On Additive Functions Fulfilling some Additional Condition*

Von

Z. Kominek, L. Reich, and J. Schwaiger

(Vorgelegt in der Sitzung der math.-nat. Klasse am 30. April 1998 durch das w. M. Ludwig Reich)

Abstract

Let $D \subset \mathbb{R}^{2}$ be an arbitrary set. We consider the following question: What kind of assumptions on D imply that every additive function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the condition $$
\begin{equation*} (x, y) \in D \Rightarrow f(x) f(y)=0 \tag{1} \end{equation*}
$$ is identically equal to zero? It is true if D is a non-empty open subset of \mathbb{R}^{2}. G. Szabó posed this problem for $D=\left\{(x, y) ; x^{2}+y^{2}=1\right\}$ ([7]).We give an affirmative answer to Szabó's question and, moreover, we give some sufficient conditions to obtain the above assertion in much more general spaces.

1.

Let X and Y be linear spaces over the rationals \mathbb{Q}. A function $f: X \rightarrow Y$ is called additive if it satisfies the (Cauchy's) equation

$$
\begin{equation*}
f(x+y)=f(x)+f(y), \quad x, y \in X \tag{2}
\end{equation*}
$$

[^0]Every additive function is uniquely determined by its values on a socalled Hamel base (i.e. a base of X over the rationals) and it fulfills the condition

$$
f(r x)=r f(x), \quad x \in X, \quad r \in \mathbb{Q}
$$

(cf. [4], for example). We start our considerations with two examples.
Example 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}(\mathbb{R}$ is here and in the sequel the set off all reals) be a discontinuous additive function vanishing on a saturated nonmeasurable in the Lebesgue sense subset S ([4] p. 58 and 297-Th. 7) and put $D=(S \times \mathbb{R}) \cup(\mathbb{R} \times S)$. Evidently f is not identically equal to zero and condition (1) is fulfilled.

The set D, though large in a sense, does not contain any segment. The following second example shows that even when D contains a segment it is possible to find a non-zero additive function fulfilling condition (1).

Example 2. Let $f: \mathbb{R}$ be a discontinuous additive function such that the restriction of f to the set of all rationals is equal to zero. If $D=\{(x, y) ; \max \{|x|,|y|\}=1\}$, then f satisfies condition (1) and is not identically equal to zero.

The set from Example 2 is a unit circle if we treat \mathbb{R}^{2} as a linear space endowed with the norm $\|(x, y)\|:=\max \{|x|,|y|\}$. We shall show that the answer to our (Szabó's) question is positive if we take a different norm in \mathbb{R}^{2}. We have the following

Remark 1. Let $D=\left\{(x, y) \in \mathbb{R}^{2} ;|x|+|y|=1\right\}$ and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an additive function fulfilling condition (1). Then f is identically equal to zero.

Proof: According to our assumptions we obtain

$$
\begin{equation*}
f(x) f(1-x)=0, \quad x \in(0,1) \tag{3}
\end{equation*}
$$

If $f(1)=0$ it follows from (3) that $f(x)=0, x \in(0,1)$, and hence $f \equiv 0$. Assume

$$
\begin{equation*}
f(1) \neq 0 \tag{4}
\end{equation*}
$$

and take an $x_{0} \in(0,1)$ such that $f\left(x_{0}\right)=0$. For arbitrary $z \in \mathbb{R}$ there exists an integer n such that $z+n x_{0} \in(0,1)$. Thus

$$
f\left(z+n x_{0}\right) f\left(1-z-n x_{0}\right)=0
$$

which, because of the additivity of f, yields the condition

$$
f(z) f(1-z)=0, \quad z \in \mathbb{R}
$$

Putting - z instead of ₹ in this equality and adding both we get

$$
f(z) f(1)=0
$$

which contradicts (4) and proves Remark 1.
A positive answer to Szabó's question is contained in
Theorem 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an additive function fulfilling condition (1) where $D=\left\{(x, y) \in \mathbb{R}^{2} ; x^{2}+y^{2}=1\right\}$. Then f is identically equal to zero.

