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Abstract

Es werden einige elementare Ungleichungen auf hyperkomplexe Systeme
tbertragen. Insbesondere werden Ungleichungen fiir M6bius-Transfor-
mationen in diesem allgemeinen Kontext gezeigt.

1. Introduction

In this paper we will extend some known inequalities for complex num-
bers to certain systems of hypercomplex numbers.

Let R’ be the Euclidean space of vectors x = (xg, x1,...,%1) =
xoeo + x1e0 + -+ 4+ x_1¢,_1. The vectors ep,...,e;_1 denote the
standard basis of R’. Furthermore ¢j is considered to be the real unit
¢p = landey, ..., e_1 ate so-called hypercomplex units. xj is called real
part Re(x) and x = Z;;} xje; 1s called the imaginary part Im(x). The
conjugate of x is defined by X = xp¢p — X, and we will further use the
notation Imj(x) = ;. Let (x,y) denote a bilinear product
R x R — R such that (e, ¢;) =¢ for 0 <; <s5—1, (¢,¢) = —eo
for 1 <;j <s—1and (¢,e6) = —(ex,¢;) for 0 <j < & <5 — 1. In this
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way H = (R, +, (-, -)) becomes an antisymr?etric hypgrcomplex system.
One .easﬂy sees that (x, x) = (X, x) = Z;:O sz = |x|”, where |x| is the
Euclidean norm of x.

The set R or C can be identified with s =1 or s = 2, respectively.
For s = 4 we obtain the quaternion algebra H provided that {1, e2) = e3,
(e2,63) = 1 and (e3,¢1) = ¢3. Cayley’s octaves O, which are a special case
of s = 8, can be constructed from H by the doubling method.

We set r = |x|,»w = || and ¢ = arctan. Defining the powers
x" = (x,x"" 1), n € N, the relations '

Re(x") = r"cosnp, Imi(x") = r”ﬁsinmp, (1)
»

holdfor1 <; < s —1,w # 0, (see [6]). Taking these formulas with» = 1
and defining the exponential function with hypercomplex values of x by

/3
R
Al

we can prove the relation

x X
X = rexp ;@ =r cosgp—{—;smcp .

This implies De Moivre’s Theorem
x . ! x .
[r (cos © + —sin go)] =r’ [cos(ﬂgo) +- sm(ﬁgo)}
w w

for any natural number 7.
For x € H, x # 0, we define the hypercomplex logarithm of x to be

2, =logx = logr—l—f(go—l—ZﬂTr), nel.
w

Thus, log x is an infinitely many-valued function; gy we call the principal
hypercomplex logarithm if 0 < ¢ < 27. Furthermore we can introduce
logarithmic series, e.g.

log(1 +x) = log|1 + x| + arg(l +x) = > _(—1)""= |« <1,
w n

n>1

for which the derivation

d 1
—log(1 =—— =) (—1)¥,|x] < 1
o814 = = S

holds. We shall need the last two formulas later.
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Let 7 be a positive integer, « = (a, . ..,a,-1),§ > 2, a given hypet-
complex number and consider the mapping defined by a—x :
x"=a, |x|=|d=1. (2)

We shall try to find x = (xo, ..., x1) € H which satisfy (2). Using
formula (1) we see that
ap = Re(x") = cosnp, (3)
n >C/ 3 :
a; = Imy(x") = sinnp,1 <; <s—1,where (4)
w(x)
w(x)

X0

() 0. (5)

= arg x = arctan

With these three equations, we obtain xy = w(x) cos(atccos ay /7).
Then, taking w(x) = /1 — x2 the last relation yields
arccos ao)

(6)

Using (3), we can write (4) in the form x; /w (x) = a;/w(a). Taking into

X9 = cos(
n

account w = /1 — x3 and (6), this implies

a; . [arccosay ,
sm( ) 1<j<s—1, s>2 (7)
n

We thus have

Proposition 1.1.  Leza and x be hypercomplex: numibers of Enclidean norm 1 and let
n € N. Then forany given a € H there exists a unigue x = (xq, ..., x,—1) € H
according (6) and (7) such that x" = a (We always take the principle values of the
trigonometric functions).

2. A Special Analytic Inequality
Now we want to extend some specific inequalities to the hypercomplex
numbers x = (xq,...,x,-1) € H,s > 1.
Proposition 2.1.  Lez x be a hypercomplex: number such that ‘X| <1, then
14 ||
11+ x|

||

1+ |x]

< [log(1 4 x)| < ||

Proof:  The right-hand inequality can be shown as for complex numbers.
For proving the left-hand inequality we take an arbitrary but fixed point x
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on the hyper sphere [x+ 1| = C,0 < C < 2,C € R, which extends
from the real axis to the unit sphere. The function |x|/(1 + |x|) as well
as |log(1 + x)| (which is the principal value of the hypercomplex
logarithm) are continuous along |x + 1| = C, and differentiable for
|x + 1| < C. By introducing ® = arg(x + 1) as independent variable,
the cosine rule yields

d|x|

Ix]” = |x + 1" + 1 — 2|x + 1| cos ® resp. Md% = [1 + x|sin |®.
The function 2
a5 |oetr 0 = (1)
PSSP B P TP L e [P
(14 |x))* 4 1+ ||’

does not vanish for ® = 0.This is a contradiction because Rolle’s theorem
implies that the derivation must vanish somewhere in the interior. From
this the result follows immediately.

