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On Gauss-Pölya's Inequality
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Abstract

Let g; h : �a; b� ! R be nonnegative nondecreasing functions such that
g and h have a continuous ¢rst derivative and g�a� � h�a�; g�b� � h�b�.
Let p � �p1; p2� be a pair of positive real numbers p1; p2 such that
p1 � p2 � 1.
a) If f : �a; b� ! R be a nonnegative nondecreasing function, then for

r; s < 1

M�r�p

� b
a
g0�t� f �t� dt;

� b
a
h0�t� f �t� dt

� �
�
� b
a
�M�s�p �g�t�; h�t���0 f �t� dt

(1)holds, and for r; s > 1 the inequality is reversed.
b) If f : �a; b� ! R is a nonnegative nonincreasing function then for

r < 1 < s �1� holds and for r > 1 > s the inequality is reversed.
Similar results are derived for quasiarithmetic and logarithmic means.
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1. Introduction

Gauss mentioned the following result in [2]:
If f is a nonnegative and decreasing function then�1

0
x2 f �x� dx

� �2

� 5
9

�1
0

f �x� dx
�1
0

x4 f �x� dx: �2�



Pölya andSzegÎ classical book`̀Problems andTheorems inAnalysis, I''
[7] gives the following generalization and extension of Gauss' inequality
(2).

Theorem A. (Pölya 's inequality) Leta and b be nonnegative real numbers.
a) If f : �0;1� ! R is a nonnegative and decreasing function, then�1
0

xa�b f �x� dx
� �2

� 1ÿ aÿ b
a� b� 1

� �2
 ! �1

0
x2a f �x� dx

�
�1
0

x2b f �x� dx �3�

whenever the integrals exist.
b) If f : �0; 1� ! R is a nonnegative and increasing function, then� 1

0
xa�b f �x� dx

� �2

� 1ÿ aÿ b
a� b� 1

� �2
 ! � 1

0
x2a f �x� dx

�
� 1
0
x2b f �x� dx: �4�

Obviously, putting a � 0 and b � 2 in (3) we obtain Gauss' inequality.
Recently Pe�cari�c andVaro�sanec [6] obtained a generalization.

Theorem B. Let f : �a; b� ! R be nonnegative and increasing, and let
xi : �a; b� ! R�i � 1; . . . ; n� be nonnegative increasing functions with a continuous
¢rst derivative. If pi; �i � 1; . . . ; n� are positive real numbers such thatPn

i�1
1
pi
� 1, then� b
a

Yn
i�1
�xi�t��1=pi

 !0
f �t� dt �

Yn
i�1

� b
a
x0i�t� f �t� dt

� �1=pi

: �5�

If xi�a� � 0 for all i � 1; . . . ; n and if f is a decreasing function then the reverse
inequality holds.
The previous result is an extension of the Pölya's inequality. If we sub-

stitute in (5): n � 2; p1 � p2 � 2; a � 0; b � 1; g�x� � x2u�1; h�x� �
x2v�1 where u; v > 0, we have (4).
In this paper we provide generalizations of Theorem B in a number of

directions. In Section 2 we ¢rst provide the inequality for weighted
means.We note that, as is suggested by notation for means, our result
extends to the case when the ordered pair � p1; p2� is replaced by an
n-tuple.We derive also a version of our theorem for higher derivatives.
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Section 4 treats some corresponding results when M is replaced by
quasiarithmetic mean. This can be done when the function involved
enjoys appropriate convexity properties. A second theorem in Section 4
allows one weight p1 to be positive and the others negative.
Section 5 addresses the logarithmic mean.

2. Results ConnectedwithWeightedMeans

M �s�
p �a� denotes the weighted mean of order r and weights p �
� p1; . . . ; pn� of a positive sequence a � �a1; . . . ; an�. The n-tuple p is of
positive numbers pi with

P n
1�i pi � 1.The mean is de¢ned by

M �r�
p �a� �

Xn
i�1

pia
r
i

 !1=r

for r 6� 0

Yn
i�1

a pi
i for r � 0:

8>>>><>>>>:
In the special cases r � ÿ1; 0; 1 we obtain respectively the familiar har-
monic, geometric and arithmetic mean.
The following theorem, which is a simple consequence of Jensen's

inequality for convex functions, is one of the most important inequalities
between means.

