# On a Linear Diophantine Equation 

By

## S. Chaładus and A. Schinzel

(Vorgelegt in der Sitzung der math.-nat.Klasse am 15. Oktober 1998 durch des k. M. Andrzej Schinzel)

## In memory of Tadeus₹ Prucnal

Let for vectors $\boldsymbol{a}=\left[a_{0}, \ldots, a_{k}\right] \in \mathbb{Z}^{k+1}, \boldsymbol{x}=\left[x_{0}, \ldots, x_{k}\right] \in \mathbb{Z}^{k+1}$, $b(\boldsymbol{a})=\max _{0 \leq i \leq k}\left|a_{i}\right|, r(\boldsymbol{a})=\prod_{i=0}^{k} \max \left\{1,\left|a_{i}\right|\right\}, \boldsymbol{a} \boldsymbol{x}=a_{0} x_{0}+\cdots+a_{k} x_{k}$.
M. Drmota [2] has proved the following theorem.

Let $k \geq 1$ and $\boldsymbol{a} \in(\mathbb{Z} \backslash\{0\})^{k+1}$. Then there exists a non-zero integral solution $\boldsymbol{x}$ of the equation $\boldsymbol{a} \boldsymbol{x}=0$ with

$$
\begin{equation*}
r(\boldsymbol{x}) \leq k r(\boldsymbol{a})^{1 / k} \tag{1}
\end{equation*}
$$

Drmota has further shown that the exponent $1 / k$ is optimal for $k=1,2$ and that for every $k$ there are vectors $\boldsymbol{a} \in(\mathbb{Z} \backslash\{0\})^{k^{k+1}}$ with arbitrarily large $r(\boldsymbol{a})$ such that all non-zero integral solutions $\boldsymbol{x}$ of $\boldsymbol{a} \boldsymbol{x}=0$ satisfy

$$
r(\boldsymbol{x}) \gg r(\boldsymbol{a})^{1 /(k+1)}(\log r(\boldsymbol{a}))^{-(k+1)} .
$$

We shall show that the exponent $1 / k$ in the inequality (1) is optimal for all $k$ and, in fact, there exist vectors $\boldsymbol{a} \in(\mathbb{Z} \backslash\{0\})^{k+1}$ with arbitrarily large $r(\boldsymbol{a})$ such that for all $\boldsymbol{x} \in \mathbb{Z}^{k+1} \backslash\{\boldsymbol{0}\}$ the equation $\boldsymbol{a} \boldsymbol{x}=0$ implies

$$
r(\boldsymbol{x}) \geq C(k) r(\boldsymbol{a})^{1 / k}, \quad C(k)>0
$$

where however, for $k>2$ the constant $C(k)$ is ineffective. The case $k=1$ is trivial and for the case $k=2$ we give an effective proof, which is simpler and shorter than Drmota's. Note that what we denote by $k$ Drmota denotes by $K-1$.

Theorem. For every $k$ there exist a positive constant $C(k)$ and vectors $\boldsymbol{a} \in(\mathbb{Z} \backslash\{0\})^{k+1}$ with arbitrarily large $r(\boldsymbol{a})$ such that for every $\boldsymbol{x} \in \mathbb{Z}^{k+1} \backslash\{\mathbf{0}\}$ the equation $\boldsymbol{a x}=0$ implies

$$
r(\boldsymbol{x}) \geq C(k) r(\boldsymbol{a})^{1 / k}
$$

For $k=2$ one can take

$$
C(2)=2(\sqrt{2}-1)^{3 / 2}
$$

The proof is based on three lemmas.
Lemma 1. Asume that $1, \alpha_{1}, \ldots, \alpha_{\nu}$ are real algebraic and linearly independent over the rationals. Then for every positive $\varepsilon<1$ there exists a number $c(\varepsilon)>0$ such that for all $\boldsymbol{x} \in \mathbb{Z}^{\nu+1}$ we have

$$
\begin{equation*}
\left|x_{0}+x_{1} \alpha_{1}+\cdots+x_{\nu} \alpha_{\nu}\right| r(\boldsymbol{x}) \geq c(\varepsilon) h(\boldsymbol{x})^{1-\varepsilon} \tag{2}
\end{equation*}
$$

