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Abstract

LetD � R2 be an arbitrary set.We consider the followingquestion:What
kind of assumptions onD imply that every additive function f : R! R
satisfying the condition

�x; y� 2 D) f �x� f �y� � 0 �1�
is identically equal to zero? It is true if D is a non-empty open subset of
R2.G. Szabö posed this problem forD � f�x; y�;x2 � y2 � 1g ([7]).We
give an a¤rmative answer to Szabö's question and, moreover, we give
some su¤cient conditions to obtain the above assertion in much more
general spaces.

1.

Let X and Y be linear spaces over the rationals Q. A function
f : X ! Y is called additive if it satis¢es the (Cauchy's) equation

f �x� y� � f �x� � f � y�; x; y 2 X: �2�
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Every additive function is uniquely determined by its values on a so-
called Hamel base (i.e. a base of X over the rationals) and it ful¢lls the
condition

f �rx� � r f �x�; x 2 X; r 2 Q;

(cf. [4], for example).We start our considerations with two examples.

Example 1. Let f : R! R �R is here and in the sequel the set o¡ all
reals) be a discontinuous additive function vanishing on a saturated non-
measurable in the Lebesgue sense subset S ([4] p. 58 and 297-Th. 7) and
put D � �S� R� [ �R� S�. Evidently f is not identically equal to zero
and condition (1) is ful¢lled.
The setD, though large in a sense, does not contain any segment.The

following second example shows that evenwhenD contains a segment it
is possible to ¢nd a non-zero additive function ful¢lling condition (1).

Example 2. Let f : R be a discontinuous additive function such that
the restriction of f to the set of all rationals is equal to zero. If
D � f�x; y�;maxfjxj; j yjg � 1g, then f satis¢es condition (1) and is
not identically equal to zero.
The set from Example 2 is a unit circle if we treat R2 as a linear space

endowed with the norm k�x; y�k :� maxfjxj; j yjg.We shall show that
the answer to our (Szabö's) question is positive if we take a di¡erent norm
in R2.We have the following

Remark 1. LetD � f�x; y� 2 R2; jxj � j yj � 1g and let f : R! R
be an additive function ful¢lling condition (1).Then f is identically equal
to zero.

Proof: According to our assumptions we obtain

f �x� f �1ÿ x� � 0; x 2 �0; 1�: �3�
If f �1� � 0 it follows from (3) that f �x� � 0;x 2 �0; 1�, and hence
f � 0. Assume

f �1� 6� 0 �4�
and take an x0 2 �0; 1� such that f �x0� � 0. For arbitrary z 2 R there
exists an integer n such that z� nx0 2 �0; 1�.Thus

f �z� nx0� f �1ÿ zÿ nx0� � 0;

which, because of the additivity of f, yields the condition

f �z� f �1ÿ z� � 0; z 2 R:
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Puttingÿz instead of z in this equality and adding both we get
f �z� f �1� � 0;

which contradicts (4) and proves Remark 1.
A positive answer to Szabö's question is contained in

Theorem 1. Let f : R! R be an additive function ful¢lling condi-
tion (1) where D � f�x; y� 2 R2;x2 � y2 � 1g. Then f is identically
equal to zero.

Proof : Take an arbitrary x 2 �0; 1� and choose a y such that
x2 � y2 � 1. Setting

u � 3x� 4y
5

; v � 4xÿ 3y
5

we observe that

u 2 � v2 � x2 � y2 � 1:

By virtue of (1)

f �u� f �v� � f �x� f � y� � 0: �5�
Moreover, by (5)

0 � f �u� f �v� � 1
25
�3 f �x� � 4 f � y���4 f �x� ÿ 3 f � y��

� 12
25
� f �x�2 ÿ f � y�2�

and hence f �x�2 � f � y�2. On account of (5) f �x� � 0. Due to the arbi-
traryness ofx�2 �0; 1��; f is identically equal to zero because it is additive.
Corollary 1. A similar result holds true if D � f�x; y� 2 R2;

x2 � y2 � r 2g, where r > 0 is an arbitrary constant.