Proof: Take an arbitrary $x \in(0,1)$ and choose a y such that $x^{2}+y^{2}=1$. Setting

$$
u=\frac{3 x+4 y}{5}, \quad v=\frac{4 x-3 y}{5}
$$

we observe that

$$
u^{2}+v^{2}=x^{2}+y^{2}=1
$$

By virtue of (1)

$$
\begin{equation*}
f(u) f(v)=f(x) f(y)=0 \tag{5}
\end{equation*}
$$

Moreover, by (5)

$$
\begin{aligned}
0=f(u) f(v) & =\frac{1}{25}[3 f(x)+4 f(y)][4 f(x)-3 f(y)] \\
& =\frac{12}{25}\left(f(x)^{2}-f(y)^{2}\right)
\end{aligned}
$$

and hence $f(x)^{2}=f(y)^{2}$. On account of (5) $f(x)=0$. Due to the arbitraryness of $x(\in[0,1)), f$ is identically equal to zero because it is additive.

Corollary 1. A similar result holds true if $D=\left\{(x, y) \in \mathbb{R}^{2}\right.$; $\left.x^{2}+y^{2}=r^{2}\right\}$, where $r>0$ is an arbitrary constant.

Proof: The function $F(x)=f(r x), x \in \mathbb{R}$ fulfills all assumptions of Theorem 1. We have also

Theorem 2. Let X be a real normed space and let Y be an arbitrary linear space. If $f: X \rightarrow Y$ is an arbitrary additive function fulfilling the condition

$$
\|x\|^{2}+\|y\|^{2}=1 \Rightarrow f(x)=0 \text { or } f(y)=0
$$

then f is identically equal to zero.

Proof: First let us assume that $\operatorname{dim} X>1$. Take an arbitrary $x \in X$ such that $\|x\|=\frac{\sqrt{2}}{2}$ and put $y=x$. Then

$$
\|x\|^{2}+\|y\|^{2}=1
$$

and by our assumption we get

$$
f(x)=0
$$

which means that f vanishes on a circle $C=\left\{x \in X:\|x\|=\frac{\sqrt{2}}{2}\right\}$. Since $\operatorname{dim} X \geq 2$ for every $u \in X,\|u\|<\frac{\sqrt{2}}{2}$, there exist $v_{1}, v_{2} \in C$ such that $v_{1}+v_{2}=u$ ([1], see the proof of Lemma 1). Consequently

$$
f(u)=f\left(v_{1}+v_{2}\right)=f\left(v_{1}\right)+f\left(v_{2}\right)=0 .
$$

Thus f, being an additive function vanishing on a ball, has to be identically equal to zero.

If $\operatorname{dim} X=0$, the assertion is trivial. If, finally, $\operatorname{dim} X=1$ we may assume that $X=\mathbb{R}$ and that $\|x\|=r^{-1}|x|$ for some $r>0$. Thus for every linear functional $\varphi: Y \rightarrow \mathbb{R}$ the function $\varphi \circ f: X \rightarrow \mathbb{R}$ satisfies the assumptions of Corollary 1, implying that $\varphi \circ f=0$. But the linear functionals on Y separate the points of Y. Thus $f=0$.

Let G be an abelian group and let \mathbb{K} be a field of characteristic zero. For mappings $w: G \rightarrow \mathbb{K}$ and an element $b \in G$ the difference operator Δ_{b} is defined by

$$
\Delta_{b} w(x):=w(x+h)-w(x) .
$$

A mapping $w: G \rightarrow \mathbb{K}$ is called a generalized polynomial of degree less than $n+1$ iff

$$
\Delta_{h}^{n+1} w(x)=0, \quad x, b \in G,
$$

where Δ^{k} denotes the k - th iterate of Δ.
Theorem 3. Let $f: G \rightarrow \mathbb{K}$ be an additive function and let

$$
D=\{(\nu(x), w(x)) \in \mathbb{K} \times \mathbb{K} ; x \in G)\},
$$

where $v, w: G \rightarrow \mathbb{K}$ are generalized polynomials such that $\operatorname{lin}_{\mathbb{Q}} v(G)=$ $\operatorname{lin} \mathbb{Q} w(G)=\mathbb{K}$. If f fulfills condition (1), then it is identically equal to zero.

