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Abstract

Let D C R?be an arbitrary set. We consider the following question: What
kind of assumptions on D imply that every additive function / : R — R
satisfying the condition

(x,0) €D =f(x)f() =0 (1)
is identically equal to zero? It is true if D is a non-empty open subset of
R?. G. Szabé posed this problem for D = {(x, y); x2 + y% = 1} ([7]).We
give an affirmative answer to Szabd’s question and, moreover, we give
some sufficient conditions to obtain the above assertion in much more
general spaces.

1.

Let X and Y be linear spaces over the rationals Q. A function
f X — Y is called additive if it satisfies the (Cauchy’) equation

Flety) =f(x) + /() x0 € X. (2)
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Every additive function is uniquely determined by its values on a so-
called Hamel base (i.e. a base of X over the rationals) and it fulfills the
condition

flrx) =rf(x), xeX, red,
(cf. [4], for example). We start our considerations with two examples.

Example 1. Let / : R — R (R is here and in the sequel the set off all
reals) be a discontinuous additive function vanishing on a saturated non-
measurable in the Lebesgue sense subset S ([4] p. 58 and 297-Th. 7) and
put D = (5 x R) U (R x ). Evidently fis not identically equal to zero
and condition (1) is fulfilled.

The set D, though large in a sense, does not contain any segment. The
following second example shows that even when D contains a segment it
is possible to find a non-zero additive function fulfilling condition (1).

Example 2. Let / : R be a discontinuous additive function such that
the restriction of f to the set of all rationals is equal to zero. If
D = {(x, y);max{|x|, | y|} = 1}, then f satisfies condition (1) and is
not identically equal to zero.

The set from Example 2 is a unit circle if we treat R? as a linear space
endowed with the norm ||(x, y)|| : = max{|x|, | y|}. We shall show that
the answer to our (Szab6%) question is positive if we take a different norm
in R We have the following

Remark 1. Let D = {(x, y) € R?|x| + |y =1}andletf : R — R
be an additive function fulfilling condition (1). Then fis identically equal
to zeto.

Proof: According to our assumptions we obtain

fl)f(1=x)=0, x € (0,1). (3)

If /(1) = 0 it follows from (3) that f(x) = 0,x € (0,1), and hence
/ =0. Assume

F(1)#0 (4)

and take an x( € (0, 1) such that f(x() = 0. For arbitrary ¢ € R there
exists an integer 7 such that g + #x € (0, 1). Thus

Sz +mxq) f(1 =z —nxo) =0,

which, because of the additivity of f, yields the condition

fRf1-3)=0, zeR
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Putting —¢ instead of g in this equality and adding both we get
fR)A1) =0,

which contradicts (4) and proves Remark 1.
A positive answer to Szabd’s question is contained in

Theorem 1. Let / : R — R be an additive function fulfilling condi-
tion (1) where D = {(x, y) € R*x2 + 52 =1}. Then f is identically
equal to zero.

Proof: Take an arbitrary x € (0,1) and choose a y such that
x? 4y = 1. Setting

3x+4y 45 — 3y
= Y =

u

we observe that
By virtue of (1)

Moreover, by (5)
0=/(u)/@) = 215 3/ (x) + 4741 (x) =3/ ()]

12 2 2
= ()P = 7))

and hence f(x) 2 =7(y) %, On account of (5) f(x) = 0. Due to the arbi-
traryness of x(€ [0, 1)), f is identically equal to zero because it is additive.

Corollary 1. A similar result holds true if D = {(x,y) € R%
x? +y% = r?}, where r > 0 is an arbitrary constant.

Progf: The function F(x) = f(rx),x € R fulfills all assumptions of
Theorem 1. We have also

Theorem 2. Let X be a real normed space and let Y be an arbitrary
linear space. If f : X — Y is an arbitrary additive function fulfilling the
condition

1%+ 1l* = 1= () =0 or £() =0,

then f isidentically equal to zero.
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Proof : First let us assume that dim X > 1.Take an arbitrary x € X such
that ||x|| = \/TEand put y = x. Then

el + (11 * =1
and by our assumption we get

f(x) =0,

which means that f vanishes on a circle C = {x € X : ||x|| = %} Since
dim X > 2 for every # € X, Hﬂ||<72, there exist #1,#, € C such that

v1+ vy = u ([1], see the proof of Lemma 1). Consequently

Sfun) = f(r1+02) = f(01) + f(22) = 0.