Proof: The function F�x� � f �rx�;x 2 R ful¢lls all assumptions of
Theorem1.We have also

Theorem 2. Let X be a real normed space and let Y be an arbitrary
linear space. If f : X ! Y is an arbitrary additive function ful¢lling the
condition

kxk2 � k yk2 � 1) f �x� � 0 or f �y� � 0;

then f is identically equal to zero.
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Proof : First let us assume that dimX > 1.Take an arbitraryx 2 X such
that kxk �

��
2
p
2 and put y � x.Then

kxk2 � k yk2 � 1

and by our assumptionwe get

f �x� � 0;

which means that f vanishes on a circle C � fx 2 X : kxk �
��
2
p
2 g. Since

dim X � 2 for every u 2 X; kuk<
��
2
p
2 , there exist v1; v2 2 C such that

v1� v2 � u ([1], see the proof of Lemma 1). Consequently

f �u� � f �v1 � v2� � f �v1� � f �v2� � 0:

Thus f, being an additive function vanishing on a ball, has to be identi-
cally equal to zero.
If dim X � 0, the assertion is trivial. If, ¢nally, dim X � 1 we may

assume that X � R and that kxk � rÿ1jxj for some r > 0. Thus for
every linear functional' : Y ! R the function' � f : X ! R satis¢es
the assumptions of Corollary 1, implying that ' � f � 0. But the linear
functionals onY separate the points of Y. Thus f � 0:
LetG be an abelian group and letKbe a ¢eld of characteristic zero. For

mappingsw : G! K and an element h 2 G the di¡erence operator� h is
de¢ned by

� h w�x� :� w�x� h� ÿ w�x�:
A mapping w : G ! K is called a generalized polynomial of degree less
than n� 1 i¡

� n�1
h w�x� � 0; x; h 2 G;

where �k denotes the kÿ th iterate of �.

Theorem 3. Let f : G! K be an additive function and let

D � f�v�x�;w�x�� 2 K�K;x 2 G�g;
where v;w : G ! K are generalized polynomials such that linQ v�G� �
linQ w�G� � K. If f ful¢lls condition (1), then it is identically equal to
zero.

Proof : By our assumptions

f �v�x�� f �w�x�� � 0; x 2 G: �6�
Since f � v and f � w are generalized polynomials we can apply a result
of F. Halter-Koch, L. Reich and J. Schwaiger ([3], Th. 2). Therefore
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f � v � 0 or f � w � 0. It follows from the equality linQ v�G� �
linQ w�G� � K that f is identically equal to zero.

Remark 2. The assumption linQ v�G� � linQ w�G� � K is essential
inTheorem 3.
This can be seen by taking v � id and w � f , where f is a function as

de¢ned in Example 2.

Corollary 2. Let v;w : R! R be arbitrary (ordinary) polynomials of
degree at least one. If f : R! R is an additive function ful¢lling condi-
tion (6) then it is identically equal to zero.
This is so, since v�R� and w�R� are non-trivial intervals.
Condition (1)maybe generalized by replacing the righthand side of the

implication (i.e. f �x� f � y� � 0 for �x; y� 2 D� by Q� f �x�; f � y�� � 0
for all �x; y� 2 D, where Q is a polynomial in indeterminates X and Y
over R�Q 2 R�X;Y��.This means that we now are interested in condi-
tions onD � R2 such that

�x; y� 2 D) Q� f �x�; f � y�� � 0 �10�
for an additive function f : R! R implies f � 0.
In this situation we will show

Theorem 30. Let f : R! R be additive and let p and q be generalized
polynomials of degree 1, i.e. p � g � a; q � h� b, where g; h : R! R
are additive and a, b real constants. Assume that p�R� and q�R� contain
Hamel bases. Furthermore, let Q 2 R�X;Y � such that no polynomial
AX � BY � C withAB 6� 0 divides Q�X;Y�, and let

D :� f� p�u�; q�u��ju 2 Rg � R2:

Then, if

�x; y� 2 D) Q� f �x�; f � y�� � 0; �10�
we have f � 0.

Proof:Wehave f � p�u�� � � f � g��u� � c; f �q�u�� � � f � h��u� � d ,
where c � f �a�; d � f �b�: f � g and f � h are additive, and since
p�R�; q�R� contain Hamel bases, the same holds for g�R�; h�R�, and so
f � g 6� 0; f � h 6� 0. By (10) we have

Q�� f � g��u� � c; � f � h��u� � d� � 0; u 2 R:

We denote by Q1�X;Y� the polynomial Q1�X; Y� :� Q�X � c;
Y � d�, whereQ1 6� 0;Q1�� f � g��u�; � f � h��u�� � 0; u 2 R.
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By [6, theorem 1] we get that f � g; f � h are linearly dependent over
R, i.e. there exists ��; �� 2 R2; ��; �� 6� �0; 0� such that