Theorem C. Ifa andp arepositive n-tuples and s < t; s; t 2 R, then
M �s�

p �a� � M �t�
p �a� for s < t; �6�

with equality ifand only if a1 � . . . � an.
A well-known consequence of the above statement is the inequality

between arithmetic and geometric means. Previous results and re¢ne-
ments can be found in [3].
The following theorem is the generalization of Theorem B.

Theorem 1. Let g, h : �a; b� ! R be nonnegative nondecreasing functions such
that g and h have a continuous ¢rst derivative and g�a� � h�a�; g�b� � h�b�. Let
p � � p1; p2� be a pair ofpositive real numbers p1; p2 such that p1 � p2 � 1.
a) If f : �a; b� ! R be a nonnegative nondecreasing function, then for r; s < 1

M �r�
p

� b
a
g0�t� f �t� dt;

� b
a
h0�t� f �t� dt

� �
�
� b
a
M �s�

p �g�t�; h�t��
� �0

f �t� dt

�7�
holds, and for r; s > 1 the inequality is reversed.
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b) If f : �a; b� ! R isa nonnegative nonincreasing function thenfor r < 1 < s �7�
holds and for r > 1 > s the inequality is reversed.

Proof : Let us suppose that r; s < 1 and f is nondecreasing. Using inequal-
ity (6) we obtain

M �r�
p

� b
a
g0�t� f �t� dt;

� b
a
h0�t� f �t� dt

� �
� M �1�

p

�� b
a
g0�t� f �t� dt;

� b
a
h0�t� f �t� dt

�
�
� b
a
� p1 g0�t� � p2 h

0�t�� f �t� dt

� f �b�M �1�
p � g�b�; h�b�� ÿ f �a�M �1�

p � g�a�; h�a��

ÿ
� b
a
M� 1�p �g�t�; h�t�� df �t�

� f �b�M�1�p � g�b�; h�b�� ÿ f �a�M�1�p � g�a�; h�a��

ÿ
� b
a
M �s�

p � g�t�; h�t�� df �t�

� f �b�M �1�
p � g�b�; h�b�� ÿ f �a�M �1�

p � g�a�; h�a��

ÿ
 
f �b�M �s�

p � g�b�; h�b�� ÿ f �a�M �s�
p � g�a�; h�a��

ÿ
� b
a
�M �s�

p � g�t�; h�t���0 f �t� dt
!

� f �b� M �1�
p � g�b�; h�b�� ÿM �s�

p � g�b�; h�b��
� �

ÿ f �a� M �1�
p � g�a�; h�a�� ÿM �s�

p � g�a�; h�a��
� �

�
� p
a
M �s�

p � g�t�; h�t��
� �0

f �t� dt

�
� b
a
M �s�

p �g�t�; h�t��
� �0

f �t� dt:
A similar proof applies in each of the other cases. &

Remark 1. InTheorem 1we deal with two functions g and h. Obviously
a similar result holds for n functions x1; . . . ;xn which satisfy the same
conditions as g and h.
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Remark 2. It is obvious that on substituting r � s � 0 into (7) we have
inequality (5) for n � 2.The result for r � s � 0 is given in [1].
In the following theorem we consider an inequality involving higher

derivatives.

Theorem 2. Let f : �a; b� ! R;xi : �a; b� ! R�i � 1; . . . ;m� be nonnega-
tivefunctions with continuous n-th derivativessuchthat x�n�i ; �i � 1; . . . ;m� arenonne-
gative functions and pi; �i � 1; . . . ;m� be positive real numbers such thatPm

i�1 pi � 1.
a) If �ÿ1�nÿ1 f �n� is a nonnegative function, then for r; s < 1

M �r�
p

� b
a
x �n�1 �t� f �t� dt; . . . ;

� b
a
x �n�m �t� f �t� dt

� �
� ��

� b
a
M �s�

p �x1�t�; . . . ;xm�t��
� ��n�

f �t� dt
�8�

holds, where

� �
Xnÿ1
k�0
�ÿ1�nÿkÿ1 f �nÿkÿ1��t�

Xm
i�1

pix
�k�
i �t� ÿ M �s�

p �x1�t�; . . . ;xm�t��
� ��k� !�����

b

a

:

If

x�k�i �a� � x�k�j �a� and x�k�i �b� � x�k�j �b� for i; j 2 f1; . . . ;mg �9�

and k � 0; . . . ; nÿ 1, then

M �r�
p

� b
a
x �n�1 �t� f �t� dt; . . . ;