Proof: By Theorem 1D of Chapter VI of [2] for every $\delta>0$ there exists a positive $c_{0}\left(\alpha_{1}, \ldots, \alpha_{\nu}, \delta\right) \leq 1$ such that for all non-zero integers $q_{1}, \ldots, q_{\nu}$ we have

$$
\left|q_{1} q_{2} \cdots q_{\nu}\right|^{1+\delta}\left\|\alpha_{1} q_{1}+\cdots+\alpha_{\nu} q_{\nu}\right\|>c_{0}\left(\alpha_{1}, \ldots, \alpha_{\nu}, \delta\right)
$$

where $\|x\|$ denotes the distance of $x$ to the nearest integer.
It follows hence on taking

$$
\begin{equation*}
c_{1}\left(\alpha_{1}, \ldots, \alpha_{\nu}, \delta\right)=\min _{S} c_{0}(S, \delta) \leq 1 \tag{3}
\end{equation*}
$$

where $S$ runs through all non-empty subsets of $\left\{\alpha_{1}, \ldots, \alpha_{\nu}\right\}$, that for all integers $x_{1}, \ldots, x_{\nu}$ we have either $x_{1}=\cdots=x_{\nu}=0$, or

$$
\begin{equation*}
\prod_{i=1}^{\nu} \max \left\{1,\left|x_{i}\right|\right\}^{1+\delta}\left\|\alpha_{1} x_{1}+\cdots+\alpha_{\nu} x_{\nu}\right\|>c_{1}\left(\alpha_{1}, \ldots, \alpha_{\nu}, \delta\right) \tag{4}
\end{equation*}
$$

Now, let us take $\alpha_{0}=1$ and put

$$
\begin{equation*}
c(\varepsilon)=\min _{0 \leq j \leq \nu} c_{1}\left(\frac{\alpha_{0}}{\alpha_{j}}, \ldots, \frac{\alpha_{j-1}}{\alpha_{j}}, \frac{\alpha_{j+1}}{\alpha_{j}}, \ldots, \frac{\alpha_{\nu}}{\alpha_{j}}, \frac{\varepsilon}{\nu}\right)\left|\alpha_{j}\right| . \tag{5}
\end{equation*}
$$

If $x_{0}=\cdots=x_{\nu}=0$ the inequality (2) is true. Otherwise, let

$$
\begin{equation*}
h(\boldsymbol{x})=\left|x_{j}\right| . \tag{6}
\end{equation*}
$$

If $x_{0}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{\nu}$ are all equal to 0 , then (2) takes the form

$$
\left|x_{j} \alpha_{j} \| x_{j}\right| \geq c(\varepsilon)\left|x_{j}\right|^{1-\varepsilon}
$$

which is true since, by (3) and (5), $\left|\alpha_{j}\right| \geq c(\varepsilon)$.

If $x_{0}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{\nu}$ are not all equal to 0 , then the left-hand side of (2) is not less than

$$
\begin{aligned}
P= & \left|\alpha_{j} x_{j}\right|\left\|x_{0} \frac{\alpha_{0}}{\alpha_{j}}+\cdots+x_{j-1} \frac{\alpha_{j-1}}{\alpha_{j}}+x_{j+1} \frac{\alpha_{j+1}}{\alpha_{j}}+\cdots+x_{\nu} \frac{\alpha_{\nu}}{\alpha_{j}}\right\| \\
& \times \prod_{\substack{i=1 \\
i \neq j}}^{\nu} \max \left\{1,\left|x_{i}\right|\right\}
\end{aligned}
$$

and by (4) applied with $\varepsilon / \nu$ instead of $\delta$ and $\left\{\alpha_{0} / \alpha_{j}, \ldots, \alpha_{j-1} / \alpha_{j}\right.$, $\left.\alpha_{j+1} / \alpha_{j}, \ldots, \alpha_{\nu} / \alpha_{j}\right\}$ instead of $\left\{\alpha_{1}, \ldots, \alpha_{\nu}\right\}$, and by (6)

$$
P \geq\left|x_{j}\right| c(\varepsilon) \prod_{\substack{i=1 \\ i \neq j}}^{\nu} \max \left\{1,\left|x_{i}\right|\right\}^{-\varepsilon / \nu} \geq c(\varepsilon)\left|x_{j}\right|^{1-\varepsilon}
$$

