Zur Institutionalisierung von Foresight und Technikfolgenabschätzung für das österreichische Parlament

Endbericht zum Projekt F&TA
Zur Institutionalisierung von Foresight und Technikfolgenabschätzung für das österreichische Parlament

Endbericht zum Projekt F&TA

Studie zum Projekt F&TA
im Auftrag der Parlamentsdirektion des österreichischen Parlaments

Projektleitung der Studie: Michael Nentwich
 Petra Schaper-Rinkel

AutorInnen (alphabetisch): Peter Biegelbauer
 Josef Fröhlich
 Niklas Gudowsky
 Michael Nentwich
 Walter Peissl
 Petra Schaper-Rinkel
 Dana Wasserbacher

Koordination des Projektes F&TA:

Michael Nentwich
Institut für Technikfolgen-Abschätzung
der Österreichischen Akademie der Wissenschaften

Josef Fröhlich
Austrian Institute of Technology
Innovation Systems Department

Wien, Dezember 2015
Inhalt

Zusammenfassung .. 5
1 Ausgangslage .. 7
2 Vision und Ziele ... 9
3 Vorschlag eines österreichischen Modells ... 11
 3.1 Produkte und Dienstleistungen ... 11
 3.2 Institutionalisierung .. 14
 3.3 Organisation der Beratungsleistung ... 14
 3.4 Steuerung durch das Parlament .. 15
 3.4.1 Rollen der ParlamentarierInnen .. 15
 3.4.2 Steuerungs- und Entscheidungsgremien .. 16
 3.4.3 Inhaltliche Festlegung des Arbeitsprogramms ... 17
 3.4.4 Rechtlicher Rahmen ... 18
 3.5 Budgetbedarf und Finanzierung ... 19
4 Ausblick ... 23

Tabellen- und Abbildungsverzeichnis

Abbildung 1: Portfolio an Dienstleistungen und Produkten .. 13
Tabelle 1: Aktuelle Themen mit hoher FTI-politischer Relevanz .. 18
Tabelle 2: Budget ausgewählter parlamentarischer TA-Einrichtungen ... 19

Anhänge

A. Erfahrungsbericht zum Pilotprojekt „Industrie 4.0“
B. Zwischenbericht zu den Arbeitspaketen 1 und 2: Anforderungen parlamentarischer Arbeit im Bereich FTI
C. Zwischenbericht zu Arbeitspaket 3: Analyse internationaler Erfahrungen in der FTI-Politikberatung
D. Zwischenbericht zu Arbeitspaket 4: Screening potenzieller FTI-Themen mit Relevanz für das österreichische Parlament
Zusammenfassung

Das österreichische Parlament steht ebenso wie die anderen westlichen Legislativorgane vor der Herausforderung, mit der wachsenden Dynamik und zunehmenden Komplexität der Gesellschaft umzugehen. Von besonderer Bedeutung sind hier das sich rasch wandelnde Innovationssystem und die sogenannten „Grand Challenges“ wie Klimawandel, Ressourcenknappheit oder demographische Veränderungen.

Zur Umsetzung dieser Vision werden konkret folgende Lösungen vorgeschlagen:

- Die Beratung des Parlaments wird durch etablierte externe Beratungsinstitutionen erfolgen, die über einen drei- bis fünfjährigen Rahmenvertrag an das Parlament gebunden werden.
- Parlamentsintern steht den externen Auftragnehmern ein aus Abgeordneten aller Fraktionen bestehendes Steuerungsgremium (F&TA-Beirat) gegenüber, welches insbesondere das thematische Arbeitsprogramm festlegt.
- Diese zukunftsweisende institutionelle Neuerung wird politisch nachhaltig abgesichert (Beschluss des Parlaments, Änderung der Geschäftsordnung).
- Der Finanzbedarf liegt je nach konkreter Ausgestaltung bei EUR 250.000–365.000 jährlich.
1 Ausgangslage

Weltweit sind politische Institutionen mit vielen komplexen, häufig wissensintensiven und auch umstrittenen gesellschaftlichen Herausforderungen konfrontiert. Rapid technologischer Wandel, Klimaerwärmung oder die alternde Gesellschaft sind nur einige der Herausforderungen, bei denen Bewältigung Parlamente eine zentrale Rolle spielt.

Diese verfügen aber in der Regel nicht über ähnlich umfassende Ressourcen wie die Exekutive (Ministerien), um entscheidungsrelevantes Wissen aufzubereiten. Dieses Ungleichgewicht führt dazu, dass Parlamente oft nur eingeschränkt in der Lage sind, Gesetzesmaterien auf ausreichender Informationsbasis zu beurteilen oder Vorlagen selbst auszuarbeiten.

Deshalb bringen ExpertInnen aus Foresight und Technikfolgenabschätzung (F&TA) an vielen Parlamenten die benötigte unabhängige wissenschaftliche Expertise ein und unterstützen bei der Einbindung anderer AkteurInnen etwa aus der Zivilgesellschaft. Im Zentrum steht dabei die vorausschauende Abschätzung möglicher Folgen neuer Technologien, sowie das Aufzeigen von Handlungsoptionen zur Gestaltung zukunftsorientierter Politik.

In Hinblick auf eine wissenschaftsbasierte Unterstützung unterscheidet sich das österreichische von vielen anderen Parlamenten. ¹ In ihren jeweiligen Arbeitsbereichen funktionieren der wissenschaftliche Dienst inkl.

Parlamente stehen vor großen Herausforderungen
Legislativen ohne autonome Informationsbasis
Foresight und TA unterstützen zukunftsorientierte Politik
Bewährter Ansatzpunkt FTI verbindet viele Politikbereiche
Internationale Best Practices: gut informierte Debatten ermöglichen evidenzbasierte Politik
Parlamentsbibliothek sowie der Budgetdienst laut übereinstimmenden Aussagen in den Interviews mit ParlamentarierInnen sehr gut. Sie können sich aber keinesfalls mit den großen internen Expertenstäben, spezialisierten Agenturen und laufenden Studienbudgets der verschiedenen Ministerien messen.

Im Folgenden wird daher ein österreichisches Modell der Bereitstellung unabhängiger wissenschaftlicher Expertise im Bereich Foresight und TA für das österreichische Parlament vorgeschlagen. Dieses basiert auf internationalen Beispielen, den Erfahrungen mit dem Pilotprojekt Industrie 4.0 und vor allem den Interviews mit Abgeordneten aller Fraktionen, ihren MitarbeiterInnen sowie Angehörigen der Parlamentsdirektion.
2 Vision und Ziele

Das Projektteam formuliert\(^2\) folgende Vision für den Nationalrat:

Um diese Vision zu konkretisieren, wird vorgeschlagen, dass das Parlament folgende fünf Ziele verfolgt:

- Das Parlament entwickelt mit externer Unterstützung eine wissenschaftsbasierte und diskursive Herangehensweise für die parlamentarische Bearbeitung der zentralen gesellschaftlichen Herausforderungen.
- Das Parlament institutionalisiert seinen bedarfsorientierten Zugriff auf wissenschaftsbasiertes, nicht interessensgeleitetes Wissen.
- Die dem Parlament in Zukunft bereitgestellte Expertise ist qualitativ hochwertig, umfassend, interdisziplinär und multiperspektivisch, vorrausschauend und berücksichtigt das Gesamtsystem. Dies wird insbesondere durch die Methoden von Foresight und Technikfolgenabschätzung (F&TA) gewährleistet.
- Die Bereitstellung von Wissen und Verfahren zur zukunftsorientierten Arbeit des Parlaments wird institutionell so verankert, dass langfristige Veränderungsprozesse unterstützt werden und kurzfristig auf die sich wandelnden Bedarfe reagiert werden kann.
- Das Parlament nutzt für die Erarbeitung seiner Expertise partizipative Verfahren zur Einbeziehung von ExpertInnen, Stakeholdern und BürgerInnen.

\(^2\) Unser Vorschlag der Vision, der Ziele und eines konkreten österreichischen Modells für die zukünftige Beratung im Bereich F&TA wird in der Folge zur besseren Lesbarkeit nicht im Konjunktiv, sondern im Indikativ beschrieben.
3 Vorschlag eines österreichischen Modells

Die Basis der hier vorgestellten Eckpunkte für eine zukünftige, institutionalisierte Form der Beratung des österreichischen Parlaments, insbesondere im Bereich FTI, durch Foresight und Technikfolgenabschätzung bilden mehrere Quellen:

- die im Laufe der Gespräche mit ParlamentarierInnen und ParlamentsmitarbeiterInnen zum Ausdruck gekommenen Vorstellungen über die Bedarfe des Parlaments sowie die Erhebung des Ist-Zustands (Berichte AP 1 und 2, Anhang A),
- die vergleichende Untersuchung der internationalen Erfahrungen in diesem Bereich (Bericht AP 3, Anhang B),
- die Analyse der aktuellen Themen im Politikfeld Forschung, Innovation und Technologie, die durch Foresight und Technikfolgenabschätzung bearbeitet wurden und werden (Bericht AP 4, Anhang C),
- die Rückmeldungen der Abgeordneten und Beobachtungen des Projektteams zum Pilotprojekt „Industrie 4.0“ (Zusammenfassung in Anhang D),
- die Hinweise zur „Stärkung des Parlaments“ in Abschnitt 4 der Empfehlungen der parlamentarischen Enquete-Kommission betreffend Stärkung der Demokratie in Österreich vom 16.9.2015 (vgl. Fußnote 1 oben) sowie
- die abschließende Bewertung des Projektteams bezüglich der organisatorischen und politischen Machbarkeit.