�� f � g� � �� f � h� � 0: �7�
Since f � g 6� 0; f � h 6� 0 we deduce that � 6� 0; � 6� 0. But then by
[6, theorem 2] we see that

�X � �Y jQ1�X;Y�;
and therefore

�X � �Y ÿ ��c� �d�jQ�X;Y�;
where �� 6� 0, which contradicts the assumption of the theorem. So we
have necessarily f � 0, which concludes the proof.
The setD fromExample1is large in a certain sense; it is saturated non-

measurable in the Lebesgue sense as well as it is a second category set
without Baire property. However, we prove the following

Theorem 4. Let f : R n ! R be an additive function ful¢lling condi-
tion (1) and assume that D � R2n is a Lebesgue measurable subset with
positive measure.Then f is identically equal to zero.

Proof : The set

H :� fx 2 R n; f �x� � 0g
is a subgroup of R n and since D � �H � R n� [ �R n �H� the outer
Lebesgue measure ofH is positive. It is not hard to check hatH is dense
in R n. By Sm|̈tal's lemma ([4], [5]) the set G :� �H �H� �D is of full
Lebesgue measure in R2n (in fact; since R n is separable there exists a
countable subset H0 of H which is dense in R n, and by Sm|̈tal's lemma
the set �H0 �H0� �D has full Lebesgue measure inR2n and, of course,
�H0 �H0� �D � G�.Moreover, for every �x; y� 2 Gwehavex � h1�
d1; y � h2 � d2; h1; h2 2 H; �d1; d2� 2 D, and hence f �x� f � y� � f �d1�
f �d2� � 0.Therefore

G � �H � R n� [ �R n �H� � : S:

Wewill show thatH ismeasurable in the Lebesgue sense and of the full
measure in R2n. By Fubini's theorem the set

B :� fx 2 R n; Sx � f y 2 R n; �x; y� 2 Sg is measurableg
is measurable in the Lebesgue sense and of full measure inR n. If B � H,
thenH is measurable and of the full measure in R n. If BnH 6� ;, take an
x 2 BnH. Then Sx � H and x 2 B. So, H is measurable, too.Thus H,
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being a dense subgroup of full measure inR n, is equal toR n. (In fact, any
subgroup of R n of positive measure equals R n: Assume that H is a full
measure group in R n.Take an arbitraryx from R n.Then the set xÿH is
also full measure in R n and therefore by the Steinhaus theorem the inter-
sectionH \ �xÿH� is a nonempty set. Choosing a z from this intersec-
tion we get that x � z� �xÿ z� belongs to H �H � H. Thus
H � R n:�
The proof of Theorem 4 is ¢nished.
A topological analogue of Theorem 4 is also true. One can prove the

following

Theorem 5. Let D be a second category subset of R2n with the Baire
property and let f : R n ! R be an additive function ful¢lling condition
(1).Then f is identically equal to zero.

Proof : The proof is quite similar to the proof of Theorem 4 because
Fubini's theorem and Sm|̈tal's lemma have topological analogues ([2], [4]).
The results of Remark 1and Theorem1can be viewed as special cases

of the following.

Theorem 6. Let u; v : T ! R be such that for all t 2 T there is some
t1 2 T and some 2� 2-matrixQwith rational and nonvanishing entries
a; b; c; d such that �u�t1�; v�t1��T � Q�u�t�; v�t��T. Moreover let u�T� or
v�T� generate R as a Q-vector space.Thenwe have that the condition

� f � u� � � f � v� � 0

implies f � 0.

Proof : Fix t 2 T. Without loss of generality we may suppose that
f �u�t�� � 0. Choosing t1 and Q as above and using the fact that
f �u�t1�� � f �v�t1�� � 0 we get

0 � f �au�t� � bv�t�� f �cu�t� � dv�t��
� acf �u�t��2 � ad f �u�t�� f �v�t�� � bc f �v�t�� f �u�t�� � bd f �v�t��2
� bd f �v�t��2;

implying that f �v�t�� � 0. Thus f � u � f � v � 0 which gives us the
desired result.

Remark 3. Using u � cos and v � sin we get Theorem 1 with
t1 � t � t0 where t0 is such that cos�t0� � 3=5 and sin�t0� � 4=5, for
example. Remark 1 may be considered as the case T ��0; 1�; u�t� � t;
v�t� � 1ÿ t; a � b � c � d � 1=2.
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A di¡erent example (hyperbola) is given by u � cosh, v � sinh,
t1 � t � t0, where now t0 is choosen in such a way that both cosh�t0�
and sinh�t0� are positive rationals (which of course is possible).
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