Thus f, being an additive function vanishing on a ball, has to be identi-
cally equal to zero.

If dim X = 0, the assertion is trivial. If, finally, dim X = 1 we may
assume that X = R and that ||x|| = »~!|x| for some > 0. Thus for
every linear functional ¢ : Y — Rthe function o f : X — R satisfies
the assumptions of Corollary 1, implying that ¢ o f = 0. But the linear
functionals on Y separate the points of Y. Thus / = 0.

Let G be an abelian group and let K be a field of characteristic zero. For
mappings» : G — Kand anelement/ € G the difference operator A is
defined by

Ayw(x) = w(x+5b) —w(x).
A mapping w : G — K s called a generalized polynomial of degree less
than » 4 1 iff
Artly(x) =0, x,h€G,
where A* denotes the £ — #) iterate of A.
Theorem 3. Let / : G — K be an additive function and let
D = {(1(x), () € K x K; x € G)},

where v, w : G — K are generalized polynomials such that ling »(G) =
ling w(G) = K. If # fulfills condition (1), then it is identically equal to

Progf : By our assumptions
() f((x)) =0, x€G. (6)

Since f o vand f o w are generalized polynomials we can apply a result
of F. Halter-Koch, L. Reich and J. Schwaiger ([3], Th. 2). Therefore
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fovr=0or fow=0 It follows from the equality ling»(G) =
ling w(G) = K that f is identically equal to zero.

Remark 2. The assumption ling »(G) = ling »(G) = K is essential
in Theorem 3.

This can be seen by taking » = id and w = f, where fis a function as
defined in Example 2.

Corollary 2. Let #,» : R — R be atbitrary (ordinary) polynomials of
degree at least one. If / : R — R is an additive function fulfilling condi-
tion (6) then it is identically equal to zero.

This is so, since »(R) and »(R) are non-trivial intervals.

Condition (1) may be generalized by replacing the righthand side of the
implication (i.c. /() /() = 0 for (x, ) € D) by G(/(x), /(1)) =0
for all (x,y) € D, where Q is a polynomial in indeterminates X and Y
over R( 0O € R[X, Y]). This means that we now are interested in condi-
tions on D C R? such that

(x,0) € D= O(f(x), f(1) =0 (1)

for an additive function / : R — R implies /' = 0.
In this situation we will show

Theorem 3. Let f : R — R be additive and let p and ¢ be generalized
polynomials of degtee 1, ie. p =g+ a,g=»h+ b, where g,h: R — R
are additive and 4, b real constants. Assume that p(R) and ¢(R) contain
Hamel bases. Furthermore, let O € R[X, Y] such that no polynomial
AX + BY + C with AB # 0 divides O(X, Y), and let

D :={(p(x),q(n))ln € R} C R%,
Then, if

(xv,0) € D= 0(/ (%), /() =0, (1)
we have /= 0.

Progf: Wehave f(p(u)) = (f © g)(n) +¢, f(q(u)) = (f o 1) () +4,
whete ¢ = f(a),d = f(b).f o g and f o h are additive, and since
2(R), ¢(R) contain Hamel bases, the same holds for g(R), 4(R), and so

JSog#0,f oh#0.By (1) wehave
O((f o) +e(foh)(u)+d)=0, #€R

We denote by 01(X,Y) the polynomial 01(X,Y):=0(X +¢,
Y +d), where 01 Z0,0.(( f o g)(u),(f o h)(n)) =0,# € R.
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By [6, theorem 1] we get that / o g, / o / are linearly dependent over
R, i.e. there exists (A, i) € R?, (A, i) # (0,0) such that

A(fog+u(foh)=0 (7)
Since f 0 g # 0, f o h # 0 we deduce that A # 0, 1 # 0. But then by
[6, theorem 2] we see that

AX +puY]01(X,Y),
and therefore

AX 4 1Y — (e 4+ pud) O(X, ),

where Ay # 0, which contradicts the assumption of the theotem. So we
have necessarily f = 0, which concludes the proof.