3.1 Produkte und Dienstleistungen

Die dem Parlament in Zukunft zur Verfügung stehenden Produkte und Dienstleistungen müssen vielfältig und bedarfsgerecht sein. Sie berücksichtigen sowohl den Bedarf nach nicht-interessensgeleiteter, wissenschaftsbasierter und zeitgerechter Expertise, als auch nach Gelegenheiten zur produktiven Auseinandersetzung mit Zukunftsthemen. Sie gehen davon aus, dass das Zeitbudget der Abgeordneten begrenzt ist. Die enge Zusammenarbeit zwischen Parlament und Beratungseinrichtungen als Anbieter (Abschnitt 3.4) ermöglicht einen kontinuierlichen Lern- und Adapptionsprozess. Folgende Dienstleistungen und Produkte werden durch das Projektteam vorgeschlagen:

I. Ausgangsbasis und Grundlage für alle weiteren Beratungsaktivitäten ist ein auf den Bedarf der ParlamentarierInnen abgestimmtes, wissenschaftlich fundiertes und kontinuierliches Monitoring von FTI-Themen. Dieses Monitoring schöpft das Potential und die Notwendigkeit einer vorausschauenden Beschäftigung im Parlament aus. Auf Basis dieser kontinuierlichen Beobachtung des österreichischen Innovationssystems und sei-
Zur Institutionalisierung von F&TA für das österreichische Parlament

nes internationalen Umfelds können spezifische Projekte (siehe unten) vorgeschlagen werden. Die Ergebnisse des Monitorings werden im FIT-Ausschuss vorgestellt und diskutiert.

Produkte: Vorstellung im FIT-Ausschuss (zweimal jährlich, ca. 90min); Monitoringübersicht

Produkte: Prozessdokumentation und Abschlussbericht; Vorstellung im FIT-Ausschuss

Produkte: Projektbericht; Policy Brief; Vorstellung im thematisch zuständigen Ausschuss

Produkte: Policy Brief; Vorstellung im thematisch zuständigen Ausschuss

V. Der Bedarf an kurzfristigem Input an Expertise bei brennenden Fragen kann weiters durch halbtägige Gesprächsrunden gewährleistet werden. Diese dienen dem intensiven Austausch der Abgeordneten mit ExpertInnen. Die beauftragten Beratungseinrichtungen analysieren das Thema voraus, stellen das ExpertInnenpanel auf Basis ihres Netzwerks zusammen und stellen sicher, dass die ExpertInnen nicht-interessens-
Vorschlag eines österreichischen Modells

geleitet alle relevanten Sichtweisen einbringen. Dafür ist eine Vorlauf- und Vorbereitungszeit von mindestens einem, besser zwei Monaten notwendig.

Produkte: Organisation und Moderation des Round Tables; Präsentationsunterlagen; Synthese der Ergebnisse

VI. International bewährt haben sich weiters kurze Veranstaltungen am Tagesrand, insbesondere in der Form von Frühstücken, bei denen in 60 bis maximal 90 Minuten fokussiert zu einem aktuellen Thema diskutiert wird, das voraussichtlich in Kürze auf der politischen Agenda sein wird. Ähnlich wie bei den Round Tables (s.o.) bereiten die beauftragten Beratungseinrichtungen das Thema vor und organisieren diese Aussprachen auf Basis eigener Expertise bzw. unter Einbeziehung von ein bis maximal zwei externen ExpertInnen.

Produkte: Organisation und Moderation des Frühstücks; Präsentationsunterlagen; Kurzprotokoll der wesentlichen Debattenbeiträge

Die Koppelung des abgestimmten und kontinuierlichen Monitorings mit den weiteren Projekten ermöglicht es, einen Wissenspool aufzubauen, der eine vorausschauende legislative Arbeit unterstützt. Die angebotenen Produkte und Dienstleistungen (siehe Abbildung 1) stellen somit ein Paket dar, welches optimal auf die Bedürfnisse des österreichischen Parlaments abgestimmt ist.

Abbildung 1: Portfolio an Dienstleistungen und Produkten
3.2 Institutionalisierung

Um die parlamentarische Arbeit durch die oben (3.1) dargestellten Produkte und Dienstleistungen bedarfsgerecht zu unterstützen, ist Erfahrung in wissenschaftlicher Beratung notwendig. Darüber hinaus sind ausreichende Kapazitäten wichtig, um ein breites Themenspektrum interdisziplinär und methodisch auf dem letzten Stand rasch bearbeiten zu können. Dafür ist eine bestmögliche Einbindung in die wissenschaftliche Community vonnöten.

Unser Vorschlag lautet daher, dass die Beratung der österreichischen ParlamentarierInnen durch externe Institutionen (Abschnitt 3.3) erfolgt, denen parlamentsintern ein aus ParlamentarierInnen (Abschnitt 3.4.1) bestehendes Steuerungsgremium (Abschnitt 3.4.2) gegenüber steht, das insbesondere das thematische Arbeitsprogramm festlegt (Abschnitt 3.4.3). Die extern angebotenen Produkte und Dienstleistungen sind vielfältig und auf den konkreten Bedarf des Nationalrats abgestimmt (Abschnitt 3.1). Diese zukunftsweisende institutionelle Neuerung wird durch politische Absicherung nachhaltig gestaltet (Abschnitt 3.4.4). Durch dreibis fünfjährige Rahmenverträge wird die notwendige Flexibilität und Kontinuität gewährleistet. In einer ersten Phase liegt die Finanzierung je nach konkreter Ausgestaltung bei EUR 250.000–365.000 jährlich (Abschnitt 3.5).

3.3 Organisation der Beratungsleistung

Die wissenschaftliche Landschaft im Bereich F&TA hat die nötigen Kapazitäten, um den wachsenden Beratungsbedarf des Parlaments zu befriedigen. Es erscheint daher nicht notwendig, dafür eine neue Einheit zu gründen, vielmehr kann die Einbindung bestehender Institutionen über Beauftragungen erfolgen.

Prinzipiell wären individuelle, rein fallbezogene Beauftragungen, bei denen zu jedem Thema neu ausgeschrieben würde, möglich. Diese haben allerdings gravierende Nachteile. Sie sind administrativ aufwändig, da jedes Projekt einzeln ausgeschrieben und ausverhandelt werden müsste,
was rasche Reaktionszeiten praktisch verunmöglicht. Zudem zeigen internationale Erfahrungen, dass nur in dauerhaften Beratungsbeziehungen wertvolle Erfahrungen gesammelt, gegenseitiges Vertrauen aufgebaut und der Beratungsprozess über die Zeit optimiert werden kann. Den beauftragten Institutionen gibt ein Rahmenvertrag darüber hinaus die Möglichkeit, die personellen Ressourcen für die Beratung des Parlaments entsprechend abrufbereit zu planen.

Es wird vorgeschlagen, dass ein solcher Rahmenvertrag mit wissenschaftlichen Einrichtungen für mindestens drei, höchstens fünf Jahre (wie im deutschen Modell) abgeschlossen wird.

Die beauftragten wissenschaftlichen Beratungseinrichtungen führen die Projekte in der Regel selbst durch und geben nur Spezialexpertisen per Werkvertrag weiter. Dadurch ist sichergestellt, dass sich zwischen den ParlamentarierInnen und den Beratungseinrichtungen eine vertrauensvolle Arbeitsbeziehung entwickeln kann.

3.4 Steuerung durch das Parlament

Im vorgeschlagenen Modell hat das Parlament die unmittelbare Steuerungshoheit, die sich vor allem in Bezug auf die Rollen der ParlamentarierInnen (Abschnitt 3.4.1) und das Steuerungsgremium F&TA-Beirat (Abschnitt 3.4.2) in Bezug auf die Festlegung des Arbeitsprogramms (Abschnitt 3.4.3) sowie die starke Verankerung im Parlament (Abschnitt 3.4.4) wie folgt darstellt.

3.4.1 Rollen der ParlamentarierInnen

In diesem Vorschlag haben die Abgeordneten mehrere zentrale Rollen:

- Sie sind thematische AuftraggeberInnen, formulieren also die Fragestellung(en).
- Sie bestimmen, nach Beratung mit den AuftragnehmerInnen, den zeitlichen und den groben methodischen Rahmen sowie die gewünschten Dienstleistungen/Produkte (siehe 3.1).
- Sie werden interaktiv als InformationsträgerInnen, Beteiligte bzw. in politisch-bewertender Funktion in einzelne Projekte einbezogen.
- Sie sind primäre EmpfängerInnen der Ergebnisse.
- Sie diskutieren und bewerten die Ergebnisse anschließend politisch.

Die Abgeordneten beauftragen mit dieser Rolle die wissenschaftlichen Institutionen. Letztere führen die Projekte durch und sind dabei (im vorab festgelegten Rahmen) methodisch und inhaltlich verantwortlich.
3.4.2 Steuerungs- und Entscheidungsgremien

Die zweite zentrale Aufgabe des F&TA-Beirats ist es, die laufenden Beratungsprojekte zu begleiten und Zwischenergebnisse zu diskutieren. An diesen Sitzungen können auf Einladung des Beirats auch weitere thematisch interessierte Abgeordnete, die nicht dem Beirat angehören, teilnehmen.