� b
a
x �n�m �t� f �t� dt

� �
�
� b
a
M �s�

p �x1�t�; . . .xm�t��
� ��n�

f �t� dt:
�10�

If r; s > 1, then the inequalities (8) and (10) are reversed.
b) If �ÿ1�n f �n� isa nonnegativefunction, thenfor r < 1 < s theinequalities(8)and

(10) hold and for r > 1 > s they are reversed.
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Proof: a) Let r and sbe less than1. Integratingby part n-times and using (6),
we obtain

M �r�
p

� b
a
x �n�1 �t� f �t� dt; . . . ;

� b
a
x �n�m �t� f �t� dt

� �
� M �1�

p

� b
a
x �n�1 �t� f �t� dt; . . . ;

� b
a
x �n�m �t� f �t� dt

� �

�
Xnÿ1
k�0
�ÿ1�nÿk1 f �nÿkÿ1��t�

Xm
i�1

pi x
�k�
i �t�

 !�����
b

a

ÿ
� b
a
M �1�

p �x1�t�; . . . ;xm�t���ÿ1��nÿ1� f �n��t� dt

�
Xnÿ1
k�0
�ÿ1�nÿk1 f �nÿkÿ1��t�

Xm
i�1

pi x
�k�
i �t�

 !�����
b

a

ÿ
� b
a
M �s�

p �x1�t�; . . . ;xm�t���ÿ1��nÿ1� f �n��t� dt

� ��
� b
a
M �s�

p �x1�t�; . . . ;xm�t��
� ��n�

f �t� dt:

We shall prove that � � 0 if xi; i � 1; . . . ;m, satisfy (9).
Let us use notation Ak � x�k�i �a� for k � 0; 1; . . . ; nÿ 1. ThenPm
i�1 pix

�k�
i �a� � Ak. Consider the k-th order derivative of function

y p where y is an arbitrary functionwith k-th order derivative. First, there
exists function � �p�k such that

� y p��k� � � �p�k � y; y0; . . . ; y�k��:
This follows by induction on k. For k � 1 we have � yp�0 � pypÿ1 y 0 �

�
�p�
1 � y; y0�. Suppose that proposition is valid for all j < k� 1. Then

using Leibniz's rule we get

� y p��k�1� � � py pÿ1 � y0��k�

� p
Xk
j�0

k
j

� �
� y pÿ1�� j�� y 0��kÿj�

� p
Xk
j�0

k
j

� �
�
�pÿ1�
j � y; y 0; . . . ; y � j�� y �kÿj�1�

� � �p�k�1� y; y0; . . . ; y �k�1��:

�11�
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Suppose that s 6� 0 and use the abbreviated notation M�t� for the
mean M�s�p �x1�t�; . . . ;xm�t��. Then Ms�t� �Pm

i�1 Pixs
i�t�. The state-

ment `̀M�k��a� � Ak'' will be proved by induction on k. It is easy to
check for k � 0 and k � 1.
Suppose it holds for all j < k� 1.ThenXm
i�1

pix
s
i�t�

 !�k�1������
t�a
�
Xm
i�1

pi�
�s�
�k�1� xi�t�;x0i�t�; . . . ;x�k�1�i �t�

� ������
t�a

� � �s��k�1��A0;A1; . . . ;Ak�1�

� s
Xk
j�0

k
j

� �
�
�sÿ1�
j �A0;A1; . . . ;Aj�Akÿj�1

� � �sÿ1�k �A0;A1; . . . ;Ak�Ak�1:
On the other hand, using (11) we get

�Ms�t���k�1�jt�a � s
Xk
j�0

k
j

� �
�
�sÿ1�
j �M�a�;M0�a�; . . . ;M� j��a��

�M �kÿj�1��a� � � �sÿ1�k �M�a�;M0�a�; . . . ;M �k��a��M �k�1��a�

� s
Xk
j�0

k
j

� �
�
�sÿ1�
j �A0;A1; . . . ; Aj�Akÿj�1 � � �sÿ1�k

�A0; A1; . . . ; Ak�M �k�1��a�:
Comparing these two results we obtain thatM �k�1��a� � Ak�1, which is
enough to conclude that � � 0.
In the other cases the proof is similar, except in the case s � 0 which is

left to the reader. &

3. Applications

Now we will restrict our attention to the case when r � 0 and the xi are
power functions.