Proof: By our assumptions

$$
\begin{equation*}
f(v(x)) f(w(x))=0, \quad x \in G . \tag{6}
\end{equation*}
$$

Since $f \circ v$ and $f \circ w$ are generalized polynomials we can apply a result of F. Halter-Koch, L. Reich and J. Schwaiger ([3], Th. 2). Therefore
$f \circ v \equiv 0$ or $f \circ w \equiv 0$. It follows from the equality $\operatorname{lin}_{\mathbb{Q}} v(G)=$ $\operatorname{lin}_{\mathbb{Q}} w(G)=\mathbb{K}$ that f is identically equal to zero.

Remark 2. The assumption $\operatorname{lin}_{\mathbb{Q}} v(G)=\operatorname{lin}_{\mathbb{Q}} w(G)=\mathbb{K}$ is essential in Theorem 3.

This can be seen by taking $v=\mathrm{id}$ and $w=f$, where f is a function as defined in Example 2.

Corollary 2. Let $v, w: \mathbb{R} \rightarrow \mathbb{R}$ be arbitrary (ordinary) polynomials of degree at least one. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is an additive function fulfilling condition (6) then it is identically equal to zero.

This is so, since $\nu(\mathbb{R})$ and $\nu(\mathbb{R})$ are non-trivial intervals.
Condition (1) may be generalized by replacing the righthand side of the implication (i.e. $f(x) f(y)=0$ for $(x, y) \in D)$ by $Q(f(x), f(y))=0$ for all $(x, y) \in D$, where Q is a polynomial in indeterminates X and Y over $\mathbb{R}(Q \in \mathbb{R}[X, Y])$. This means that we now are interested in conditions on $D \subseteq \mathbb{R}^{2}$ such that

$$
(x, y) \in D \Rightarrow Q(f(x), f(y))=0
$$

for an additive function $f: \mathbb{R} \rightarrow \mathbb{R}$ implies $f=0$.
In this situation we will show
Theorem 3^{\prime}. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be additive and let p and q be generalized polynomials of degree 1, i.e. $p=g+a, q=b+b$, where $g, b: \mathbb{R} \rightarrow \mathbb{R}$ are additive and a, b real constants. Assume that $p(\mathbb{R})$ and $q(\mathbb{R})$ contain Hamel bases. Furthermore, let $Q \in \mathbb{R}[X, Y]$ such that no polynomial $A X+B Y+C$ with $A B \neq 0$ divides $Q(X, Y)$, and let

$$
D:=\{(p(u), q(u)) \mid u \in \mathbb{R}\} \subseteq \mathbb{R}^{2}
$$

Then, if

$$
(x, y) \in D \Rightarrow Q(f(x), f(y))=0
$$

we have $f=0$.
Proof: We have $f(p(u))=(f \circ g)(u)+c, f(q(u))=(f \circ b)(u)+d$, where $c=f(a), d=f(b) \cdot f \circ g$ and $f \circ b$ are additive, and since $p(\mathbb{R}), q(\mathbb{R})$ contain Hamel bases, the same holds for $g(\mathbb{R}), b(\mathbb{R})$, and so $f \circ g \neq 0, f \circ h \neq 0$. By $\left(1^{\prime}\right)$ we have

$$
Q((f \circ g)(u)+c,(f \circ b)(u)+d)=0, \quad u \in \mathbb{R}
$$

We denote by $Q_{1}(X, Y)$ the polynomial $Q_{1}(X, Y):=Q(X+c$, $Y+d)$, where $Q_{1} \not \equiv 0, Q_{1}((f \circ g)(u),(f \circ b)(u))=0, u \in \mathbb{R}$.