Neben dem koordinierenden und vorbereitenden Beirat ist weiters ein Entscheidungsgremium zu bestimmen, das insbesondere die Beauftragung der konkreten Beratungsthemen auf Basis der Priorisierungen durch den Beirat sowie unter Beachtung des budgetären Rahmens vornimmt. Hier bieten sich zwei Alternativen an: (a) ein Ausschuss oder (b) der/die PräsidentIn des Nationalrats.

ad (a) Aufgrund der Häufigkeit von Querschnittsmaterien, die thematisch nicht einem einzigen Ausschuss zugeordnet werden können, wäre es mittel- oder langfristig von Vorteil, dafür ein eigenes Gremium (z.B. in Form eines „Zukunftsausschusses“ wie in Finnland) zu schaffen. Kurzfristig er-
scheint es hingegen realistischer, den in der überwiegenden Mehrheit von F&TA-Themen zumindest „mit“-betroffenen FIT-Ausschuss primär zu be-fassen.

ad (b) Gerade weil bei Foresight und den typischen Themen der Technikfolgenabschätzung selten ein einziger thematischer Ausschuss betroffen ist, ist die formelle Befassung jenes Gremiums bzw. deren Leitung, die für derartige parlamentsübergreifenden Entscheidungen auch sonst zuständig ist, eine Alternative. Das ist der/de Präsident/in des Nationalrats, allenfalls in Rückbindung an die Präsidialkonferenz. Da die inhaltliche Entscheidung, was zu beauftragen ist, bereits im F&TA-Beirat politisch abgestimmt ist, handelt es sich um eine Entscheidung, die durch den/die Präsident/en getroffen werden kann.

3.4.3 Inhaltliche Festlegung des Arbeitsprogramms

Da der thematische Beratungsbedarf grundsätzlich weit aufgespannt ist, die zeitlichen und finanziellen Ressourcen jedoch prinzipiell beschränkt sind, ist eine Priorisierung notwendig. Diese erfolgt nach Vorarbeit im F&TA-Beirat im Steuerungsgremium (3.4.2).

Im Arbeitspaket 4 dieser Studie wurden auf Basis unterschiedlicher Quellen3 Themen identifiziert, die für das österreichische Parlament im Bereich der FTI-Politik demnächst relevant sein könnten (siehe Tabelle 1, S. 18).

3 Die Quellen waren je eine Datenbank zu Foresight- und zu Technikfolgenabschätzungsprojekten, die Gespräche mit Abgeordneten und ParlamentsmitarbeiterInnen sowie die aktuellen Beobachtungen und Erkenntnisse der Studienauto-

rInnen.
Zur Institutionalisierung von F&TA für das österreichische Parlament

FIT-Ausschuss bzw. dem/der Präsidenten/in des Nationalrats (siehe 3.4.2) zur Entscheidung vorgelegt.

Tabelle 1: Aktuelle Themen mit hoher FTI-politischer Relevanz

<table>
<thead>
<tr>
<th>QUERSCHNITTSTHEMEN</th>
<th>DIGITALER RAUM</th>
<th>SMARTE MOBILITÄT</th>
<th>SMARTE MOBILITÄT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implizite Technologien (z.B. Ambient Persuasion Technologies)</td>
<td>Open Government Data, Demokratie 2.0</td>
<td>Autonome Systeme und intelligente Verkehrssysteme</td>
<td></td>
</tr>
<tr>
<td>Inklusionstechnologien (z.B. Spracherkennungssoftware im Bereich Migration)</td>
<td>Security und Privacy, Sicherheit im Internet</td>
<td>alternative Antriebe und Fahrzeugtypen</td>
<td></td>
</tr>
<tr>
<td>Konvergierende Technologien (NBIC – Nano, Bio, Info, Cogno)</td>
<td>Monopolisierung Datendienste (Big Data)</td>
<td>Multi-modal Integration</td>
<td></td>
</tr>
<tr>
<td>Komplexität von Technologien</td>
<td>Algorithmische Entscheidungsfindung</td>
<td>Grüner, intermodaler Frachttransport</td>
<td></td>
</tr>
<tr>
<td>Neue Lebensstile, Entrepreneurship und soziale Medien</td>
<td>Neue Lebensstile, Entrepreneurship und soziale Medien</td>
<td>Verkehrssysteme als Energiespeicher</td>
<td></td>
</tr>
<tr>
<td>Digitale Arbeitswelt</td>
<td>Digital Arbeitswelt</td>
<td>Drohnen</td>
<td></td>
</tr>
</tbody>
</table>

Quelle: AP4 (Anhang D)

3.4.4 Rechtlicher Rahmen

3.5 Budgetbedarf und Finanzierung

Im Abschnitt 2.4.3 des Berichts zu AP 3 (siehe Anhang B) werden die international unterschiedlichen Größenordnungen der Beratungseinrichtungen für Parlamente im Bereich F&TA dargestellt. Dieser Variationsbreite entspricht auch der jeweilige Budgetbedarf, welcher zwischen EUR 700.000 und 4.400.000 liegt (siehe dazu Tabelle 2).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Niederlande</td>
<td>RI</td>
<td>4,4</td>
<td>4.428</td>
</tr>
<tr>
<td>Dänemark</td>
<td>DBT</td>
<td>1,2</td>
<td>2.263</td>
</tr>
<tr>
<td>Deutschland</td>
<td>TAB</td>
<td>2,0</td>
<td>23.873</td>
</tr>
<tr>
<td>Schweiz</td>
<td>TA-Swiss</td>
<td>1,7</td>
<td>3.904</td>
</tr>
<tr>
<td>Großbritannien</td>
<td>POST</td>
<td>0,7</td>
<td>8.848</td>
</tr>
<tr>
<td>Norwegen</td>
<td>NBT</td>
<td>1,1</td>
<td>2.983</td>
</tr>
<tr>
<td>Österreich</td>
<td></td>
<td>0,4</td>
<td>3.336</td>
</tr>
</tbody>
</table>

Quellen: *AP3 (Anhang C), ** Daten 2013, Quelle OECD

⁴ § 56A der Geschäftsordnung des Deutschen Bundestages lautet (Stand November 2015):

„TECHNIKFOLGENANALYSEN
2. Der Ausschuss für Forschung, Technologie und Technikfolgenabschätzung hat Grundsätze über die Erstellung von Technikfolgenanalysen aufzustellen und diese Grundsätze zum Ausgangspunkt seiner Entscheidung im Einzelfall zu machen."
Wie oben erwähnt (3.3), hat die externe Beauftragung gegenüber der Neugründung einer (internen oder externen) Einrichtung grundsätzlich den Vorteil, auf bestehende, flexible und erprobte Infrastrukturen zurückgreifen zu können. Dennoch gibt es budgetäre Untergrenzen, bei deren Unterschreitung eine allseits befriedigende, qualitativ hochwertige sowie zeitlich passgenaue Beratungstätigkeit nicht gewährleistet werden kann.5 Zwischen den einzelnen Projekten wird es auch je nach Laufzeit, Thema und zur Anwendung kommender Methoden unterschiedliche Größenordnungen geben.

Im Rahmenvertrag wird eine Jahressumme vereinbart, welche die seitens des Parlaments abzurufenden Produkte und Dienstleistungen abdeckt. Wie im deutschen Modell wird vorgeschlagen, dass die Jahressumme (oder ein Teil davon) den beauftragten Einrichtungen jedenfalls zur Verfügung steht und damit für diese planbar ist. Damit können die per Rahmenvertrag beauftragten Einrichtungen Kapazitäten von ein bis zwei Vollzeitäquivalenten primär für die Beratung des Parlaments vorhalten. Je nach thematischem Bedarf werden weitere WissenschaftlerInnen an den Einrichtungen und nach Maßgabe auch externe ExpertInnen per Werkver-

5 Es sei an dieser Stelle ausdrücklich darauf hingewiesen, dass die Pilotstudie zu Industrie 4.0 (2015) als Versuchsballon aus Sicht der Beratungsinstitutionen zwar inhaltlich und prozessoral ergiebig, aber mit EUR 45.000 nicht kostendeckend war und daher in Bezug auf die Finanzierung nicht als Standardmodell für zukünftige Projekte gesehen werden kann.

6 30.000 (Monitoring) + 15.000 (Round Table) + 10.000 (Frühstück) + 2x (30.000/50.000) + 70.000/110.000 + (130.000/200.000, dividiert durch 2, denn aufgrund der längeren Laufzeit der großen Projekte wird jeweils nur die Hälfte als Jahreskosten veranschlagt, also 65.000/100.000) = 250.000–365.000 p.a.
trag projektspezifisch hinzugezogen. In dieser Summe inkludiert wären auch die Overheads der Institute.

