+0q+ ... +0,9")——<Yeq" '+ )47
q i=1 =1
< q'”(l + 614 +...+ 5rxq”)

hence x=14 0,9+ ... + 0,4" also satisfies (5) if 0,€{0, 1} is arbitrary.
If (5) holds for x then it holds also for x/¢ ", x/¢° ect. We thus get (5) for
every finite sum

299

0,€{0, 1} where the jare integer (positive or negative) indices. The set of
such sums is dense in (0, c0) by Theorem A a). On the other hand the set
of “good” x,

X={x>0:Ye>0 3ImneN with ¢"x—e<y,<q"x}
is a Gy-set, i.e. the intersection of countable many open sets G, where

1
G, = U{x> O:qu_2<]”<qu}

mn
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Hence

X=mGk

k=1

is a dense Gy-set and thus (0, 00)\Xis a set of L. category.

Problem 2. (reformulated). If there exists an expansion (1) with
sup (#,,., — n) = o0 then X = (0, 00).

Problem 3. It is ture that

X=(0, 0)=l(9) =07

Problem 3'. There exists an expansion (1) with sup (,,, — ) = c0 <=

{(g)=0.

Remark. This last conjecuture holds a.c. since for a.a. ge(1, 2) both
patts of the equivalence are true. The only if part of Problem 3’ is trivial;
we have seen that if sup (7, ., — #) = 00 then ¢” can be well approximated
from below by some y,, hence 7 () = 0 holds indeed. To see the converse
itwould be enough to show the only if part of Problem 3, i.e. that £ (¢) =0
implies X'= (0, 00).

Problem 4.
/(gq) >0<>g is Pisot.
The if patt is already mentioned in Theorem B. Concerning the only if

part the following result of Y. Bugeaud [3] is to be mentioned:

Theotem C [3] ge(1, 2) Pisot<liminf,, (3, — ) > 0 for all natural
integers k where
0=y <) ® <.
is the increasing rearrangement of all y having at least one representation
y=&q+ ... +649" &,...,6€{0,1,... &}

To see the basic ideas used here (borrowed from the theory of antomata) we need the
[following notions.
Letce N, C={ — L‘,...,O,...,[} and

249 = { = (),20ECY: Y 57" = o},

n>0
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Jformed by the infinite words in CN which correspond to 0 in the basis q. Let further be

cr=\Jc

n=1
the set of finite words over the alphabet C and
LF(Z(g, ) ={weC*:3seC" with wseZ(q, ¢}

be the set of left factors (i.e. the ‘beginnings’) of the words which correspond to O in the
basis q. 1o every element (s,,...,s)€LF(Z(q, ) we associate a polynomial
F(x) = syx" + ... +5,. Clearly F(q) is the remainder of the Enclidean division of
F(x) by x— q. The values F'(q) are bound for fixed q since there are s, 1, 5,5, - ..
with X" s5,¢" = 0, hence

¢ —i S n—i ‘
IF(q)IZ‘—Zw” <¢) ¢7'= 1
n+1 n+1 q

In the theory of automata the following result it is known:

Theorem D ([9], [10]). g1, 2) is Pisot < For every c €N the set of the
remainders £/(q) is finite where I runs over all polynomials associated to IF(Z (g, ¢)).

In fact, in 9] and [10] it is proved that both statements are equivalent to the
statement that Z(q, ¢) is recognizable by a finite automaton. T'his notion is defined as
Sfollows. A finite antomaton

A =(C0LT)

over the alphabet C'is a (not necessarily complete) directed graph whose edges are labeled
by letters of C, Q is the ( finite) set of vertices called states, I = Q is a subset of the
so-called initial states, T" < Q consists of the terminal states. Denote again by C* the
set of all finite words in C. A word w € C* is recognized by o7 if it is the label sequence
of a path in oA starting from I and arriving in T. A subset E of C* is called
recognizable if there exists a finite antomaton < over the alphabet C such that E
is the set of all words recognized by < .

