Sitzungsber. Abt. 11 (1998) 207: 95-101

On a Linear Diophantine Equation
By

S. Chatadus and A. Schinzel

(Vorgelegt in der Sitzung der math.-nat.Klasse am 15. Oktober 1998
durch des k. M. Andrzej Schinzel)

Inn memory of Tadensg Prucnal

Let for vectors a = [aq,...,az] € 75 x = [x0,...,x4] € 75,

b(a) = max |a;], r(a) = Hf:o max{l, |¢z,~\}, ax = apgxog+ -+ apxg.
0<i<k

M. Drmota [2] has proved the following theorem.
Let£>1anda € (Z\{0}) 1 Then there exists a non-zero integral
solution x of the equation ax = 0 with

r(x) < kr(a)'*. (1)

Drmota has further shown that the exponent 1/ is optimal for £ = 1,2
and that for every £ there are vectors a € (Z \{0})*™" with arbitrarily
large r(a) such that all non-zero integral solutions x of ax = 0 satisfy

r(x) > r(a) /) (log r(a)) ~“".

We shall show that the exponent 1/& in the inequality (1) is optimal for all
k and, in fact, there exist vectors a € (Z \{O})K{=~+1 with arbitrarily large
r(a) such that for all x € Z*"'\{0} the equation ax = 0 implies

r(x) > C(&)r(a)'*, C(k) >0,

where however, for £ > 2 the constant C(£) is ineffective. The case £ = 1
is trivial and for the case £ = 2 we give an effective proof, which is simpler
and shorter than Drmotas. Note that what we denote by &£ Drmota
denotes by K — 1.
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Theorem. For every & there exist a positive constant C(R) and vectors
a € (Z\{0Y)*"" with arbitrarily large r(a) such that for every x € Z*+'\ {0}
the equation ax = O implies
r(x) > C(/é)r(a)l/é.
For £ = 2 one can take
C2) =2(vV2—1)"2
The proof is based on three lemmas.
Lemma 1. Asume that 1,ccq, . .., &y are real algebraze and linearly independent

over the rationals. Then for every positive € < 1 there exists a number ¢(€) > 0 such that
Jorall xx € 77" we have

|x0 + 3101 4 -+ x| r(x) > e(e)h(2)' . (2)

Proof: By Theorem 1D of Chapter VI of [2] for every > 0 there exists a
positive co(aq,...,a,,0) <1 such that for all non-zero integers
g1, .--,q, we have

19192 - qo| T llaigr + - + awgull > colan, ..., @, 6),

where ||x|| denotes the distance of x to the nearest integer.
It follows hence on taking

51(011,...,011,,5):msinfo(ksv,(s)Sl, (3)
where § runs through all non-empty subsets of {1, . .., a, }, that for all
integers x'1, ..., x, we have either x; = --- = x, = 0, or

Hmax{l’ |Xi|}1+6||alx1 et aVXV” > 51(()‘1’ cee 7al/76)' (4)
i=1

Now, let us take avp = 1 and put

. Qo Q1 Ay ay €
5(6):02’1_12 €1<_>"'7L7 - 7"'>—V7_)|aj|' (5)
S/SvV Oé/' Oéj Oéj' Oé/ 1%
If xg = -+ = x, = 0 the inequality (2) is true. Otherwise, let
b(x) = |- (6)
Ifxo, ...y x/-1,X/41, - - ., xp are all equal to 0, then (2) takes the form

1—
[oejexlloes| > ele)loes] 7,

which is true since, by (3) and (5), |a;| > ¢(e).
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Ifxo,. 0 21, %41, .., are not all equal to 0, then the left-hand
side of (2) is not less than

_q (e ¥R (0%
J v
+ X/+l _|_ PPN + Xpy—
@ @

Qo
P:‘a/-x/-| Xo;—f‘"'—i‘X/—l ]

J J J

v
X H max{1, ||}
i=1

i

and by (4) applied with £/v instead of ¢ and {ao/a;,..., 0,1/,
ay1/a, ... o/} instead of {ay, ..., ,}, and by (6)

P > Jcsle(e) [ [ max{1, |} =" > ele)lss]
i=1

i#

Lemma 2. Let f(x) = x*+oix®" -+ ¢y be a minimal polynomial
of a Pisot number. Lhe recurring sequence given by the conditions

a;i=00<i<k—1),a,1=1ay16+ crapyipr + - +cpa, =0
(7)

satisfies for a certain ¢ > O and all suficiently large n, and all integers x 1, . . ., x g, the
relation

£

max{1, |x1a,11 + - + xpanel} - [ [ max{1, v} > dlasal. (8)
i=1

Proof: Let 91,05, ...,0; be all the zeros of fand ¥, = 9 be a Pisot
number. Hence

¥ > 1> max{|Vs],..., |0},
thus

max{|0s],..., [0} =97%, where ¢ > 0.