By [6, theorem 1] we get that $f \circ g, f \circ b$ are linearly dependent over \mathbb{R}, i.e. there exists $(\lambda, \mu) \in \mathbb{R}^{2},(\lambda, \mu) \neq(0,0)$ such that

$$
\begin{equation*}
\lambda(f \circ g)+\mu(f \circ b)=0 \tag{7}
\end{equation*}
$$

Since $f \circ g \neq 0, f \circ h \neq 0$ we deduce that $\lambda \neq 0, \mu \neq 0$. But then by [6 , theorem 2] we see that

$$
\lambda X+\mu Y \mid Q_{1}(X, Y)
$$

and therefore

$$
\lambda X+\mu Y-(\lambda c+\mu d) \mid Q(X, Y)
$$

where $\lambda \mu \neq 0$, which contradicts the assumption of the theorem. So we have necessarily $f=0$, which concludes the proof.

The set D from Example 1 is large in a certain sense; it is saturated nonmeasurable in the Lebesgue sense as well as it is a second category set without Baire property. However, we prove the following

Theorem 4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be an additive function fulfilling condition (1) and assume that $D \subset \mathbb{R}^{2 n}$ is a Lebesgue measurable subset with positive measure. Then f is identically equal to zero.

Proof: The set

$$
H:=\left\{x \in \mathbb{R}^{n} ; f(x)=0\right\}
$$

is a subgroup of \mathbb{R}^{n} and since $D \subset\left(H \times \mathbb{R}^{n}\right) \cup\left(\mathbb{R}^{n} \times H\right)$ the outer Lebesgue measure of H is positive. It is not hard to check hat H is dense in \mathbb{R}^{n}. By Smítal's lemma ([4], [5]) the set $G:=(H \times H)+D$ is of full Lebesgue measure in $\mathbb{R}^{2 n}$ (in fact; since \mathbb{R}^{n} is separable there exists a countable subset H_{0} of H which is dense in \mathbb{R}^{n}, and by Smítal's lemma the set $\left(H_{0} \times H_{0}\right)+D$ has full Lebesgue measure in $\mathbb{R}^{2 n}$ and, of course, $\left.\left(H_{0} \times H_{0}\right)+D \subset G\right)$. Moreover, for every $(x, y) \in G$ we have $x=b_{1}+$ $d_{1}, y=h_{2}+d_{2}, h_{1}, h_{2} \in H,\left(d_{1}, d_{2}\right) \in D$, and hence $f(x) f(y)=f\left(d_{1}\right)$ $f\left(d_{2}\right)=0$. Therefore

$$
G \subset\left(H \times \mathbb{R}^{n}\right) \cup\left(\mathbb{R}^{n} \times H\right)=: S
$$

We will show that H is measurable in the Lebesgue sense and of the full measure in $\mathbb{R}^{2 n}$. By Fubini's theorem the set

$$
B:=\left\{x \in \mathbb{R}^{n} ; S_{x}=\left\{y \in \mathbb{R}^{n} ;(x, y) \in S\right\} \text { is measurable }\right\}
$$

is measurable in the Lebesgue sense and of full measure in \mathbb{R}^{n}. If $B \subset H$, then H is measurable and of the full measure in \mathbb{R}^{n}. If $B \backslash H \neq \emptyset$, take an $x \in B \backslash H$. Then $S_{x}=H$ and $x \in B$. So, H is measurable, too. Thus H,
being a dense subgroup of full measure in \mathbb{R}^{n}, is equal to \mathbb{R}^{n}. (In fact, any subgroup of \mathbb{R}^{n} of positive measure equals \mathbb{R}^{n} : Assume that H is a full measure group in \mathbb{R}^{n}. Take an arbitrary x from \mathbb{R}^{n}. Then the set $x-H$ is also full measure in \mathbb{R}^{n} and therefore by the Steinhaus theorem the intersection $H \cap(x-H)$ is a nonempty set. Choosing a z from this intersection we get that $x=z+(x-z)$ belongs to $H+H=H$. Thus $H=\mathbb{R}^{n}$.)

The proof of Theorem 4 is finished.
A topological analogue of Theorem 4 is also true. One can prove the following

Theorem 5. Let D be a second category subset of $\mathbb{R}^{2 n}$ with the Baire property and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be an additive function fulfilling condition (1). Then f is identically equal to zero.