Um Kapazitäten für das Parlament aufzubauen und somit das Parlament in seiner Autonomie zu stärken, wird die externe Lösung direkt aus dem Parlamentsbudget finanziert. Diese Vorgehensweise garantiert die unmittelbare Steuerungshoheit des Parlaments über Themen und Arbeitsweisen im Rahmen der Beratungsleistung.
4 Ausblick

Der in der Studie vorgeschlagene Informationsaustausch mit in diesem Gebiet langfristig arbeitenden ForscherInnen dient der Berichterstattung über Forschungsergebnisse und ermöglicht es, kurzfristig und flexibel auf Fragestellungen einzelner ParlamentarierInnen eingehen zu können (siehe 3.1). Dies bietet für die Abgeordneten die Chance, sich einerseits am Puls der internationalen Wissenschafts-, Technologie- und Innovationsforschung zu informieren und andererseits durch interaktive Prozesse auf die eigenen Bedürfnisse und Aufnahmekapazitäten einzugehen.

Das hier vorgeschlagene Produkt- und Leistungsspektrum ist darauf ausgerichtet, einerseits nachhaltigen Erkenntnisgewinn für die ParlamentarierInnen zu gewährleisten und andererseits auf kurzfristigen und aktuellen Informationsbedarf eingehen zu können.

Die in Aussicht genommene wissenschaftsbasierte Unterstützung der ParlamentarierInnen nimmt ihren Ausgangspunkt in der Querschnittsmaterie FTI-Politik, wirkt jedoch über den damit primär befassten Ausschuss hinaus. Durch das Aufzeigen von Auswirkungen auf andere gesellschaftliche Bereiche werden Handlungsoptionen für andere Ausschüsse eröffnet und dadurch Politikgestaltung ermöglicht, die der Komplexität der zu gestaltenden Systeme Rechnung trägt.
Anhang A:

Erfahrungsbericht zum Pilotprojekt „Industrie 4.0“

Im Rahmen der vorliegenden Studie zur Institutionalisierung von Fore- sight und Technikfolgenabschätzung wurde von Februar bis November 2015, im Auftrag der Parlamentsdirektion, durch dieselben Auftragnehmer ein erstes kleines Pilotprojekt durchgeführt, das zwei Ziele verfolgte:

Erstens sollte ein aktuelles und wichtiges Thema für die und mit den interessierten Abgeordneten aufgearbeitet werden und zweitens sollte den Abgeordneten anhand eines interaktiven F&TA-Projektes ein erster Einblick in die angepeilte interaktive Beratungsleistung gegeben werden.

7 epub.oeaw.ac.at/ita/ita-projektberichte/ITA-AIT-2.pdf.
8 epub.oeaw.ac.at/ita/ita-projektberichte/ITA-AIT-1.pdf.
und das Vertiefungspapier einer Expertin wurden darüber hinaus veröffentlicht⁹.

Das F&T-A-Pilotprojekt und die dabei gemachten Erfahrungen wurden auch für die Studie zur Institutionalisierung von F&T im österreichischen Parlament genutzt. Dieses Projekt stellt nur eine von mehreren Optionen an Produkten und Dienstleistungen (siehe Abschnitt 3.1 des Endberichts) zur wissenschaftsbasierten Unterstützung der ParlamentarierInnen im Bereich Forschung, Technologie und Innovation dar, wodurch die gemachten Erfahrungen nur aus einer Perspektive betrachtet werden können. Trotzdem kann festgehalten werden, dass das Pilotprojekt insbesondere zwei wichtige Elemente des zukünftigen Leistungsspektrums abdeckt:

Interaktive Sitzungen

Einerseits wurden die ParlamentarierInnen in drei Workshops interaktiv in das Projekt einbezogen; sie hatten dabei die Möglichkeit, die Schlussfolgerungen gemeinsam mit den ExpertInnen zu entwickeln. Dabei war der zeitliche Einsatz der Abgeordneten und ihrer MitarbeiterInnen durchaus beträchtlich, nämlich – ohne Vorbereitungszeiten, allein in Sitzungen zum Pilotprojekt – ca. zehn Stunden¹⁰.

Andererseits erfuhren die parlamentarischen TeilnehmerInnen, insbesondere mit dem Hintergrundpapier zum 1. Workshop, wie eine konzise, multi-perspektivische, nicht-interessensgeleitete Aufbereitung eines Themas durch die Beratungseinrichtungen aussehen kann.

Zu beiden neuen Erfahrungen gab es Rückmeldungen aus dem Kreis der Abgeordneten und ihrer MitarbeiterInnen, die teils informell, teils formell beim Abschluss des 3. Workshops gegeben wurden:

- Das F&T-A-Pilotprojekt wurde von den TeilnehmerInnen aller Parteien positiv beurteilt; ebenso waren sich die TeilnehmerInnen einig, dass die ParlamentarierInnen zukünftig wissenschaftsbasierte Unterstützung benötigen, um ihren Aufgaben im Parlament gerecht werden zu können.

- Einigkeit herrschte auch in der Einschätzung, dass die Form von F&T-Prozessen, wie sie im Pilotprojekt eingesetzt wurde, für komplexe Themen und Fragestellungen sehr gut geeignet ist.

- Positiv hervorgehoben wurde auch die Bearbeitung des Themas in Form von Workshops, die als sehr informativ bezeichnet wurden. Die Länge der Workshops, insbesondere des zweiten, der rund vier Stunden dauerte, wurde als Obergrenze für die ParlamentarierInnen angesehen, da die Abgeordneten einem äußerst engen Zeitkorsett unterliegen. Daraus wurde von manchen TeilnehmerInnen der Schluss gezogen, dass in Zukunft nicht mehrere derartige, zeitlich anspruchsvoller Verfahren pro Jahr durchgeführt werden können.

- Für weniger komplexe Fragestellungen bedarf es, in Übereinstimmung mit den auftragnehmenden Organisationen, weiterer, zum Teil

⁹ epub.oeaw.ac.at/ita/ita-manuscript/ita_15_03.pdf.
auch für die ParlamentarierInnen, weniger zeitintensiver Produkte und Dienstleistungen.

- Die auch graphisch aufwändige Darstellung des einleitenden thematischen Überblicks (Hintergrundpapier) wurde allgemein gelobt und als sehr nützlich eingeschätzt, wenngleich teilweise angemerkt wurde, dass der Text noch zu sehr in Fachsprache geschrieben ist.

Die beauftragten Beratungseinrichtungen stimmen den Rückmeldungen der Abgeordneten zu und haben zusätzlich folgendes beobachtet:

- Die Zusammenarbeit mit den Abgeordneten und ihren MitarbeiterInnen gestaltete sich ausgesprochen positiv und konstruktiv. Für die beiden Forschungsorganisationen ergab sich der Eindruck, dass allgemein große Bereitschaft bestand, sich auf das Experiment einzulassen und wertvolle Zeit zu investieren.

- Die Terminfestlegung war aufwändig und konnte nur durch großen Einsatz sowie außergewöhnliche Flexibilität gelingen.

- Das Pilotprojekt benötigte mehr Ressourcen, als seitens des Auftraggebers finanziert wurden. Dies war angesichts des Pilotcharakters und der Bereitschaft, trotzdem beste Qualität zu liefern, in diesem Fall akzeptabel, kann aber angesichts der Finanzierungsstruktur der Beratungseinrichtungen auf Dauer nicht durchgehalten werden.

- Insgesamt bedarf es bei der wissenschaftsbasierten Unterstützung der ParlamentarierInnen unterschiedlicher Formen von Produkten und Dienstleistungen, die in ihrer Kombination eine ausreichende Möglichkeit für die flexible, aber auch intensive Wissensaneignung durch die Abgeordneten sicherstellen.

Beobachtungen der Beratungseinrichtungen
Anforderungen parlamentarischer Arbeit im Bereich FTI

Zwischenbericht zu den Arbeitspaketen 1 und 2

Studie zum Projekt F&TA
im Auftrag der Parlamentsdirektion des Österreichischen Parlaments

Projektleitung der Studie: Michael Nentwich
Petra Schaper-Rinkel

Autor: Peter Biegelbauer
gemeinsam mit: J. Fröhlich, N. Gudowsky, M. Nentwich, W. Peissl,
P. Schaper-Rinkel und D. Wasserbacher

Koordination des Projektes F&TA:

Michael Nentwich
Institut für Technikfolgen-Abschätzung
der Österreichischen Akademie der Wissenschaften

Josef Fröhlich
Austrian Institute of Technology
Innovation Systems Department

Wien, Juli 2015
Inhalt

Zusammenfassung .. 5

1 Einleitung ... 7

2 Allgemeine Herausforderungen an das Parlament ... 9

3 Die Arbeit des Parlaments im Bereich FTI: heute und morgen ... 11
 3.1 Wodurch ist die Arbeit des Parlaments in diesem Bereich heute gekennzeichnet? 11
 3.2 Wodurch soll die Arbeit des Parlaments in diesem Bereich zukünftig gekennzeichnet sein? 11

4 Themen aus Forschung, Innovation und Technologie ... 15
 4.1 Wie kommen Themen auf die Tagesordnung? .. 15
 4.2 Welche Themen werden heute diskutiert und welche Themen werden zukünftig relevant werden? ... 15

5 Aufbereitung der Themen ... 17
 5.1 Welche Informationsquellen werden aktuell genutzt? ... 17
 5.2 Wozu sollen wissenschaftliche Informationen dienen? .. 17

6 Formen der Beratung ... 19
 6.1 Welche Form der Wissenaufbereitung ist erwünscht? .. 19
 6.2 Welche Eigenschaften soll die Information besitzen? .. 20

7 Partizipation und Parlament .. 23
 7.1 Welche Erfahrungen hat man im Parlament bisher mit dem Thema gemacht? 23
 7.2 Welche Formen der Partizipation sind erwünscht? .. 24

Anhang: Liste der InterviewpartnerInnen .. 25
Zusammenfassung

Vor allem die Beschleunigung der politischen Arbeit und die Schwierigkeit, langfristige Fragestellungen zu diskutieren, wurden hervorgehoben. Die Kurzfristigkeit parlamentarischen Arbeitens kann mit der Bedeutung der jeweiligen tagesaktuellen öffentlichen Diskussionen erklärt werden, die ein wesentlicher Faktor bei der Auswahl von Themen im Bereich FTI ist. Themen kommen häufig durch die Regierung oder Massenmedien auf die politische Agenda. FTI-Themen von besonderer Bedeutung sind große gesellschaftliche Herausforderungen wie etwa die Energiewende, Nachhaltigkeitsdiskussionen und der demographische Wandel, aber auch ethisch umstrittene Fragen und die Abwägung gesellschaftlicher Ziele.