Lemma 2. Let $f(x)=x^{k}+c_{1} x^{k-1}+\cdots+c_{k}$ be a minimal polynomial of a Pisot number. The recurring sequence given by the conditions

$$
\begin{equation*}
a_{i}=0(0 \leq i<k-1), a_{k-1}=1, a_{m+k}+c_{1} a_{m+k-1}+\cdots+c_{k} a_{m}=0 \tag{7}
\end{equation*}
$$

satisfies for a certain $c>0$ and all sufficiently large $n$, and all integers $x_{1}, \ldots, x_{k}$, the relation

$$
\begin{equation*}
\max \left\{1,\left|x_{1} a_{n+1}+\cdots+x_{k} a_{n+k}\right|\right\} \cdot \prod_{i=1}^{k} \max \left\{1,\left|x_{i}\right|\right\} \geq c\left|a_{n+1}\right| \tag{8}
\end{equation*}
$$

Proof: Let $\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{k}$ be all the zeros of $f$ and $\vartheta_{1}=\vartheta$ be a Pisot number. Hence

$$
\vartheta>1>\max \left\{\left|\vartheta_{2}\right|, \ldots,\left|\vartheta_{k}\right|\right\}
$$

thus

$$
\max \left\{\left|\vartheta_{2}\right|, \ldots,\left|\vartheta_{k}\right|\right\}=\vartheta^{-2 \varepsilon}, \quad \text { where } \varepsilon>0
$$

By Lemma 1 applied with $\nu=k-1, \alpha_{i}=\vartheta^{i}$ there exists a constant $c(\varepsilon)>0$ such that for all integers $x_{1}, \ldots, x_{k}$

$$
\begin{equation*}
\left|x_{1}+x_{2} \vartheta+\cdots+x_{k} \vartheta^{k-1}\right| \prod_{i=1}^{k} \max \left\{1,\left|x_{i}\right|\right\} \geq c(\varepsilon)\left(\max _{1 \leq i \leq k}\left|x_{i}\right|\right)^{1-\varepsilon} \tag{9}
\end{equation*}
$$

We shall show that (8) holds for $c=\frac{1}{2} c(\varepsilon)$. Assuming the contrary we would find infinitely many $n$ such that for some integers $x_{i}$ not all zero

$$
\max \left\{1,\left|x_{1} a_{n+1}+\cdots+x_{k} a_{n+k}\right|\right\} \cdot \prod_{i=1}^{k} \max \left\{1,\left|x_{i}\right|\right\}<\frac{1}{2} c(\varepsilon)\left|a_{n+1}\right|
$$

hence

$$
\begin{align*}
B & =\prod_{i=1}^{k} \max \left\{1,\left|x_{i}\right|\right\}<\frac{1}{2} c(\varepsilon)\left|a_{n+1}\right|  \tag{10}\\
M & =\max _{1 \leq i \leq k}\left|x_{i}\right|<\frac{1}{2} c(\varepsilon)\left|a_{n+1}\right| \tag{11}
\end{align*}
$$

and

$$
\begin{aligned}
& B \left\lvert\, x_{1}+x_{2} \vartheta+\cdots+x_{k} \vartheta^{k-1}+x_{2}\left(\frac{a_{n+2}}{a_{n+1}}-\vartheta\right)+\cdots+\right. \\
& \left.\quad x_{k}\left(\frac{a_{n+k}}{a_{n+1}}-\vartheta^{k-1}\right) \right\rvert\,<\frac{1}{2} c(\varepsilon) .
\end{aligned}
$$

By (9) it follows that

$$
B\left|\sum_{i=2}^{k} x_{i}\left(\frac{a_{n+i}}{a_{n+1}}-\vartheta^{i-1}\right)\right|>\frac{1}{2} c(\varepsilon) M^{1-\varepsilon}
$$

and by (10),

$$
\begin{equation*}
\left|\sum_{i=2}^{k} x_{i}\left(a_{n+i}-\vartheta^{i-1} a_{n+1}\right)\right|>M^{1-\varepsilon} \tag{12}
\end{equation*}
$$

