On Some Problems Concerning Expansions by Non Integer Bases

By

I. Joó and F. J. Schnitzer

(Vorgelegt in der Sitzung der math.-nat. Klasse am 7. März 1996 durch das w. M. Ludwig Reich)

Consider a real number 1 < q < 2 and take any expansions of 1 of the form

$$1 = \sum_{i=1}^{\infty} q^{-n_i} \tag{1}$$

where n_i is a strictly increasing sequence of natural numbers. Define further

$$0 = y_0 < y_1 < y_2 < \dots$$

as the increasing sequence of real numbers y which have at least one representation of form

$$y = \varepsilon_0 + \varepsilon_1 q + \varepsilon_2 q^2 + \ldots + \varepsilon_n q^n$$
 (2)

where $\varepsilon_1, \ldots, \varepsilon_n \in \{0, 1\}$. Such an ordering clearly exists since in bounded intervals there are only finitely many y satisfying (2). If q varies, the coefficients of $y_n = y_n(q)$ in (2) may vary as well. For fixed q, define

$$\ell(q) = \lim \inf_{n \to \infty} (y_{n+1} - y_n), \quad L(q) = \lim \sup_{n \to \infty} (y_{n+1} - y_n). \tag{3}$$

Clearly $0 \le \ell(q)$ for all q. More is given in [2], namely:

Theorem A [2].

- a) $L(q) \leq 1 \ \forall q$.
- b) L(q)=1 if $q\geq A:=(1+\sqrt{5}/2)$, i.e. $y_{n+1}-y_n=1$ for infinitely many n. c) L(q)=0 (i.e. $y_{n+1}-y_n\to 0$) implies that there exists an expansion (1) satisfying

$$\sup (n_{i+1} - n_i) = \infty. \tag{4}$$

(This means that there are arbitrarily long sequences of consecutive 0 as digits in the expansions of 1).

The essential point of the proof of c) is a recursive construction of the digits of (1) based on the fact that there exists a large m, for which the quantity

$$q^m \cdot \left(1 - \sum_{i=1}^{i_k} q^{-n_i}\right)$$

can be approximated from below by some y, with an error as small as we please. Hence the same proof implies.

Theorem 1. Let 1 < q < 2 and suppose that for every x > 0 and for every $\varepsilon > 0$ there exist m, $n \in \mathbb{N}$ with

$$q''' \cdot x - \varepsilon < y_n < q''' x. \tag{5}$$

Then there exists an expansion (1) of 1 satisfying

$$\sup (n_{i+1} - n_i) = \infty.$$

Remark. If q is not algebraic, all numbers of the form (2) are different. Since there are 2" numbers of the form (2) and the largest number $1 + q + ... + q^n = (q^{n+1} - 1)/(q - 1)$ is much less than 2^n for large n we get that for transcendental q, $\ell(q) = 0$. It is clearly enough that q is not a zero of a polynomical with coefficients 0 and \pm 1. Hence

$$\ell(q) = 0 \text{ for } 1 < q < 2$$
 (6)

with denumerable exceptions.

In [6], [1] much more is proved. We introduce the notion of Pisotnumbers (PV-numbers in [4], [5]) as algebraic integers q > 1 whose conjugates are complex numbers with modulus < 1. It is known that the least Pisot number is the positive root q_1 of the polynomial

$$x^3 = x + 1$$

and its approximate value is $q_1 \approx 1,324717957$. There holds

Theorem B ([6], [1]).

a) If $q \in (1, 2)$ is a Pisot-number then $\ell(q) > 0$

b) If $q \in (1, 2)$ is the root of $x^{r+1} - \sum_{k=0}^{r} x^k = 0$ then $\ell(q) = 1/q$. In particular, for q = A we have $\ell(q) = 1/A$.

Here the following question arises:

Problem 1. Find the converse of Theorem A. *c*)

Remark. Of course, $\sup (n_{i+1} - n_i) = \infty$ does not imply L(q) = 0 since for a.a. q: 1 < q < 2 we have $\sup (n_{i+1} - n_i) = \infty$ (see [8]) and for $A \ge q$, L(q) = 1.

Problem 2. Does the coverse of Theorem 1 hold?