Als wesentlichste Informationsquellen für FTI-Themen nutzen Abgeordnete Internet, Tageszeitungen und Magazine. Als wichtigste Gründe für eine bessere und gezielte Stärkung des Parlaments durch Wissen wurde der diesbezügliche Vorsprung der Bundesregierung mit ihrem unmittelbaren Zugriff auf die Ministerien genannt. Generell wurde der Wunsch geäußert, das Parlament in eine aktivere Rolle zu bringen.

Der unmittelbare Austausch mit FachexpertInnen, beispielsweise in FTI-Ausschusssitzungen, wurde als besonders hilfreich angesehen. Auch interaktive mit überparteilichen FachexpertInnen besetzte Workshops zu wichtigen Themen wären interessant. Als sinnvoll angesehen wurde die Ergänzung laufend bereitgestellter kleinerer Expertisen durch vertiefende Studien zu einzelnen wichtigen Themen. Wesentliche allgemeine Anforderungen an das bereitgestellte Wissen sind Allparteilichkeit, die Übersetzung aus der Fachsprache und Kompaktheit.

Partizipation im Parlament wird vor dem Hintergrund des Bekenntnisses zu einem offenen Parlament prinzipiell begrüßt. Bei der konkreten Einbindung von BürgerInnen werden aber auch klare „Spielregeln“ für derartige Instrumentarien eingefordert, unter anderem hinsichtlich der Auswahl der BürgerInnen.

1 Einleitung

Dieser Zwischenbericht umfasst die Ergebnisse der ersten beiden Arbeitspakete der Studie „Foresight & Technology Assessment für das österreichische Parlament“, die das Innovation Systems Department des AIT Austrian Institute of Technology und das Institut für Technikfolgen-Abschätzung der Österreichischen Akademie der Wissenschaften im Auftrag der Parlamentsdirektion des österreichischen Parlaments durchführt.

Die Interviews wurden mit Leitfäden geführt, die sich zwischen Arbeitspaket 1 und Arbeitspaket 2 thematisch voneinander unterschieden. Innerhalb von Arbeitspaket 2 waren die Leitfäden für die ParlamentarierInnen und ihren MitarbeiterInnen stärker auf FTI-politische Fragen bezogen als die Leitfäden für die Angehörigen der Parlamentsdirektion, die sich auf prozessuale und organisatorische Themen konzentrierten. Die Interviews waren zwischen 30 und 120 Minuten lang und wurden mit zwei Ausnahmen jeweils von zwei WissenschaftlerInnen gemeinsam geführt, alle elektronisch aufgezeichnet und in Protokollen zusammengefasst. Zur Auswertung wurden einzelne Themenbereiche unterschieden, bestimmte Themen codiert und verglichen bzw. ausgezählt.

2 Allgemeine Herausforderungen an das Parlament

Mehrere GesprächspartnerInnen merkten an, dass die zunehmende Verdichtung des politischen Arbeitens im Parlament eine wesentliche Veränderung der letzten Jahre sei. Diese Verdichtung zeigt sich unter anderem in kürzeren Redezeiten bis zu immer knapperen Reflexionszeiten zur Entscheidungsfundung. Besonders hervorgehoben wurden dabei die steigende Informationsflut, das allgemein hohe Tempo des Arbeitens und das sich daraus ergebende Spannungsfeld zwischen Tagespolitik und Diskussion langfristiger Fragestellungen. Letztere kommen im Parlament tendenziell zu kurz.

Auch die gestiegene Anzahl von Klubs, die unter anderem härtere Auseinandersetzungen in den Debatten mit sich bringt, hat zu einer strukturellen Veränderung parlamentarischen Arbeitens geführt.

Darüber hinaus hat sich das Parlament im Lauf der letzten Jahre nach außen hin geöffnet, was an einer Reihe von Initiativen ebenso wie an der großen Anzahl von BesucherInnen ablesbar ist. Soziale Medien bieten neuen Chancen, stellen aber auch eine Herausforderung für die Arbeit im Parlament.

Auf einer inhaltlichen Ebene wurde die zunehmende Notwendigkeit einer Spezialisierung in mehrere Bereiche angeführt. Diese ergibt sich aus der Vielfalt der behandelten Themen ebenso wie aus der immer größeren Komplexität der einzelnen Fragestellungen, die von Einzelpersonen kaum umfassend bewältigt werden können.

In verschiedenen Gesprächen wurde festgehalten, dass an sich viel Wissen vorhanden, dies aber unübersichtlich ist und nicht auf die Verwendung in der parlamentarischen Arbeit aufbereitet ist. Eine wissenschaftliche Unterstützung des Parlaments müsste zum einen die spezifischen Anforderungen der ParlamentarierInnen in Bezug auf Sprache und Umfang Rechnung tragen. Zum anderen sollte die Unterstützung diskursiv erfolgen, nicht auf schriftliche Studien beschränkt sein, sondern in Interaktion erfolgen.
3 Die Arbeit des Parlaments im Bereich FTI: heute und morgen

3.1 Wodurch ist die Arbeit des Parlaments in diesem Bereich heute gekennzeichnet?

Die Arbeit des Parlaments im Bereich FTI ist aus der Perspektive vieler ParlamentarierInnen, ihrer MitarbeiterInnen und den Angehörigen der Parlamentsdirektion durch hohe Aktualität gekennzeichnet. Da die Debatten im Parlament häufig (tages-)bezogen auf öffentliche Diskussionen in Medien Bezug nehmen würden, ist der Zeithorizont der Diskussionen begrenzt.

Von den ParlamentarierInnen und ihren MitarbeiterInnen wurden insbesondere die Kontrollfunktion und die Gesetzgebungsfunktion hervorgehoben: Das Handeln in diesen beiden Funktionen, in denen sich das Parlament vor allem mit den Aktivitäten anderer politischer Akteure, besonders aber der Regierung, auseinandersetzt, verstärkt den Eindruck des reaktiven Agierens.

Die auf die Tagespolitik fokussierten Diskussionen bleiben, so die ParlamentarierInnen und ihre MitarbeiterInnen, oft kurzatmig und die Diskussionen wurden teilweise als oberflächlich und vom Austausch von Fraktionsstandpunkten dominiert beschrieben.

3.2 Wodurch soll die Arbeit des Parlaments in diesem Bereich zukünftig gekennzeichnet sein?

phase, die länger als einige Wochen dauert, bereits die Ausnahme. Aus der Parlamentsdirektion wurde zudem dargestellt, dass Unterausschüsse, die in Bezug auf zeitliche und thematische Gestaltung flexibler seien, immer weniger Verwendung finden würden.

In einer Reihe von Gesprächen mit ParlamentarierInnen und ihren MitarbeiterInnen wurde der Wunsch nach Diskussionen ohne „fraktionelle Brille“, also ohne dass Argumente wie üblich entlang parteipolitischer Linien ausgetauscht würden, laut. Auch in diesem Zusammenhang wurden die Aussprachen mit ExpertInnen in Ausschüssen immer wieder als hilfreich hervorgehoben, da sie die interfraktionellen Diskussionen eine geteilte Wissensbasis und eine neue Dynamik verleihen würden.

Auf der Ebene der Informationsaufarbeitung weniger spezialisierter Themenbereiche zeigten die Abgeordneten mit der Zusammenarbeit mit den parlamentarischen MitarbeiterInnen zufrieden, wünschten aber eine größere Zahl von MitarbeiterInnen.

Zentral ist der Wunsch, das Parlament möge stärker in die Zukunft gerichtet agieren. Ein Zukunftsausschuss wurde mehrfach als Wunsch geäußert, wobei das finnische Modell als Vorbild genannt wurde, das gut funktioniert und seit vielen Jahren interessante Ergebnisse hervorbringt.

Andere GesprächspartnerInnen sprachen von einer möglichen Enquetekommission 2050, die sich mit zukünftigen Entwicklungen auseinandersetzen würde. In einem ähnlichen Zusammenhang wurde mehrmals der Vorschlag einer Zukunftsthemen-Datenbank angesprochen, innerhalb derer zielgerichtet ausgewählte Themen aus internen und externen Quellen gespeist werden sollen. Die Datenbank sollte innerhalb des Parlaments...
Die Arbeit des Parlaments im Bereich FTI: heute und morgen

für alle offen sein und könnte in regelmäßigen Abständen auf den neuesten Stand gebracht werden.