The case when n � 1.
Set: r � 0; n � 1; a � 0; b � 1;xi�t� � t aipi�1 in (8), where ai > ÿ 1

pi
for

i � 1; . . . ;m; pi > 0 and
Pm

i�1
1
pi
� 1.We obtain that � � 0 and� 1

0
t a1�����am f �t� dt � �m

i�1�ai pi � 1�1=pi
1� �m

i�1 ai

Ym
i�1

� 1
0
t ai pi f �t� dt

� �1=pi

;

�12�
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if f is a nondecreasing function. It is an improvement of Pölya's inequality
(4). Some other results related to this inequality can be found in [5] and
[8].
For example, combining (12) and the inequalityXm

i�1
ai � 2 �

Ym
i�1
�aipi � 2�1=pi

which follows from the inequality between arithmetic and geometric
means, we obtain� 1

0
t a1�����am f �t� dt � �m

i�1��aipi � 1��aipi � 2��1=pi
�1� �m

i�1 ai��2� �m
i�1 ai�

�
Ym
i�1

� 1
0
t aipi f �t� dt

� �1=pi

: �13�
The case when n � 2.

Set: r � 0; n � 2; a � 0; b � 1;xi�t� � t ai pi�2 in (8), where ai > ÿ 1
pi
for

i � 1; . . . ;m; pi > 0 and �m
i�1

1
pi
� 1. After some simple calculation, we

obtain that � � 0 and inequality (13) holds if f is a concave function.
So inequality (13) applies not only for f nondecreasing, but also for f
concave.

4. Results for Quasiarithmetic Means

De¢nition 2. Let f be a monotone real function with inverse fÿ1; p �
� p1; . . . ; pn� � � pi�i; a � �a1; . . . ; an� � �ai�i be real n-tuples. The qua-
siarithmetic mean of n-tuple a is de¢ned by

Mf �a; p� � fÿ1
1
Pn

Xn
i�1

pi f �ai�
 !

;

where Pn �
P n

i�1 pi.
For pi � 0;Pn � 1; f �x� � xr�r 6� 0� and f �x� � lnx�r � 0� the

quasiarithmetic meanMf �a; p� is the weighted meanM �r�
p �a� of order r.

Theorem 3. Let p be a positive n-tuple, xi : �a; b� ! R�i � 1; . . . ; n� be non-
negative functions with continuous ¢rst derivative such that xi�a� � xj�a�;xi�b� �
xj�b�; i; j � 1; . . . ; n
a) If ' is a nonnegative nondecreasing function on �a; b� and if f and g are convex

increasing or concave decreasing functions, then

Mf

� b
a
x0i�t�'�t� dt

� �
i

; p

� �
�
� b
a
M0g��xi�t��i; p�'�t� dt: �14�
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If f and g are concave increasing or convexdecreasing functions, the inequality is reversed.
b) If ' is a nonnegative nonincreasing function on �a; b�, f convex increasing or concave

decreasing function and g is concave increasing or convexdecreasing, then (14) holds.
If f is concave increasing or convex decreasing function and g is convex increasing or

concave decreasing, then (14) is reversed.

Proof: Suppose that ' is nondecreasing and f and g are convex func-
tions. We shall use integration by parts and the well-known Jensen
inequality for convex functions.The latter states that if �pi� is a positive
n-tuple and ai 2 I, then for every convex function f : I ! Rwe have

f
1
Pn

Xn
i�1

piai

 !
� 1

Pn

Xn
i�1

pi f �ai�: �15�
We have

Mf

� b
a
x0i�t�'�t� dt

� �
i

; p

� �
� fÿ1

1
Pn

Xn
i�1

pi f
� b
a
xi�t�'�t� dt

� � !

� 1
Pn

Xn
i�1

pi

� b
a
x0i�t�'�t� dt �

� b
a

1
Pn

Xn
i�1

pix
0
i�t�

 !
'�t� dt

� 1
Pn

Xn
i�1

pixi�t�'�t�jba ÿ
� b
a

1
Pn

Xn
i�1

pixi�t�
 !

d'�t�

� 1
Pn

Xn
i�1

pixi�t�'�t�jba ÿ
� b
a
gÿ1

1
Pn

Xn
i�1

pig�xi�t�
 ! !