The implication holds for x = 1 since if $\sup (n_{i+1} - n_i) = \infty$ then

$$\forall k \quad \exists m: 0 < 1 - \sum_{i=1}^{m} \varepsilon_i q^{-i} < q^{-m-k}$$

with some $\varepsilon_i \in \{0, 1\}$. This means that we have

$$q^{m} - \frac{1}{q^{k}} < \sum_{i=1}^{m} \varepsilon_{i} q^{m-i} < q^{m},$$

i.e. (5) holds indeed with x = 1. Then clearly

$$q'''(1 + \delta_1 q + \dots + \delta_n q'') - \frac{1}{q^k} < \sum_{i=1}^m \varepsilon_i q^{m-i} + \sum_{j=1}^m \delta_j q^{m+j}$$
$$< q'''(1 + \delta_1 q + \dots + \delta_n q'')$$

hence $x = 1 + \delta_1 q + \ldots + \delta_n q^n$ also satisfies (5) if $\delta_i \in \{0, 1\}$ is arbitrary. If (5) holds for x then it holds also for x/q^1 , x/q^2 ect. We thus get (5) for every finite sum

$$\sum \delta_i q^j$$

 $\delta_j \in \{0, 1\}$ where the *j* are integer (positive or negative) indices. The set of such sums is dense in $(0, \infty)$ by Theorem A a). On the other hand the set of "good" x,

$$X = \{x > 0 : \forall \varepsilon > 0 \quad \exists m, n \in \mathbb{N} \quad \text{with} \quad q^m x - \varepsilon < y_n < q^m x \}$$

is a G_{δ} -set, i.e. the intersection of countable many open sets G_k where

$$G_k = \bigcup_{m,n} \left\{ x > 0 : q^m x - \frac{1}{k} < y_n < q^m x \right\}.$$

Hence

$$X = \bigcap_{k=1}^{\infty} G_k$$

is a dense G_{δ} -set and thus $(0, \infty) \setminus X$ is a set of I. category.

Problem 2. (reformulated). If there exists an expansion (1) with $\sup (n_{i+1} - n_i) = \infty$ then $X = (0, \infty)$.

Problem 3. It is ture that

$$X = (0, \infty) \Leftrightarrow \ell(q) = 0$$
?

Problem 3'. There exists an expansion (1) with $\sup (n_{i+1} - n_i) = \infty \Leftrightarrow \ell(q) = 0$.

Remark. This last conjecture holds a.c. since for a.a. $q \in (1, 2)$ both parts of the equivalence are true. The only if part of Problem 3' is trivial; we have seen that if $\sup (n_{i+1} - n_i) = \infty$ then q''' can be well approximated from below by some y_m , hence $\ell(q) = 0$ holds indeed. To see the converse it would be enough to show the only if part of Problem 3, i.e. that $\ell(q) = 0$ implies $X = (0, \infty)$.

Problem 4.

 $\ell(q) > 0 \Leftrightarrow q$ is Pisot.

The if part is already mentioned in Theorem B. Concerning the only if part the following result of *Y*. Bugeaud [3] is to be mentioned:

Theorem C [3] $q \in (1, 2)$ Pisot $\Leftrightarrow \lim \inf_{n \to \infty} (y_{n+1}^{(k)} - y_n^{(k)}) > 0$ for all natural integers k where

$$0 = y_0^{(k)} < y_1^{(k)} < \dots$$

is the increasing rearrangement of all y having at least one representation

$$y = \varepsilon_1 q + \ldots + \varepsilon_n q^n; \quad \varepsilon_1, \ldots, \varepsilon_n \in \{0, 1, \ldots, k\}.$$

To see the basic ideas used here (borrowed from the theory of automata) we need the following notions.

Let
$$c \in N$$
, $C = \{-c, ..., 0, ..., c\}$ and

$$Z(q, c) = \left\{ s = (s_n)_{n \ge 0} \in C^N : \sum_{n \ge 0} s_n q^{-n} = 0 \right\},\,$$

formed by the infinite words in C^N which correspond to 0 in the basis q. Let further be

$$C^* = \bigcup_{n=1}^{\infty} C^n$$

the set of finite words over the alphabet C and

$$LF(Z(q, e)) = \{ w \in C^* : \exists s \in C^N \text{ with } ws \in Z(q, c) \}$$

be the set of left factors (i.e. the 'beginnings') of the words which correspond to 0 in the basis q. To every element $(s_0, \ldots, s_n) \in LF(Z(q, c))$ we associate a polynomial $F(x) = s_0 x^n + \ldots + s_n$. Clearly F(q) is the remainder of the Euclidean division of F(x) by x - q. The values F(q) are bound for fixed q since there are s_{n+1}, s_{n+2}, \ldots with $\sum_{i=0}^{\infty} s_i q^i = 0$, hence

$$|F(q)| = \left| -\sum_{n+1}^{\infty} s_i q^{n-i} \right| \le c \sum_{n+1}^{\infty} q^{n-i} = \frac{c}{q-1}.$$

In the theory of automata the following result it is known:

Theorem D ([9], [10]). $q \in (1, 2)$ is Pisot \Leftrightarrow For every $c \in N$ the set of the remainders F(q) is finite where F runs over all polynomials associated to F(Z(q, c)). In fact, in [9] and [10] it is proved that both statements are equivalent to the statement that Z(q, c) is recognizable by a finite automaton. This notion is defined as follows. A finite automaton

$$\mathcal{A} = (C, Q, I, T)$$

over the alphabet C is a (not necessarily complete) directed graph whose edges are labeled by letters of C, Q is the (finite) set of vertices called states, $I \subset Q$ is a subset of the so-called initial states, $T \subset Q$ consists of the terminal states. Denote again by C^* the set of all finite words in C. A word $w \in C^*$ is recognized by A if it is the label sequence of a path in A starting from I and arriving in T. A subset E of C^* is called recognizable if there exists a finite automaton A over the alphabet C such that E is the set of all words recognized by A.

Remark. The condition of Theorem D can be reformulated as follows: $-s_0 = \sum_{1}^{\infty} s_i q^{-i}$ implies the numbers $\kappa_k = \sum_{i \geq k} s_i q^{k-i}$ give only finitely many different values for all $k \in N$ and for all expansions $-s_0 = \sum_{1}^{\infty} s_i q^{-i}$, $|s_i| \leq c$. Almost the same has been proved earlier in [11] (with $s_0 = -1$, $s_i \in \{0, 1\}$ for $i \geq 1$) for Pisot numbers. The converse implication is not investigated in [11], therefore we pose it as a problem:

Problem 5. $q \in (1, 2)$ is Pisot \Leftrightarrow the set of all $x_k = \varepsilon_k + (\varepsilon_{k+1}/q) + (\varepsilon_{k+2}/q^2) + \dots, k \in \mathbb{N}$ for every expansion $1 = \sum_{i=1}^{\infty} \varepsilon_i q^{-i}$ is finite.

Remark. If Problem 5 is true it almost solves also Problem 4. Indeed, if q is not Pisot then there are infinitely many different values x_k . Since

$$0 \le x_k \le 1 + \frac{1}{q} + \frac{1}{q^2} + \dots = \frac{1}{1 - \frac{1}{q}}$$

is bounded, then for every $\varepsilon > 0$ there exist integers k, ℓ with

$$0 < |x_k - \tilde{x}_\ell| < \varepsilon$$

where \tilde{x}_{ℓ} is the ℓ -th truncation of another expansion of 1. On the other hand

$$x_k = q^k - \sum_{i=1}^k \varepsilon_i q^{k-i}, \quad \varepsilon_i \in \{0, 1\}.$$

Hence in $x_k - \tilde{x}_\ell$ all coefficients are in $\{-1, 0, 1\}$ and at most one coefficient can be ± 2 . Hence $\liminf_{n \to \infty} (y_{n+1}^{(2)} - y_n^{(2)}) = 0$ follows and if there were cases where the 'bad' coefficient ± 2 does not occur then $\ell(q) = 0$ would also follow.

It is interesting to investigate the connection between $\ell(q)$ and L(q). We know that $0 \le \ell(q) \le L(q) \le 1$, that $\ell(q) = 0$ with countably many exceptions and that L(q) = 1 for $q \ge A$. We have further:

Theorem E[1].

$$1 < q < \sqrt{2}, \ell(q^2) = 0 \rightarrow L(q) = 0.$$

The basic idea for the proof comes from the following:

Lemma [1]. If $\ell(q) = 0$, $q \in (1, 2)$ then for every $\varepsilon > 0$ and D > 0 there exists a finite subsequence

$$v_0 < v_1 < \ldots < v_m$$

of the sequence y_k such that

$$w_m - w_0 > D$$
, $w_i - w_{i-1} < \varepsilon$ $(i = 1, ..., m)$.

By this Lemma, we can prove Theorem E by using the odd powers of q for the rough approximation, then the even powers for the fine approximation. Namely, if $\ell(q^2) = 0$, we build a sequence $w_0 < \ldots < w_m$ using the powers q^2 with D > q. Now if $x > w_0 + q$, there exists a sum

$$y_{2k+1} = \varepsilon_1 q + \varepsilon_3 q^3 + \ldots + \varepsilon_{2n+1} q^{2n+1}$$

with the property

$$w_0 + y_{2k+1} \le x \le w_0 + y_{2k+1} + q \le w_m + y_{2k+1}$$

since $L(q^2) \le 1$. By the Lemma, there exists a $j: 0 \le j \le m$ with

$$|y_{\ell} - x| = |w_i + y_{2k+1} - x| < \varepsilon$$

if $x > w_0 + q$, hence L(q) = 0 indeed.