3. Modbius-Transformations in Hypercomplex Number Systems
In this section we will study four types of Mobius-Transformations in

quaternions H or octaves 0. We will prove the following theorem.

Theotem 3.1.  Let |a| < 1. Then the Mibius-Transformations
Ti(x) = (x —a)@x—1)"", Ts(x) = (ax—1)""(x—a),
To(x) = (x — a)(xa — 1)_1, Ty(x) = (xa — 1)_1(>< —a)
map the unit ball bijectively onto itself.

Proof: - We will prove the statement only for the function T (x) in O. All
other cases can be shown along the same lines. Let K be the boundary and
I'be the interior of the unit ball.

@) Tjisinvertibleon RUT :
Let |y| <1,]a] <1 and (x—a)(ax—1)"
follows that

1 L
= y. From this it

x —y(ax) =a—y.

Each number x € @ can be considered as a vector X € R®. Let &
be a fixed number. Then the functions x — bx and x — xb are
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linear mappings from R® to R®. We will denote by [4],, [4], € R®*®
the corresponding matrices. Using this matrix notation, the last
equation can be written as

(E=Dlilal)x=a=y,

where E denotes the unit matrix. This equation can be solved
uniquely, if and only if det(E — [ y],[a],) # 0, i.e. if there is no
eigenvalue 1 of | y],[a],.

Consider that 1 is an eigenvalue and » be the corresponding eigen-
vector. From this follows [ y],[a],» = v, thus y(ar) = ». We obtain
| | - || = 1, which is a contradiction to | y| < 1, 4| < 1.

T maps R onto R:

Let |x| = 1. This implies

X —a X —da

1
_1,

||

T3 (x) =

ax — 1 a— X

since x7! = x forall x € R.
T; ! maps R onto R:
From | y| = 1 follows

e = ol = fax — 1],
Thus
(x —a) (% —a) = (ax — 1)(za—1).
A simple computation verifies the identity
ax — ax + xa — xa =0 (8)
for all x and a. Thus we obtain
(1 = *)(1 = [d?) = 0.

The second factor of this product is # 0, thus |x| = 1.
T} maps I into I: From (8) we derive

a1 aP)(1 - X

1 E
|&x—l|2 |sz—1|2

and

- < ] = |a] ) (1= la)(1 = |xP)

14 |al|x] (1 £ |a|x])?
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In the last equation either the upper or the lower sign is true. Apply-
ing the triangle inequality

1= affae] <1 —ax| <1+ |af|]

to the upper relations we obtain

1- (M>22 1= [T > 1 - (M>2

1 — ||l 14 [ox[a]

From this we derive

2 2
1 — [x|]a| 1+ [x|a|

&) Ty7" mapsIinto I
Consider, thereisanx = T7!( y) withy € [,x¢ . Letyo = 0 € I,
then we have xg = T7!( y9) = a € I. We consider the straight line
J07 C I. Since T; ! is continuous, there must exist a j € 7y J with
T;'(5) = x € R. From this we obtain j = T} (X) € R, which is a
contradiction to y € y,y C I.

From the steps (i)~(v) we conclude the theorem. []

4. Further Analytic Inequalities

Recall that we have introduced the exponential function by the power
series which converges absolutely for all x € H. An alternative definition
of the exponential function is
X\ 7
¢” = lim (1 —|——) .
n—00 7
It can be expanded by the binomial theorem and the convergence
proof can be carried through as in the usual case.
For a natural number 7 and any hypercomplex number x # 0 the
following result can be shown by induction:

n 2

o (XY e (] o 1
¢ 1+ < le 1+ <e .

7 7 2n

Proposition 4.1.  Suppose that a, € H with a, = O(”i,) Then the estimate

o0

D e x) = (a0 + ar,2) + -+ g, 2")

k=0

< N|X|ﬂ+1€|x\

holds for any natural number nand x € H.
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Proof:  We have

3 e x") = (a0 + {a, >+---+<aﬂ,x”>>‘: > axt
£=0 k=n+1

n+1 oo

’X| ‘X|k 71 x| +
<M oM A MeRT
= 1(n+1)!; = M

In the following we list a few inequalities for elementary functions in
hypercomplex variables x = xgep + x € H. We use the definition of
hypercomplex: sine and cosine functions by Taylor series or by the generalized
Euler formula

e5%) = cos o + T sin ©,
w

which links the exponential function with the trigonometric functions:

e = 3 Dok e 2 3
YT L et T L 2e) T

£>0 £>0
X i x 1, s %
sinx = —i(efxe_zx), COS X :—(ﬁx —I—e_fx).
2w 2

Similatly, the hypercomples: hyperbolic functions are given by
o2kt 52k
sinh x = —— , coshx = vl
221 2.0
smhxzz(e —e ), coshxzé(e +e7).

With these obvious definitions most of the familiar real- and complex
valued trigonometric resp. hyperbolic inequalities can be extended to the
hypercomplex system H (For details we refer to [5]).

Proposition 4.2. If |x| < 1, then

x| /1 1/ 1
]smx]< =) \cosx\<§ et
1 1 1
|sinhx|§M e——], Jecoshx| <—=[e+—],
2 e 2 e

and (3 —e)|x| < |¢¥ = 1] < (e—1)|x].
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