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1. Setting of the Problem

From the early work of Hlawka and Korobow on it became clear that
many problems of high dimensional numerics are to be solved using
number theoretical methods. NTN (Number Theoretical Numerics)
provides best possible methods for simulation, numerical integration,
approximation and interpolation, integral equations and many other
problems in the multivariate domain, where uniform distribution of
sequences or multivariate integration plays the key role (approximation of
functions e.g. is mostly based on convolution). For a review see for
example [1], [4], [5], [2], [9]. Recently NTN plays a role in image
processing too [21] and [23]. It is considered as an important problem to
construct sequences in the s-dimensional unit cube Gs\[0,1)s having
good properties from the simulation or numerical integration point of
view. It means essentially the quality of uniform distribution of the
sequences to be used. The quality of distribution of sequences can be
measured by means of different concepts, of which the most commonly
used are the Discrepancy D *

N and the Diaphony FN of the sequence x
1 0

,
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As usual a\\b means the existence of a positive number c such that
Da DO cb.

Recently the Salzburg research groups of Hellekalek and Larcher and
the Vienna group of Prof. Niederreiter received best possible results with
respect to the estimation of D *

N , FN and the integration error and for
Quasi-Monte Carlo methods.

In many cases of application of high dimensional integration or
simulation a more complicated problem is posed. It consists in the
simplest case of the following problem:

Given numbers x0 , . . . , xN[1MG1\[0,1), one has to construct a set of
points x

1
k\( x1 k , . . . , xs k)MGs\[0,1) s, k\0, . . . , N[1 with good dist-

ribution properties, such that all the xikMMx 0 , . . . , xN[1N , i\1, . . . , s ,
k\0 , . . . , N[1. It follows from the definition of Discrepancy D *

N , that
the Discrepancy of such a sequence x

1
k, k\0, . . . , N[1, in general

cannot be less than the Discrepancy of the original x0 , . . . , xN[1MG1. So
the problem consists of optimal Lifting of the sequence x 0 , . . . , xN[1MG1

to Gs\ [0,1) s. In the theory of optimal experiments the problem is well
known too. So this paper is also a contribution to the theory of uniform
designs.
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2. Solutions of the Lifting Problem

Let !N\M0,1, . . . , N[1N and let for j\1, . . . , s be given the finite
sequences wj\wj (N )\(x0 , j , x2 , j , . . . , xN[1 , j )M[0,1) N. The sequences
wj have discrepancies D *

N(wj )\D *
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pj ( x 1 , . . . , xs )\xj , j\1, . . . , s , be the projection of Gs onto [0,1). We
give the following
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is called a Lifting of the one-dimensional sequences w1 , . . . , ws to Gs. The Lifting
L will be called regular if
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such that t(k1 , . . . , ks)\s(x(k1 ,1), . . . , x(ks, s)). According to the assu-
med ordering of the points of wj , there are unique integers
nj ,0pn jpN[1, such that xnj , j \cj and xn
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The technicality (14) is frequently used and well known. A direct
inspection of (10) shows
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The counting function A jumps in our case of the sequence x
1
(a
1
k)\a

1
k/N,

k\0 , . . . , N[1, a
1
M Zs, only at the points c

1
\(n

1
]1, n2]1, . . . ,

ns]1)/N such that one gets immediately

D*
N(a

1
)\ max

0pnjpN[1
j/1, . . . s

K
A

N
[

(n
1
]1) . . . (ns]1)

Ns K . (17)

Using e.g. the s-variate Taylor-formula of order one we get in a straight
forward manner

K
s

<
j\1

cj[
s

<
j\1

nj]1
N Kp

s

;
j\1

( <
kDj

k/1

(1]D *
N, k ) ) D *

N, j . (18)

Combining (17) and (18) we get the right hand side part of (7)

D *
N(w (a

1
))pD *

N]
s
;
j\1

( <
kDj

k/1

(1]D *
N,k ))D *

N, j . (19)

The left hand side part of (7) follows readily: Let e[0 and
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The proof of Theorem 1 is complete.
There is a vast literature on the estimation of D*

N(a
1
) if the a

1
are good

lattice points or optimal coefficients (e.g. [9]). One observes that instead
of the cyclic Liftings k]a6 k mod N one can use e.g. (t,m,s)-nets to lift
sequences as well. For the definition and properties of (t,m,s)-nets see [9].
Some latest results can be found in [6]. This observation leads to the
definition of Discrepancy of a Lifting:
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Clearly, D *
N (L ) and FN(L ) describe the mixing properties of the Lifting

L. The following more general theorems holds:
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N is a regular Lifting, then
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We will not carry out the proof which is similar to the proof of the

previous theorem.