Zusammenfassend wurde eine Weiterentwicklung des Parlaments von vielen GesprächspartnerInnen vor allem in Richtung der folgenden Punkte erhofft:

- sachbezogene und auf Zukunftsthemen ausgerichtete Debatten,
- vor allem in den Ausschüssen mehr Zeit (durch mehr Sitzungen oder zusätzliche Workshops) für die freie Diskussion, zur Verstetigung von Diskussionen über die Gesetzgebungsperiode hinweg,
- mehr Mittelausstattung und
- ein in Hinblick auf Themensetzungen proaktives und weniger auf die Aktivitäten der Regierung ausgerichtetes Vorgehen.

Ziele der Weiterentwicklung des Parlaments
4 Themen aus Forschung, Innovation und Technologie

4.1 Wie kommen Themen auf die Tagesordnung?

Im Zuge der Interviews mit ParlamentarierInnen und ihren MitarbeiterInnen wurden mehrere typische Wege genannt, wie Themen auf die Tagesordnung des Parlaments gelangen können.

Fast alle InterviewpartnerInnen wiesen im Laufe der jeweiligen Gespräche an der einen oder anderen Stelle darauf hin, dass sich das österreichische Parlament in erster Linie mit Themen befasst, die seitens der Regierung zur Diskussion gestellt werden. Dies geschieht entweder in Form einer Regierungsvorlage oder durch von Regierungsmitgliedern ausgelöste öffentliche Debatten.

Als zweithäufigster Weg auf die Agenda des Parlaments wurde der Kontakt mit BürgerInnen und InteressenvertreterInnen genannt. Hier haben die ParlamentarierInnen besonders stark auf ihre Wahlkreise verwiesen und auf regelmäßige persönliche Gespräche.

Mehrmals wurden Diskussionen innerhalb der Sozialpartnerschaft genannt, durch die Themen Eingang in parlamentarische Debatten finden. Auch die einzelnen Kammern wurden als Urheber vieler Thematiken identifiziert.

Schließlich wurde einige Male auch die Europäische Union als Anstoßgeberin ein Thema auf die Tagesordnung des Parlaments zu setzen genannt.

4.2 Welche Themen werden heute diskutiert und welche Themen werden zukünftig relevant werden?

Mehr als zwei Dutzend Themen wurden von den befragten ParlamentarierInnen und ihren MitarbeiterInnen als relevant für die Arbeit des österreichischen Parlaments angegeben. Bei der Beantwortung der Frage nach bereits diskutierten Themen wurde besonders auf Bereiche hingewiesen, die im letzten Jahr in der Öffentlichkeit diskutiert worden waren. Es handelte sich hier vor allem um Fragen von Bioethik und Fortpflanzungsmedizin bzw. Medizin als solcher sowie um Themen, die sich auf Informa-
Anforderungen parlamentarischer Arbeit im Bereich FTI

Nicht alles, was relevant wäre, ist auch auf der Agenda des Parlaments

Die am häufigsten angesprochenen Themen lassen sich also vorwiegend in die folgenden drei Gruppen einordnen:

- **Wichtigste Themen:**
 - **Grand Challenges:** große gesellschaftliche Herausforderungen (Energiewende/ Energieversorgung allgemein, ökologische Herausforderungen/ Nachhaltigkeit, demographischer Wandel),
 - **Ethisch Umstrittenes:** ethisch umstrittene Fragen, welche die Menschenwürde betreffen (Fortpflanzungsmedizingesetz, Sterben in Würde),
 - **Gesellschaftliche Ziel-Abwägungen:** Fragen der Abwägung von gesellschaftlichen Zielen wie Sicherheit und individuellen Rechten (Datensicherheit, Big Data).
5 Aufbereitung der Themen

5.1 Welche Informationsquellen werden aktuell genutzt?

Eine zentrale Quelle, die die Abgeordneten und ihre MitarbeiterInnen für die parlamentarische Arbeit nutzen, ist die Expertise aus persönlichen Kontakten: Neben MinisterialbeamtInnen wurden Kontakte im Wahlkreis sowie WissenschafterInnen genannt.

Die am zweithäufigsten genannte Gruppe von Quellen sind Medien, wobei das Internet als wichtigster Informationskanal angegeben wurde. Tageszeitungen und Magazine wurden am dritthäufigsten genannt, einige Male wurden explizit auch ausländische Medien angeführt.

Sozialen Medien wurde von verschiedenen GesprächspartnerInnen eine steigende Bedeutung zuschrieben. Mehrmals genannt wurden zudem auch die parlamentarischen MitarbeiterInnen, denen in den Interviews insgesamt allerdings eine zentrale Bedeutung in der täglichen Arbeit zugesprochen wurde - über ihre Nennung als Informationsquellen hinaus.

TV wurde als Informationskanal selten genannt und auch wissenschaftliche Tagungen, Fachzeitschriften und Fachvorträge sind nur vereinzelt als wichtig für die parlamentarische Arbeit genannt worden.

5.2 Wozu sollen wissenschaftliche Informationen dienen?

In den Interviews mit den ParlamentarierInnen und ihren MitarbeiterInnen wurden mehrere Gründe für ein verstärktes Einsetzen wissenschaftlicher Information genannt. Immer wieder wurde davon gesprochen, das Parlament durch Wissen stärken zu wollen. Dabei wurde auch wiederholt auf die diesbezüglich im internationalen Vergleich schlechte Ausstattung des österreichischen Parlaments hingewiesen. Der Deutsche Bundestag wurde in diesem Kontext als positive Referenzgröße genannt.

In diesem Zusammenhang wurde auf die österreichische Bundesregierung verwiesen, die mit dem Ministerialapparat über ein wesentliches, sehr spezialisiertes und umfangreiches Werkzeug zur Aufbereitung von Wissen verfügt. In der Zusammenarbeit zwischen Legislative und Exeku-
Wunsch, „auf Augenhöhe“ mit anderen Debatte- teilnehmerInnen zu sein

Das Parlament soll in die Lage versetzt werden, proaktiv zu handeln

Anforderungen parlamentarischer Arbeit im Bereich FTI

tive wurde dem Parlament ein bedeutender Nachteil im Hinblick auf eine derartige Unterstützung attestiert.

Viele der interviewten ParlamentarierInnen und ihrer MitarbeiterInnen wiesen in diesem Zusammenhang auf die Notwendigkeit hin, in Bezug auf den aktuellen Wissenstand „auf Augenhöhe“ mit anderen Akteuren (Regierung, InteressensvertreterInnen) diskutieren zu können.

In mehreren Gesprächen wurde die Erwartung formuliert, dass durch die Bereitstellung von maßgeschneidertem – adäquat aufbereitetem, verständlichem und passgenauem – Wissen die Sachbezogenheit von Diskussionen im Parlament steigen würde.

Ein weiterer Punkt, der gegen Ende des Berichts noch größere Berücksichtigung finden wird, ist das frühzeitige Erkennen neu auftauchender wichtiger Themen, die noch außerhalb der öffentlichen Diskussion stehen. Hier würden entsprechende Wissensbestände das Parlament in die Lage versetzen, proaktiv zu handeln und sich in seinen Aktivitäten nicht notwendigerweise auf andere politische Akteure wie etwa die Regierung beziehen zu müssen.
6 Formen der Beratung

6.1 Welche Form der Wissensaufbereitung ist erwünscht?

 Mehrmals angesprochen wurde auch die Kommunikation der Abgeordneten im Wahlkreis. Hier wurde einerseits festgehalten, dass im Rahmen derartiger Gespräche die ParlamentarierInnen auch an Wissen gewinnen würden. Andererseits wurde auf die Notwendigkeit verwiesen, im Parlament oder anderweitig erworbenes Wissen auf einfache Art und Weise transportieren können zu müssen, etwa in Form von beispielhaften Geschichten und illustrativen Tatsachenberichten.

 In Bezug auf die Allparteilichkeit von ExpertInnen und dem von Ihnen bereitgestellten Wissen wurde in den Gesprächen mit ParlamentarierInnen und ihren MitarbeiterInnen die Bildung eines Pools parteifreier ExpertInnen angesprochen, aus dem im Zuge verschiedener Veranstaltungen zu den einzelnen Spezialisierungen Vorschläge erstellt werden können. In zwei Gesprächen wurde darauf hingewiesen, dass besonders kleinere Fraktionen oft Schwierigkeiten hätten, Zugang zu parteifreien ExpertInnen

Angesprochen wurde auch eine Serie von parteiübergreifenden Informationsveranstaltungen, wobei dies in einem Fall besonders für neue ParlamentarierInnen angeregt wurde. Dabei würden im Laufe der Zeit aktuelle Fragestellungen verschiedener Politikfelder abgearbeitet und so die Einarbeitung für neue Abgeordnete erleichtert werden. In einem anderen Interview wurde auf ähnliche Art und Weise von einem Modulsystem gesprochen, in dem Fortbildung für Abgeordnete stattfinden könnte.