However, since $\vartheta_{i}$ are all distinct we have from the theory of recurring series

$$
a_{n}=\sum_{i=1}^{k} \alpha_{i} \vartheta_{i}^{n}
$$

and, since $a_{0}=\cdots=a_{k-2}=0, a_{k-1}=1, \alpha \neq 0$. Indeed, otherwise the system of $k-1$ homogeneous equations for $\alpha_{2}, \ldots, \alpha_{k}$ would give $\alpha_{2}=\cdots=\alpha_{k}=0$, hence $a_{k-1}=0$, a contradiction. Hence

$$
\begin{equation*}
a_{n}=\alpha_{1} \vartheta^{n}+O\left(\vartheta^{-2 n \varepsilon}\right) \tag{13}
\end{equation*}
$$

and

$$
\left|a_{n+i}-\vartheta^{i-1} a_{n+1}\right| \leq C_{1}\left|a_{n+1}\right|^{-2 \varepsilon}(i \leq k)
$$

for a suitable constant $C_{1}$.

Thus, the left hand side of (12) does not exceed

$$
M(k-1) C_{1}\left|a_{n+1}\right|^{-2 \varepsilon}
$$

and we obtain

$$
(k-1) C_{1} M^{\varepsilon}>\left|a_{n+1}\right|^{2 \varepsilon}
$$

which contradicts (11) for $n$ (and hence $\left|a_{n+1}\right|$ ) sufficiently large.
Lemma 3. Let in the notation of Lemma 2: $k=2, c_{1}<0, c_{2}=-1$, and let $A=\mathbb{Z}^{2} \backslash\{[0,0]\}$. The recurring sequence given by the conditions (7) satisfies for all $n \geq 0$ the equality

$$
\begin{equation*}
\min _{\left[x_{1}, x_{2}\right] \in A} M_{n}\left(x_{1}, x_{2}\right)=\max \left\{1,\left|c_{1}\right| a_{n}\right\}, \tag{14}
\end{equation*}
$$

where

$$
M_{n}\left(x_{1}, x_{2}\right)=\max \left\{1,\left|a_{n+1} x_{1}+a_{n+2} x_{2}\right|\right\} \max \left\{1,\left|x_{1}\right|\right\} \max \left\{1,\left|x_{2}\right|\right\} .
$$

Proof: First we observe that if $\left[y_{1}, y_{2}\right] \in \mathbb{Z}^{2}, y_{1} y_{2}<0$ and $\left|y_{1}\right| \geq\left|y_{2}\right|$ then

$$
\begin{equation*}
\frac{\left|y_{2}-\left|c_{1}\right| y_{1}\right|}{\left|y_{2}\right|} \geq\left|c_{1}\right|+1 . \tag{15}
\end{equation*}
$$

Now, we proceed to prove (14) by induction on $n$. For $n=0$ we have trivially

$$
M_{0}\left(x_{1}, x_{2}\right) \geq 1=M_{0}(1,0) .
$$

Assume that (13) holds for the index $n$. By (7)

$$
a_{n+2} x_{1}+a_{n+3} x_{2}=a_{n+1} y_{1}+a_{n+2} y_{2},
$$

where $y_{1}=x_{2}, y_{2}=x_{1}+\left|c_{1}\right| x_{2}$ and $\left[x_{1}, x_{2}\right] \in A$ implies $\left[y_{1}, y_{2}\right] \in A$. If $y_{2}=0$ we get $x_{1}=-\left|c_{1}\right| y_{1}$, hence $y_{1} \neq 0$ and

$$
M_{n+1}\left(x_{1}, x_{2}\right)=\left|c_{1}\right| a_{n+1} y_{1}^{2} \geq\left|c_{1}\right| a_{n+1}
$$

with the equality attained for $y_{1}=1$, i.e. $x_{2}=1, x_{1}=-\left|c_{1}\right|$. If $y_{2} \neq 0$ and $y_{1} y_{2} \geq 0$ or $y_{1} y_{2}<0$, but $\left|y_{1}\right|<\left|y_{2}\right|$ then

$$
M_{n+1}\left(x_{1}, x_{2}\right) \geq\left|a_{n+1} y_{1}+a_{n+2} y_{2}\right| \geq a_{n+2} \geq\left|c_{1}\right| a_{n+1}
$$

If $y_{1} y_{2}<0$ and $\left|y_{1}\right| \geq\left|y_{2}\right|$ then

$$
M_{n+1}\left(x_{1}, x_{2}\right)=M_{n}\left(y_{1}, y_{2}\right) \cdot \frac{\left|y_{2}-\left|c_{1}\right| y_{1}\right|}{\left|y_{2}\right|}
$$

and, by the inductive assumption and (15),

$$
M_{n+1}\left(x_{1}, x_{2}\right) \geq \max \left\{1,\left|c_{1}\right| a_{n}\right\}\left(\left|c_{1}\right|+1\right) \geq\left|c_{1}\right| a_{n+1}
$$