In the above proof we used only finitely many digits of even indices (for fixed $\varepsilon > 0$) and we have some freedom in choosing these digits. This freedom might be enough to prove

Problem 6.

$$1 < q < A, \ell(q) = 0 \rightarrow L(q) = 0$$

As we have mentioned, for q > A this can not be true since L(q) = 1 and $\ell(q) = 0$ a.e.q. We know further that $\ell(q) = 0$ with countable many exceptions; the smallest known (for us) values q with $\ell(q) > 0$ is the least Pisot-number q_1 .

Problem 7. If

$$1 < q < q_1$$
 does then follow $\ell(q) = 0$?

If this is true, it implies that L(q)=0 for $1 < q < \sqrt{q_1}$. This would answer a problem from [1] stating that for the q near 1 we have L(q)=0. The largest interval possible where L(q)=0 is $(1,q_1)$ where q_1 is the smallest Pisot number. Since $q_1 < \sqrt{2}$, the problem of [1] stating that $L(q)\equiv 0$ for $q<\sqrt{2}$, fails.

We can attack Problem 7, e.g. by "principle of boxes": in the interval

$$(0, 1+q+\ldots+q^{n-1});$$

there are 2^n formally different sums $\varepsilon_0 + \varepsilon_1 q + \ldots + \varepsilon_{n-1} q^{n-1}$, so in a segment of length $0(q^n)$, 2^n values are distributed. If $\ell(q) > 0$ then there are values $y = y_k$ having $\geq (q-1)(2/q)^n$ different representations. Substracting any two representations we get a polynomial with coefficients 0 or ± 1 having the value 0 for x = q. Such a polynomial can be divided by the minimal polynomial of q. So the following question arises.

Problem 8. Given any polynomial $p_0(x) = a_0 x^k + ... + a_k$ with integer coefficients and with $a_0 = 1$, determine the number of polynomials $p(x) = \varepsilon_0 x'' + ... + \varepsilon_n$, $\varepsilon_i \in \{-1, 0, 1\}$ satisfying $p_0 \mid p$. To have the growth rate of this numbers would be sufficient.

This growth clearly depends on p_0 . We know that if q approaches 1, the degree of p_0 tends to infinity. We guess that it happens rarely that $p_0|p$. If the number of these p is $\leq (1 + \delta)^n$ for large n then

$$(1+\delta)^n \ge (q-1)\left(\frac{2}{q}\right)^n - 1$$

which is impossible if $\delta \leq (2/q) - 1$.

Remark. Recently, A. Joó [11] investigated in detail results known in the theory of finite automata from the point of view of Number Theory.

References

- [1] Erdös, P., Joó, I., Komornik, V.: On the sequence of numbers of the forms $\varepsilon_0 + \varepsilon_1 q + ... + \varepsilon_{s}^{\mu} \varepsilon_i \in \{0, 1\}$ (in preparation).
- [2] Erdös, P., Joó, I., Komornik, V.: Characterisation of the unique expansions $1 = \sum_{i=1}^{\infty} q^{-n_i}$ and related problems. Bull. Soc. Math. France 118, 377–390, (1990).
- [3] Bugeaud, Y.: On a property of Pisot numbers and related questions, Acta Math. Hung. (to appear). [B].
- [4] Cassels, E. W. S.: An introduction to disphantine approximation. Cambridge Univ. Press 1957. [C].
- [5] Narkiewicz, W.: Elementary and analytic theory of algebraic number. Warsow, 1974.
- [6] Erdös, P. Joó, M. Joó, I.: On a problem of Tamas Varga. Bull. Soc. Math. France 120, 101–116 (1992).
- [7] Erdös, P., Horvath, M., Joo, I.: On the uniqueness of the expansions $1 = \sum q^{-n_i}$, Acta Math. Hung. 58 333–342 (1991).
- [8] Erdös, P., Joó, I.: On the expansion $1 = \sum q^{-n_j}$. Period. Math. Hungar. 23, 25–28 (1991).
- [9] Frougny, C.: Representations of numbers and finite automata, Math. Syst. Theory 25, 37, 60 (1992). [F].
- [10] Berend D., Frougny, C.: Computability by finite automata and Pisot bases. Math. Syst Theory 27, 275–282 (1994).
- [11] Joó, A.: On finite automata to appear.

Authors' addresses: Dr. I. Joó, Department of Analysis, L. Eötvòs University, H-1088 Budapest, Múzeum krt. 6-8, Hungary; F. J. Schnitzer, Institut für Mathematik, Montan-Universität, A-8700 Leoben, Austria.