Häufig wurde auch davon gesprochen, die interne, im Parlament bereits befindliche, durch externe Expertise zu ergänzen. So wurde zum Beispiel seitens der interviewten ParlamentarierInnen und deren MitarbeiterInnen mehrmals in verschiedenen Zusammenhängen darauf hingewiesen, dass ein regelmäßiges und systematisches Scannen internationaler Diskussionen nach neu auftauchenden Themen aus dem Bereich Forschung, und Innovation (FTI) im Moment nicht stattfinden würde. Im Zusammenhang mit der später noch näher diskutierten Kritik am eher reaktiven Vorgehen des österreichischen Parlaments wurde darauf hingewiesen, dass ein derartiges Scannen dem Parlament die Option auf eine aktivere Rolle im FTI-Politikfeld bieten würde.

In Interviews mit Angehörigen der Parlamentsdirektion wurde die Integration der von außen kommenden Expertise in die parlamentarische Arbeit als insgesamt unproblematisch eingeschätzt, solange auf Seiten der externen ExpertInnen Diskursbereitschaft bestehen würde. Ähnlich wie in den Gesprächen mit ParlamentarierInnen und deren MitarbeiterInnen wurde auch hier eine Mischung aus ExpertInnengesprächen und gezielten Studien als sinnvoll erachtet.

6.2 Welche Eigenschaften soll die Information besitzen?

Die wesentlichen, in fast jedem Gespräch mit ParlamentarierInnen, ihren MitarbeiterInnen, ebenso wie Angehörigen der Parlamentsdirektion geforderten Eigenschaften für die dem Parlament bereitgestellte Information sind Allparteilichkeit, Unabhängigkeit und Neutralität. In vielen Kommentaren wurde hervorgehoben, wie wichtig es ist, einer Informationsquelle vertrauen zu können, vor allem darauf hin, dass Problemstellungen auf jeden Fall ausgewogen dargestellt werden würden.

In mehreren Interviews mit Angehörigen der Parlamentsdirektion wurden Erfahrungen in der Arbeit mit Abgeordneten diskutiert. Dabei wurden einige der in den Interviews mit ParlamentarierInnen und deren MitarbeiterInnen auftauchenden Motive wiederholt und konkretisiert. Die eben ange-
sprochene Allparteilichkeit und Unabhängigkeit war auch für die Mitarbei-
terInnen der Parlementsdirektion von zentraler Bedeutung. Ebenso wurde
die Kompaktheit der angebotenen Information als wichtig hervorgehoben
ebenso wie deren redaktionelle Aufbereitung für ein informiertes, nicht je-
doch für ein Fachpublikum. Als spezifisch für die Arbeitssituation im Par-
lament wurde die Kurzfristigkeit des Beratungsbedarfs dargestellt, wo Re-
sultate innerhalb weniger Tage oder Wochen vorliegen müssten.

In den Gesprächen mit ParlamentarierInnen und deren MitarbeiterInnen
wurde mehrmals die Verständlichkeit des dargebotenen Wissens als be-
sonders wichtig angemerkt, wobei immer wieder auch der Begriff der
„Übersetzung“ aus der Fachsprache gebraucht wurde. Allgemein wurde
darauf verwiesen, dass die Abgeordneten häufig keine einschlägige fach-
liche Ausbildung für das spezifische Politikfeld ihrer Zuständigkeit besit-
zen und vor allem in der Zeit, in der sie sich in den neuen Bereich einar-
beiten, auf gute Fachinformation in allgemein verständlicher Sprache an-
gewiesen sind.

Schließlich wurde in allen Interviews mit ParlamentarierInnen und ihren
MitarbeiterInnen nach dem bevorzugten Umfang von Informationen ge-
fragt. Die Antworten fielen durchaus differenziert aus, wobei ein wesentli-
cher Unterschied zwischen der allgemeinen Information zu einem Thema
und der Information zum eigenen Fachbereich gemacht wurde. Der sinn-
volle Umfang eines Dokuments mit Information, die nicht den eigenen
Ausschuss betrifft, wurde meist auf ein bis zwei Seiten geschätzt, wobei
einzelne Abgeordnete angaben, im Bedarfsfall auch umfangreichere Do-
kumente zu lesen. Ein Dokument, das sich mit aktuellen Fragestellungen
des eigenen Fachausschusses beschäftigt, kann nach der Schätzung der
meisten Abgeordneten auch 20-30 Seiten umfassen, wobei auch hier
wiederum einzelne Angaben darüber hinaus gingen. Mehrfach wurde an-
gegeben, dass die parlamentarischen MitarbeiterInnen regelmäßig auch
längere Dokumente verarbeiten würden.

Kompaktheit der
Informationen und
redaktionelle
Aufbereitung

Verständlichkeit

Übersetzung aus der
Fachsprache

Verarbeitbarer Umfang
schriftlicher
Informationen:
von 1-2 Seiten bis
max. 20-30 Seiten
7 Partizipation und Parlament

7.1 Welche Erfahrungen hat man im Parlament bisher mit dem Thema gemacht?

Alle interviewten ParlamentarierInnen und MitarbeiterInnen haben sich prinzipiell positiv zur Partizipation von BürgerInnen geäußert. Diese ist im Parlament dezidiert erwünscht. Partizipation soll dabei verschiedene Funktionen erfüllen.

So wurde die Tradition des offenen Parlaments angesprochen, innerhalb dessen in Österreich bereits mehrere 100.000 BesucherInnen das Hohe Haus besucht haben. Dabei wurde auch mehrmals die Notwendigkeit angesponten, die BürgerInnen über die komplexen Vorgänge im Parlament in allgemein verständlicher Art und Weise zu informieren. Neben den Führungen wurden interaktive Instrumente wie die Demokratiewerkstatt, das Schülerparlament oder das Lehrlingsparlament angesprochen. Andere erwähnte Werkzeuge waren der Einsatz sozialer Medien und die weitere Verstärkung des Internetauftritts des Parlaments.

Partizipation, so die GesprächspartnerInnen, hat auch Potenzial in Richtung der Formulierung praxisnaher Vorschläge, die von BürgerInnen und StakeholderInnen kommen könnten. Auch wäre es prinzipiell möglich Diskussionen offener zu gestalten, wenn Angehörige anderer gesellschaftlicher Schichten an Debatten im Parlament teilnehmen.
7.2 Welche Formen der Partizipation sind erwünscht?

Ein wesentliches und immer wieder angesprochenes Problempotenzial für verschiedene Partizipationsformen liegt in den Auswahlverfahren der teilnehmenden BürgerInnen und StakeholderInnen. So wurde angemerkt, dass bei der Enquetekommission zur Stärkung der Demokratie in Österreich einige BürgerInnen in verschiedener Form bereits gesellschaftlich und politisch organisiert seien und teilweise auch Partikularinteressen vertreten würden. Damit konnten die TeilnehmerInnen der idealisierten Vorstellung unabhängiger und politisch ungebundener BürgerInnen nicht entsprechen.

Die digitale Einbindung von BürgerInnen wurde unterschiedlich bewertet. Partizipation durch soziale Medien kann den Möglichkeitsraum für BürgerInnen erweitern, doch bestünde bei der Anwendung neuer Technologien immer die Gefahr, dass nicht alle, die gerne teilnehmen würden, auch die technischen Fähigkeiten dazu besitzen („digital divide“).

Aus der Parlamentsdirektion wurde die Öffnung des Begutachtungsverfahrens für die breite Öffentlichkeit als prinzipiell wünschenswert erachtet, aber in der Durchführung wegen der großen Zahl an Stellungnahmen als problematisch angesehen.
Anhang: Liste der InterviewpartnerInnen