Proof: The proof is quite similar to the proof of Theorem 4 because Fubini's theorem and Smítal's lemma have topological analogues ([2], [4]).

The results of Remark 1 and Theorem 1 can be viewed as special cases of the following.

Theorem 6. Let $u, v: T \rightarrow \mathbb{R}$ be such that for all $t \in T$ there is some $t_{1} \in T$ and some 2×2-matrix Q with rational and nonvanishing entries a, b, c, d such that $\left(u\left(t_{1}\right), v\left(t_{1}\right)\right)^{T}=\mathcal{Q}(u(t), v(t))^{T}$. Moreover let $u(T)$ or $v(T)$ generate \mathbb{R} as a \mathbb{Q}-vector space. Then we have that the condition

$$
(f \circ u) \cdot(f \circ v)=0
$$

implies $f=0$.
Proof: Fix $t \in T$. Without loss of generality we may suppose that $f(u(t))=0$. Choosing t_{1} and Q as above and using the fact that $f\left(u\left(t_{1}\right)\right) \cdot f\left(v\left(t_{1}\right)\right)=0$ we get

$$
\begin{aligned}
0 & =f(a u(t)+b v(t)) f(c u(t)+d v(t)) \\
& =\operatorname{acf}(u(t))^{2}+a d f(u(t)) f(v(t))+b c f(v(t)) f(u(t))+b d f(v(t))^{2} \\
& =b d f(v(t))^{2},
\end{aligned}
$$

implying that $f(v(t))=0$. Thus $f \circ u=f \circ v=0$ which gives us the desired result.

Remark 3. Using $u=\cos$ and $v=\sin$ we get Theorem 1 with $t_{1}=t+t_{0}$ where t_{0} is such that $\cos \left(t_{0}\right)=3 / 5$ and $\sin \left(t_{0}\right)=4 / 5$, for example. Remark 1 may be considered as the case $T=] 0,1[, u(t)=t$, $v(t)=1-t, a=b=c=d=1 / 2$.

A different example (hyperbola) is given by $u=\cosh , v=\sinh$, $t_{1}=t+t_{0}$, where now t_{0} is choosen in such a way that both $\cosh \left(t_{0}\right)$ and $\sinh \left(t_{0}\right)$ are positive rationals (which of course is possible).

References

[1] Ger, R.: Some remarks on quadratic functionals. Glasnik Mat. 23, 315-330 (1988).
[2] Ger, R., Kominek, Z. K., Sablik, M.: Generalized Smítal's Lemma and aTheorem of Steinhaus. Radovi Mat. 1, 101-119 (1985).
[3] Halter-Koch, F., Reich, L., Schwaiger, J.: On products of additive functions. Aequationes Math. 45, 83-88 (1993).
[4] Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality. Polish Scientific Publishers and Silesian University Press, Warszawa-Kraków-Katowice, 1985.
[5] Kuczma, M., Smítal, J.: On measures connected with the Cauchy equation. Aequationes Math. 14, 421-428 (1976).
[6] Reich, L., Schwaiger, J.: On polynomials in additive and multiplicative functions. In: J. Aczél (ed.) Functional Equations: History, Applications and Theory. D. Reidel Publishing Company, Dordrecht/Boston/Lancaster, 1984, 127-160.
[7] Szabó, G.: Report of Meeting TheThirtieth International Symposium on Functional Equations, Oberwolfach, Germany 1992. Aequationes Math. 46, p. 294 (1993).

Authors'address: Z. Kominek, Institute of Mathematics, Silesian University, ul. Bankowa 14, PL-40-007 Katowice, Poland; L. Reich and J. Schwaiger, Institut für Mathematik, Universität Graz, Heinrichstrasse 36/IV, A-8010 Graz, Austria.

[^0]: * 1991 Mathematics Subject Classifications: 39B05, 26A 99.

 Keywords andphrases: Additive functions, conditional Cauchy's equation.