d'�t�

� 1
Pn

Xn
i�1

pixi�t�'�t�jba ÿ
� b
a
Mg�xi�t��i; p� d'�t�

� 1
Pn

Xn
i�1

pixi�t�'�t�jba ÿMg��xi�t��i; p�'�t�jba

�
� b
a
M0g��xi�t��i; p�'�t� dt �

� b
a
M0g��xi�t��i; p�'�t� dt: &

Theorem 4. Let xi; i � 1; . . . ; n, satisfy assumptions of Theorem 4 and let p be a
real n-tuple such that

p1 > 0; pi � 0 �i � 2; . . . ; n�; Pn > 0: �16�
a) If ' is a nonnegative nonincreasing function on �a; b� and if f and g are concave

increasing or convex decreasing functions, then (14) holds, while if f and g are convex
increasing or concave decreasing (14) is reversed.
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b) If ' is a nonnegative nondecreasing function on �a; b�, f is convex increasing or con-
cave decreasing and g concave increasing or convexdecreasing, then (14) holds.
If f is concave increasing or convex decreasing and g is convex increasing or concave

decreasing, then (14) is reversed.
The proof is similar to that of Theorem 4. Instead ofJensen's inequal-

ity, a reverseJensen's inequality [3, p. 6] is used: that is, if pi is real n-tuple
such that (16) holds, ai 2 I; i � 1; . . . ; n, and �1=Pn�

P n
i�1 piai 2 I, then

for every convex function f : I ! R (15) is reversed.

Remark 3. InTheorem 4 and 5 we deal with ¢rst derivatives.We can
state an analogous result for higher-order derivatives as in Section 2.

Remark 4.The assumption that p is a positive n-tuple in Theorem 4
can be weakened to p being a real n-tuple such that

0 �
Xk
i�1

pi � Pn �1 � k � n�; Pn > 0

and �� x0i�t�'�t� dt�i and �xi�t��i; t 2 �a; b� being monotone n-tuples.
In that case, we use Jensen-Ste¡enen's inequality [3, p. 6]. instead of

Jensen's in-equality in the proof.
InTheorem 5, the assumption on n-tuplep can be replaced byp being a

real n-tuple such that for some k 2 f1; . . . ;mgXk
i�1

pi � 0�k < m� and
Xn
i�k

pi � 0�k > m�

and �� x0i�t�'�t� dt�i; �xi�t��i; t 2 �a; b� being monotone n-tuples.
We use the reverseJensen-Ste¡ensen's inequality (see [3, p.6] and [4]) in

the proof.

5. Results for Logarithmic Means

We de¢ne the logarithmic meanLr�x; y� of distinct positive numbersx; y
by

Lr�x; y� �

1
yÿ x

yr�1 ÿ xr�1

r � 1

� �1=r

r 6� ÿ1; 0
1
e

y y

xx

� � 1
yÿx

r � 0

ln yÿ ln x
yÿ x

r � ÿ1

8>>>>>>><>>>>>>>:
and takeLr�x;x� � x.The function r 7!Lr�x; y� is nondecreasing.
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It is easy to see thatL1�x; y� � x�y
2 and usingmethod similar to that of

the previous theorems we obtain the following result.

Theorem 5. Let g; h : �a; b� 7!R be nonnegative nondecreasing functions with
continuous¢rst derivatives and g�a� � h�a�; g�b� � h�b�.
a) If f is a nonnegative increasing function on �a; b�, and if r; s � 1, then

Lr

� b
a
g0�t� f �t� dt;

� b
a
h0�t� f �t� dt

� �
�
� b
a
L0s� g�t�; h�t� f �t� dt: �16�

If r; s � 1 then the reverse inequality holds.
b) If f is a nonnegative nonincreasing function then for r < 1 < s (16) holds, and for

r > 1 > s the reverse inequality holds.

Proof: Let f be a nonincreasing function and r < 1 < s. UsingF � ÿf ,
integration by parts and inequalities between logarithmic means we get

Lr

� b
a
g0�t� f �t� dt;

� b
a
h0�t� f �t� dt

� �
� L1

� b
a
g0�t� f �t� dt;

� b
a
h0�t� f �t� dt

� �
� 1
2

� b
a
� g�t� � h�t��0 f �t� dt

� 1
2
� g�t� � h�t�� f �t�jba �

� b
a

1
2
� g�t� � h�t�� dF�t�

� 1
2
�g�t� � h�t�� f �t�jba �

� b
a
Ls�g�t�; h�t�� dF�t�

� 1
2
� g�t� � h�t�� f �t�jba ÿ Ls� g�t�; h�t�� f �t�jba

�
� b
a
L0s�g�t�; h�t�� f �t� dt �

� b
a
L0s� g�t�; h�t�� f �t�dt:
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