By Lemma 1 applied with v = & — 1,¢; = " there exists a constant
¢(€) > 0 such that for all integers x1, ..., x¢

/g
et xat) + -+ 20 T T [ max{1, |} > o(e)( max |x])' 7
=1

1<i<k
©)
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We shall show that (8) holds for ¢ = 1¢(¢). Assuming the contrary we

would find infinitely many # such that for some integers x; not all zero

£
1
max{1, [x 12,01 + -+ + xpael} - [ [ max{1, |x,]} < 5e©lanal,
i=1

hence
- 1
B:gmax{1,|xi|} <§f(5)|ﬂn+1|a (10)
1
M= mas ] < 5el@)lar (1)
and
Blx1 4 xg® 4 - - 4 xp9®! +><2<d”+2—19> et
an+1
p 1
X (ﬂ S ﬂk_l) < =c(e).
Dn+1 2
By (9) it follows that
£ apti 1
B xil =2 Z—ﬁi1> > —e(e)M'E,
; <ﬂn+1 2 ©
and by (10),
£
ZXZ‘(Q%LZ‘—QW*%Z”JA) > M178. (12)
i=2
However, since ¥; are all distinct we have from the theory of recurring
series
k
a, = Za,ﬁf
=1
and, sinceag = -+ = a4 = 0,41 = 1, # 0. Indeed, otherwise the
system of £ — 1 homogeneous equations for ay,...,ax would give
ap=---=a =0, hencea,_1 = 0, a contradiction. Hence
a, = 9" 4+ O(0 ") (13)
and

‘dﬂ-‘ri - ﬂjilﬂﬂ-&%’ S C1|ﬂﬂ+1|7zs(i S /é)

for a suitable constant C.
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Thus, the left hand side of (12) does not exceed
M(k—1)Cila ] >
and we obtain
(= 1)CIM* > |a,|*
which contradicts (11) for # (and hence |a,11|) sufficiently large.
Lemma 3. Let in the notation of Lemma 2: k = 2,¢c1 < 0,¢0 = —1, and let

A = 7*\{[0,0]}. The recurring sequence given by the conditions (7) satisfies for all
n > O the equality

min  M,(x1,x2) = max{1,|c1|a,}, (14)

[X1,X2]EA
where

M, (x1,x2) = max{1,|a,+1x1 + a,42x2|max{1, |x1|}max{1, |x2|}.

Progf- First we observe that if [y1,y2] € Z%, y1y2 < 0 and [y1| > |y2]
then
L2 —ledln
2|

Now, we proceed to prove (14) by induction on 7 For » = 0 we have
trivially

> Jeq]| + 1. (15)

M()(Xl,Xz) Z 1= MQ(l,O)
Assume that (13) holds for the index 7. By (7)
Ay2X1 + ayp3xo = az1 Y1+ a2 )2,

where y1 = x2,72 = x1 + |c1]x2 and [x1, x2] € A implies [y1,y2] € A.
If y = 0 we get x4 = —|c1|y1, hence y1 # 0 and

M1 (x1,x2) = |et]aniiy > |et]anst

with the equality attained for y; = 1, i.e. x50 = 1,51 = —|¢1].
Ify2 # O0and y1 y2 > 0 oty y2 < 0, but | y1| < |y2| then

M, (xc1,x2) > a1 + anpayal > appo > |et]a,yr.
Ify1 92 < Oand | y1]| > [ y2| then

172 — le| 1]

Mn+1(xl,x2) :Mﬂ(J17J2)' |J2|
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and, by the inductive assumption and (15),

Myp1(x1,502) > max{1, |e1|a, }(ler] + 1) > |ei]a,1.

Proof of the theorem: For every £ the set Sz of Pisot numbers of degree £ is
non-empty (see [1], Theorem 5.2.2). Since §'; has no finite limit points it
has the least element 1). We take for f(x) in Lemma 2 the minimal poly-
nomial of ¥ and put

a = [17‘lﬂ+la‘zﬂ+27 s a‘zﬂJr/é]

where the sequence 4, is determined by the conditions (7). By the
formula (13)

apey = 9" 4 O(ﬂ—Za(n+l))
and for 7 large enough
r(a) = |a1|kﬁk(ﬂ+1)+(’;)(l + O(ﬁ—(nﬂ)(wze)))’
hence
lape1| > Car(a)'*,  C, positive, independent of 7. (16)

On the other hand, for every x € Z**'\{0} the condition ax =0
implies

X0 = TApH1X1 T T Atk Xk
hence by (8)
r(x) > cla,i. (17)
It follows from (16) and (17) that one can take
C(k) = ¢C,.

It remains to consider £ = 2. Then taking in Lemma 3:
¢1 = —2 and putting
a=[l,a,11,a,:2,
where a, is determined by the condition (7) we find
(V) - (1-V2)"
"= 22

and for » odd

14 22ﬂ+3

(a) (1+V2) a2, (18)
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On the other hand, for every x € Z° \ {0} the condition ax = 0 implies
X0 = TaAp1X1 T dp42X2,
hence, by (14),
r(x) > 2a,,
and, by (18)

r(x) > 2(V2 + 1) (@) = 2(vV2 = 1) *r(a) V2.
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