The set D from Example 1is large in a certain sense; it is saturated non-
measurable in the Lebesgue sense as well as it is a second category set
without Baire property. However, we prove the following

Theorem 4. Let / : R” — R be an additive function fulfilling condi-
tion (1) and assume that D C R*" is a Lebesgue measurable subset with
positive measure. Then fis identically equal to zero.

Proof: The set
H:={x e R" f(x) =0}

is a subgroup of R” and since D C (H x R") U (R” x H) the outer
Lebesgue measure of H is positive. It is not hard to check hat H is dense
in R”. By Smital’s lemma ([4], [5]) the set G : = (H x H) + D is of full
Lebesgue measure in R¥ (in fact; since R” is sepatrable there exists a
countable subset H( of H which is dense in R”, and by Smital’s lemma
the set (Hy X Hp) + D has full Lebesgue measure in R* and, of course,
(Hy X Hy) + D C G). Moreover, for every (x,y) € Gwehavex = b+
d1,] = bz +d2,b],/72 € H, (d1,d2) S D, andhencef(x)f(y) :f(d1)
f(d2) = 0. Therefore

GC(HxR")U(R"x H)=:S.
We will show that H is measurable in the Lebesgue sense and of the full
measure in R?. By Fubinis theorem the set
B:={xeR"S,={ye€R"(x,y) €S}is measurable}

is measurable in the Lebesgue sense and of full measure in R”. If B C H,
then H is measurable and of the full measure in R”. If B\H # (), take an
x € B\H.Then §, = H and x € B. So, H is measurable, too. Thus H,
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being a dense subgroup of full measure in R”, is equal to R”. (In fact, any
subgroup of R” of positive measure equals R”: Assume that H is a full
measure group in R”.Take an arbitrary x from R”. Then the set x — H is
also full measure in R” and therefore by the Steinhaus theorem the inter-
section H N (x — H) is a nonempty set. Choosing a g from this intersec-
tion we get that x =3+ (x — g) belongs to H+ H = H. Thus
H=R")

The proof of Theotem 4 is finished.

A topological analogue of Theorem 4 is also true. One can prove the
following

Theorem 5. Let D be a second category subset of R* with the Baire
property and let / : R” — R be an additive function fulfilling condition
(1). Then f is identically equal to zero.

Progf : The proof is quite similar to the proof of Theorem 4 because
Fubini’s theotem and Smital’s lemma have topological analogues ([2], [4]).

The results of Remark 1and Theorem 1 can be viewed as special cases
of the following.

Theorem 6. Let #,» : T — R be such that for all # € T there is some
#1 € T and some 2 X 2-matrix ) with rational and nonvanishing entries
a,b,c,d such that (u(#1), ﬂ(f1>)T = O(u(?), y(z‘))T. Moreover let #(T) or
v(T) generate R as a Q-vector space. Then we have that the condition

(fon)-(for)=0
implies / = 0.

Proof: Fix t € T. Without loss of generality we may suppose that
f(u(#)) = 0. Choosing #; and Q as above and using the fact that

S(a(21)) - f(0(21)) = 0 we get
0 = f(an(#) + bo(2)) f (en(2) + do())
= acf (u(#))” + ad f (u(2)) f (0(2)) + be f (o(2)) £ (u(2)) + b £ (0(2))”
= bdf(o(1)),

implying that f(¢(#)) = 0. Thus f o # = f o » = 0 which gives us the
desired result.

Remark 3. Using # = cos and » = sin we get Theorem 1 with
t1 = t+ to where # is such that cos(#y) = 3/5 and sin(#y) = 4/5, for
example. Remark 1 may be considered as the case T =0, 1[,#(#) = #,
v(t)=1—tia=b=c=d=1/2.
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A different example (hyperbola) is given by # = cosh, » = sinh,
#1 =t + to, where now 7 is choosen in such a way that both cosh(#)
and sinh(#) are positive rationals (which of course is possible).
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