Remark. The condition of Theorem D can be reformulated as follows:
—5,=2X 54 implies the numbers x, =X Wq " give only finitely
many different values for all £€ N and for all expansions —s, = X" 5,4,
|5;] < ¢. Almost the same has been proved eatlier in [11] (with s, = —1,
5,€{0,1} for /> 1) for Pisot numbers. The converse implication is not
investigated in [11], therefore we pose it as a problem:

Problem 5. g€(1,2) is Pisot <> the set of all x,=¢, + (6,,,/9) +
(6,12/9)) + ..., REN for every expansion 1 =X ¢4 " is finite.
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Remark. If Problem 5 is true it almost solves also Problem 4. Indeed, if
¢ is not Pisot then there are infinitely many different values x,. Since

is bounded, then for every ¢ > 0 there exist integets £, £ with
0<|x,—x|<e¢

where X, is the /-th truncation of another expansion of 1. On the other
hand

2
Xy = qk_ Zgiqk_i’ Sie{o’ 1}'
i=1

Hence in x, — X, all coefficients are in {—1, 0, 1} and at most one
coefficient can be + 2. Hence lim inf, | Ufflzil — ]EIZ)) = 0 follows and if
there were cases where the ‘bad’ coefficient + 2 does not occur then
Z(9) =0 would also follow.

It is interesting to investigate the connection between £ (g) and L (g).
We know that 0 <7 (9) < L(g) <1, that £ (g) = 0 with countably many

exceptions and that /.(g) = 1 for ¢ > 4. We have further:

Theorem E[1].

1<g</2,/(q)=0—L(g=0.
The basic idea for the proof comes from the following:

Lemma [1]. /¢ (q) =0, ge(1, 2) then for every € > 0 and D > 0 there exists
a finite subsequence

Wy <wy <...<w

a

of the sequence y, such that

w,—wy>D, w—w_ <& (F=1,...,m).

i [

By this Lemma, we can prove Theorem E by using the odd powers of q for the rongh
approximation, then the even powers for the fine approximation. Namely, if
£ (q%) =0, we build a sequence w, < ...<w, using the powers q° with D> gq.
Now if x> wy + q, there exists a sum

2n+1

k41 =817+8373+-~ +&,419
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with the property

— T

Wyt Vet SXSWyF Dpp1 TG, )i

since 1.(q%) < 1. By the Lemma, there exists a j: 0 < j < m with

b, —x|= |”§'+J’2é+1_xl <eé

if x> wy + q, hence 1.(q) = 0 indeed.

In the above proof we used only finitely many digits of even indices (for fixed &€ > 0)
and we have some freedom in choosing these digits. This freedom might be enongh to
prove

Problem 6.
1<g<Al=0-L(g=0

As we have mentioned, for g > A this can not be true since L.(¢) = 1 and
/(9) =0 ae.q. We know further that /(g) =0 with countable many
exceptions; the smallest known (for us) values ¢ with £ (¢g) > 0 is the least
Pisot-number ¢,.

Problem 7. If
1 <g<ygq, doesthen follow ¢(g)=0?

If this is true, it implies that L.(g) = 0 for 1 < ¢ < ./¢,. This would answer
a problem from [1] stating that for the ¢ near 1 we have L(g) = 0. The
largest interval possible where () = 0 is (1, ¢,) where ¢, is the smallest

Pisot number. Since ¢, < ﬁ, the problem of [1] stating that Z(g) = 0 for

g< ﬁ, fails.

We can attack Problem 7, e.g. by “principle of boxes” : in the interval
O, 1+g+...+47";

there are 2" formally different sums & +&q+... +¢, 4" ', so in
a segment of length 0(¢"), 2" values are distributed. If  (¢) > 0 then there
are values y =y, having > (g —1)(2/¢)" different representations. Sub-
stracting any two representations we get a polynomial with coefficients
0 or £ 1 having the value 0 for x = ¢. Such a polynomial can be divided by
the minimal polynomial of ¢. So the following question arises.

Problem 8. Given any polynomial p,(x) = 4,x* + ... + a, with integer
coefficients and with 4, =1, determine the number of polynomials
Py =X +...+¢,¢6€e€{—1,0,1} satisfying p,| p. To have the growth
rate of this numbers would be sufficient.
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This growth cleatly depends on p,. We know thatif g approaches 1, the
degree of p, tends to infinity. We guess that it happens rarely that p, | p. If
the number of these pis < (1 + )" for large 7 then

2 n
( —I—(S)”Z(q—l)(q) 1
which is impossible if 0 < (2/9) — 1.

Remark. Recently, A. Joo [11] investigated in detail results known in the
theory of finite automata from the point of view of Number Theory.
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