Proof of the theorem: For every $k$ the set $S_{k}$ of Pisot numbers of degree $k$ is non-empty (see [1], Theorem 5.2.2). Since $S_{k}$ has no finite limit points it has the least element $\vartheta$. We take for $f(x)$ in Lemma 2 the minimal polynomial of $\vartheta$ and put

$$
\boldsymbol{a}=\left[1, a_{n+1}, a_{n+2}, \ldots, a_{n+k}\right]
$$

where the sequence $a_{n}$ is determined by the conditions (7). By the formula (13)

$$
a_{n+1}=\alpha_{1} \vartheta^{n+1}+O\left(\vartheta^{-2 \varepsilon(n+1)}\right)
$$

and for $n$ large enough

$$
r(\boldsymbol{a})=\left|\alpha_{1}\right|^{k} \vartheta^{\left.k(n+1)+{ }_{2}^{k}\right)}\left(1+O\left(\vartheta^{-(n+1)(1+2 \varepsilon)}\right)\right)
$$

hence

$$
\begin{equation*}
\left|a_{n+1}\right| \geq C_{2} r(\boldsymbol{a})^{1 / k}, \quad C_{2} \text { positive, independent of } n . \tag{16}
\end{equation*}
$$

On the other hand, for every $\boldsymbol{x} \in \mathbb{Z}^{k+1} \backslash\{\boldsymbol{0}\}$ the condition $\boldsymbol{a x}=0$ implies

$$
x_{0}=-a_{n+1} x_{1}-\cdots-a_{n+k} x_{k},
$$

hence by (8)

$$
\begin{equation*}
r(\boldsymbol{x}) \geq c\left|a_{n+1}\right| . \tag{17}
\end{equation*}
$$

It follows from (16) and (17) that one can take

$$
C(k)=c C_{2} .
$$

It remains to consider $k=2$. Then taking in Lemma 3:

$$
\begin{aligned}
c_{1} & =-2 \text { and putting } \\
\boldsymbol{a} & =\left[1, a_{n+1}, a_{n+2}\right],
\end{aligned}
$$

where $a_{n}$ is determined by the condition (7) we find

$$
a_{n}=\frac{(1+\sqrt{2})^{n}-(1-\sqrt{2})^{n}}{2 \sqrt{2}}
$$

and for $n$ odd

$$
\begin{equation*}
r(\boldsymbol{a})<\frac{(1+\sqrt{2})^{2 n+3}}{8}<(1+\sqrt{2})^{3} a_{n}^{2} . \tag{18}
\end{equation*}
$$

On the other hand, for every $\boldsymbol{x} \in \mathbb{Z}^{3} \backslash\{\boldsymbol{0}\}$ the condition $\boldsymbol{a x}=0$ implies

$$
x_{0}=-a_{n+1} x_{1}-a_{n+2} x_{2}
$$

hence, by (14),

$$
r(\boldsymbol{x}) \geq 2 a_{n}
$$

and, by (18)

$$
r(\boldsymbol{x})>2(\sqrt{2}+1)^{-3 / 2} r(\boldsymbol{a})^{1 / 2}=2(\sqrt{2}-1)^{3 / 2} r(\boldsymbol{a})^{1 / 2} .
$$

## References

[1] Bertin, M. J., Decomps-Guilloux, A., Grandet-Hugot, M., Pathiaux-Delafosse, M., Schreiber, J. P.: Pisot and Salem Numbers. Basel: Birkhäuser 1992.
[2] Drmota, M.: On linear Diophantine equations and Fibonacci numbers. J. Number Theory 49, 315-328 (1993).
[3] Schmidt,W.: Diophantine approximation. Lecture Notes in Mathematics, vol. 785. Berlin Heidelberg, New York: Springer 1980.

Authors'addresses: Prof. Dr. Andrzej Schinzel, Instytut Matematyczny, Polskiej Akademii Nauk, P.O. Box 137, P-00-950 Warszawa, Poland; Dr. S. Chaładus, Michałowskiego 14 m.8, PL-42200 Czȩstochowa, Poland.