3. Some Computational Aspects

In the case of application of the Lifting method one is interested in easy
and fast computation of the quality of the lifted sequences and furthermore
in the quality of the lift itself. According to Theorem 1 and (7) the
problem consists of a fast computation or effective estimation of D *

N(w
j
),

j\1, . . . , s and of D *
N(a

1
) respectively. The computation of the Discrepan-

cy of the one-dimensional sequences wj , j\1, . . . , s is readily performed
by means of the formula [5]
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The computation or even the fast and effective estimation of D *
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1
)

causes more problems. The following remarks, all based on known results
or techniques respectively, could be helpful in various situations of
applications of NTN to applied problems. From (14), (15), (17) it is clear
that for the cyclic Lifting L(a

1
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1
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dN ( g)\1 otherwise)
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Because of the symmetry properties of H2(x) the computation of the right
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Proof: The following Lemma is well known and easy to prove.
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b) For uj\vj]rj , j\1, . . . , s holds
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such that we get
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Because of the well known inequality (confer in this paper (28))

D *
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1
)p

N[1

;
m1, . . . , ms\[(N[1)

dN(a1m1] . . . ] asms )
m1 1 . . . m1 s

(44)

the proof of the theorem is now complete.

Remark. Despite the fact that for certain N, s essentially best possible
lattice points a

1
\( a1 , . . . , as ) and corresponding estimations of D *

N (a)
are known, the above theorem is useful, because it is not always possible
to use (or even to find) the best possible lattice points. Frequently one has
to use some Lifting La

1
, where the a

1
comes from any where. The

complexity of the right hand side of (44) is N s , whereas the complexity of
the right hand side of (42) is only N/2.

Peter Zinterhof jun. wrote an efficient C-code for cyclic liftings
according to [6]. It works extremely fast on shared memory machines
using the software PVM (Parallel Virtual Maschine).

Zinterhof jun. made also a series of experiments. We now give some
numerical results as examples. Because of the high computational compl-
exity of Discrepancy in higher dimensions we use only the Diaphony as
estimator. Confer however (31), (32). For the convenience of notation let

lN\ K
1
N

N[1

;
k\1 C1[2 lnA2 sinnG

a1k

N HBD ·C1[2 lnA2 sinnG
a2k

N HBD[1 K .
(45)

We call the expression lN (x
1
0 , . . . , x

1
N[1) the Logophony of the finite

sequence x
1
0 , . . . , x

1
N[1. It will be studied more extensively in a forthco-

ming paper.
We mention in this paper only some results in the two-dimensional

case. In this case we use the fact that cyclic liftings based on number
theoretic properties of the Fibonacci-sequence are a very good choice. So
we call those Liftings Fibonacci-Liftings. We will use the classical
Fibonacci-sequence 1, 1, 2, 3, 5, . . . , fn\ fn[1] fn[2, . . . . For the Fibonac-
ci-Lifting as we call it choose N\ fn , a1\1, a2\ fn[1. Uniform distribu-
tion properties of the triplets (N, 1, a2) are apparently described the first
time in [4]. See also Niederreiter [9]. We will give now two simple
numerical examples

a) Lifting the sequence k/N, k\1, . . . , N by the two-dimensional
Fibonacci-Lifting. Let F1 be the Diaphony of the sequence k/N itself and
let F2 be the Diaphony and lN the Logophony respectively of the
two-dimensional lifted sequence. Confer (45) we give the following small
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table of results:

N, a2 F1 F2 lN

13,8 1.3952 e-2 6.8982e-1 1.0385
55,34 3.2978 e-2 1.9531e-1 5.8417e-1

377,233 4.8111e-3 3.3745e-2 1.8560e-1
610,377 2.9734e-3 2.1591e-2 1.3401e-1
987,610 1.8376e-3 1.3783e-2 9.5693e-2

1597,987 1.1357e-3 8.7822e-3 6.7675e-3
2584,1597 7.0193e-4 5.5856e-3 4.7457e-3
4181,2584 4.3381e-4 3.5470e-3 3.3033e-3
6765,4181 2.6810e-4 2.2493e-3 2.2841e-3

10946,6765 1.6567e-4 1.4246e-3 1.5699e-3

b) Lifting the sequence MkeN, k\1, . . . , N, e\2, 71 . . . . This classical
Kronecker-Sequence has knowingly very good uniform distribution
properties. Nevertheless, because the sequence is infinite, by a famous
result due to W. Schmid the D *

NqC lnN

N
for infinitely many values of

N (confer for example [9]). In the following small table F1 means the
Diaphony of the sequence MkeN, k\1, . . . , N whereas F2 is the Diaphony
of the two-dimensional lifted sequence using the corresponding Fibonac-
ci-Lifting.

N F1 F2

13 2.4019e-1 7.3767e-1
55 6.6385e-2 2.1115e-1

6765 8.2206e-4 2.5034e-3
10946 4.4429e-4 1.5392e-3

It is a consequence of our first theorem, that in example a) the values of F2

give the exact quality of the Fibonacci-Lifting in terms of the Diaphony of
the Lifting. For the values l2 holds the same, they are independent of the
lifted sequences. The same situation occurs in arbitrary dimensions s :
Lifting the sequence k/N, k\1, . . . , N, the resulting Discrepancy D*

N,
the Diaphony FN and lN as well give all numerical evidence of the quality
of the Lifting which is used.
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