<table>
<thead>
<tr>
<th>Nr</th>
<th>InterviewpartnerIn</th>
<th>Fraktion</th>
<th>Funktion</th>
<th>Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lichtenecker Ruperta</td>
<td>Die Grünen</td>
<td>Abgeordnete</td>
<td>26.11.2014</td>
</tr>
<tr>
<td>2</td>
<td>Scherak Nikolaus</td>
<td>NEOS</td>
<td>Abgeordneter</td>
<td>26.11.2014</td>
</tr>
<tr>
<td>3</td>
<td>Ertelschweiger Rouven</td>
<td>Team Stronach</td>
<td>Abgeordneter</td>
<td>04.12.2014</td>
</tr>
<tr>
<td>4</td>
<td>Kucher Philip</td>
<td>SPÖ</td>
<td>Abgeordneter</td>
<td>05.12.2014</td>
</tr>
<tr>
<td>5</td>
<td>Himmellbauer Eva</td>
<td>ÖVP</td>
<td>Abgeordnete</td>
<td>10.12.2014</td>
</tr>
<tr>
<td>6</td>
<td>Deimelk Gerhard</td>
<td>FPÖ</td>
<td>Abgeordneter</td>
<td>17.12.2014</td>
</tr>
<tr>
<td>7</td>
<td>Dossi Harald</td>
<td>Parlementsdirektor</td>
<td></td>
<td>13.01.2015</td>
</tr>
<tr>
<td>8</td>
<td>Brosz Dieter</td>
<td>Die Grünen</td>
<td>Abgeordneter</td>
<td>30.01.2015</td>
</tr>
<tr>
<td>9</td>
<td>Ottenschläger Andreas</td>
<td>ÖVP</td>
<td>Abgeordneter</td>
<td>09.02.2015</td>
</tr>
<tr>
<td>10</td>
<td>Asperl Walter</td>
<td>FPÖ</td>
<td>Klubreferent</td>
<td>11.02.2015</td>
</tr>
<tr>
<td>11</td>
<td>Schellhorn Sepp</td>
<td>NEOS</td>
<td>Abgeordneter</td>
<td>18.02.2015</td>
</tr>
<tr>
<td>12</td>
<td>Töchterle Karheinz</td>
<td>ÖVP</td>
<td>Abgeordneter</td>
<td>19.02.2015</td>
</tr>
<tr>
<td>13</td>
<td>Malainer Gerhard</td>
<td>Team Stronach</td>
<td>Klubreferent</td>
<td>19.02.2015</td>
</tr>
<tr>
<td>14</td>
<td>Yilmaz Nurten</td>
<td>SPÖ</td>
<td>Abgeordnete</td>
<td>23.02.2015</td>
</tr>
<tr>
<td>15</td>
<td>Steinhauser Albert</td>
<td>Die Grünen</td>
<td>Abgeordneter</td>
<td>23.02.2015</td>
</tr>
<tr>
<td>16</td>
<td>Brosz Dieter</td>
<td>Die Grünen</td>
<td>Abgeordneter</td>
<td>24.02.2015</td>
</tr>
<tr>
<td>17</td>
<td>Brunner Christiane</td>
<td>Die Grünen</td>
<td>Abgeordnete</td>
<td>03.03.2015</td>
</tr>
<tr>
<td>18</td>
<td>Wöginger August</td>
<td>ÖVP</td>
<td>Abgeordneter</td>
<td>12.03.2015</td>
</tr>
<tr>
<td>19</td>
<td>Winzig Angelika</td>
<td>ÖVP</td>
<td>Abgeordneter</td>
<td>12.03.2015</td>
</tr>
<tr>
<td>20</td>
<td>Pock Michael</td>
<td>NEOS</td>
<td>Abgeordneter</td>
<td>19.03.2015</td>
</tr>
<tr>
<td>21</td>
<td>Matznetter Christoph</td>
<td>SPÖ</td>
<td>Abgeordneter</td>
<td>24.03.2015</td>
</tr>
<tr>
<td>22</td>
<td>Bures Doris</td>
<td>SPÖ</td>
<td>Präsidentin des NR</td>
<td>26.03.2015</td>
</tr>
<tr>
<td>23</td>
<td>Wimmer Rainer</td>
<td>SPÖ</td>
<td>Abgeordneter</td>
<td>26.03.2015</td>
</tr>
<tr>
<td>24</td>
<td>Alm Niko</td>
<td>NEOS</td>
<td>Abgeordneter</td>
<td>27.03.2015</td>
</tr>
<tr>
<td>25</td>
<td>Berger Helmut</td>
<td>Budgetdienst</td>
<td></td>
<td>31.03.2015</td>
</tr>
<tr>
<td>26</td>
<td>Böck Holger</td>
<td>Parlamentsbibliothek</td>
<td></td>
<td>07.04.2015</td>
</tr>
<tr>
<td>27</td>
<td>Strolz Matthias</td>
<td>NEOS</td>
<td>Abgeordneter</td>
<td>08.04.2015</td>
</tr>
<tr>
<td>28</td>
<td>Fink-Klein Elisabeth</td>
<td>Die Grünen</td>
<td>Klubreferentin</td>
<td>15.04.2015</td>
</tr>
<tr>
<td>29</td>
<td>Schebeck Günther</td>
<td>Nationalratsdienst</td>
<td></td>
<td>16.04.2015</td>
</tr>
<tr>
<td>30</td>
<td>Wagner Gerlinde</td>
<td>Rechts-, Legislativ- und Wissenschaftlicher Dienst</td>
<td></td>
<td>20.04.2015</td>
</tr>
<tr>
<td>31</td>
<td>Konrath Christoph</td>
<td>Rechts-, Legislativ- und Wissenschaftlicher Dienst</td>
<td></td>
<td>20.04.2015</td>
</tr>
<tr>
<td>32</td>
<td>Günther Christian</td>
<td>Team Stronach</td>
<td>Klubreferent</td>
<td>23.04.2015</td>
</tr>
<tr>
<td>33</td>
<td>Schennach Stefan</td>
<td>SPÖ</td>
<td>Bundesrat</td>
<td>07.05.2015</td>
</tr>
<tr>
<td>34</td>
<td>Maurer Sigrid</td>
<td>Die Grünen</td>
<td>Abgeordnete</td>
<td>26.05.2015</td>
</tr>
<tr>
<td>35</td>
<td>Janistyn-Novák Susanne</td>
<td>Parlamentsvizedirektorin</td>
<td></td>
<td>28.05.2015</td>
</tr>
</tbody>
</table>
Analyse internationaler Erfahrungen in der FTI-Politikberatung

Zwischenbericht zu Arbeitspaket 3 des Projekts F&TA Parlament

Studie zum Projekt F&TA
im Auftrag der Parlamentsdirektion des Österreichischen Parlaments

Projektleitung der Studie: Michael Nentwich
Petra Schaper-Rinkel

AutorInnen: Michael Nentwich
Petra Schaper-Rinkel

Koordination des Projektes F&TA:

Michael Nentwich
Institut für Technikfolgen-Abschätzung
der Österreichischen Akademie der Wissenschaften

Josef Fröhlich
Austrian Institute of Technology
Innovation Systems Department

Wien, Juli 2015
Inhalt

Zusammenfassung .. 5

1 Politikberatung im Bereich FTI ... 7

2 Parlamentarische TA-Einrichtungen und -Arbeitsweisen im internationalen Vergleich 11
 2.1 Zur Geschichte der Technikfolgenabschätzung international und in Österreich 11
 2.2 Institutionalisierungsvarianten ... 15
 2.2.1 ParlamentarierInnen als AdressatInnen oder als BerichterstatterInnen 15
 2.2.2 Einheit im Parlament oder außerhalb ... 15
 2.2.3 Zuständigkeit innerhalb des Parlaments ... 16
 2.2.4 Fallbezogene Finanzierung bzw. Beauftragung oder Rahmenvertrag 18
 2.2.5 Mission: Fokus auf das Parlament oder offene Auftraggeberstruktur 19
 2.2.6 Rechtlicher Status .. 20
 2.3 Welche Themen werden behandelt? .. 21
 2.3.1 Themenfindung .. 21
 2.3.2 Technologiebezug .. 23
 2.3.3 Thematischer Zeithorizont ... 24
 2.4 Arbeitsweisen .. 25
 2.4.1 „TA-Sekretariat“ oder „In-House“-TA ... 25
 2.4.2 Zur Anwendung kommende Methoden ... 25
 2.4.3 Personalausstattung und Budget ... 26
 2.5 Umgang mit TA-Ergebnissen im Parlament .. 27
 2.5.1 Schriftliche Kommunikation .. 27
 2.5.2 Mündliche Vorstellung und Diskussion ... 29

3 Foresight: Von der Exekutive zur Legislative ... 31
 3.1 Die Entwicklung von Foresight international und in Österreich ... 32
 3.1.1 Foresight in Europa ... 32
 3.1.2 Foresight in Österreich .. 34
 3.2 Charakteristika von Foresight .. 34
 3.2.1 Ziele: Prioritätensetzung oder Ermittlung gesellschaftlicher Bedarfe 35
 3.2.2 Zukunftsperspektiven: explorativ oder normativ .. 35
 3.2.3 Partizipation: ExpertInnen-basiert oder Stakeholder/BürgerInnen-Beteiligung 36
 3.2.4 Koordination: intern oder extern ... 36
 3.2.5 Ergebnisse: Erweiterte Wissensbasis oder direkte Entscheidungsunterstützung 37
 3.3 Foresight an Parlamenten .. 38

4 Zwischenfazit .. 41

Literatur ... 43

Tabellenverzeichnis

Tabelle 1: EPTA-Mitglieder .. 12
Tabelle 2: Größe und Budget ausgewählter TA-Einrichtungen .. 27
Zusammenfassung

Foresight wird seit langem genutzt, um die Arbeit der Regierungen zu unterstützen. Ausgehend vom Technology Foresight zur Unterstützung von Forschungsministerien und innovationsorientieren Regierungsprogrammen wird Foresight heute breiter zur Unterstützung zukunftsorientierter, antizipierender Politiken eingesetzt. Aber auch einige Parlamente nutzen bereits regelmäßig Foresight, um antizipativ und zukunftsorientiert Entscheidungen in einem breiten Zeithorizont verorten zu können, so insbesondere die Parlamente in Finnland, Deutschland und Großbritannien sowie das EU-Parlament. Der Bericht dokumentiert die beschreibt im Detail die Charakteristika von Foresight, von den Zielen, über die Zukunftsperspektiven und die Art der Partizipation, bis zur Form der Koordination und den intendierten Ergebnissen.

Die in diesem Zwischenbericht dokumentierten internationalen Erfahrungen bilden gemeinsam mit den Ergebnissen aus den anderen Arbeitspaketen die Basis für das/die im Endbericht vorgeschlagene/n Modell/e der Beratung des österreichischen Parlaments im Bereich Foresight und Technikfolgenabschätzung.
1 Politikberatung im Bereich FTI

Die FTI-politische Unterstützung durch Foresight ist seit langem in der Exekutive verankert und wird aktuell zunehmend zur Unterstützung von Parlamenten eingesetzt. In Kapitel 3 wird analysiert, welche Ansätze Foresight bietet, die für die parlamentarische Arbeit genutzt werden können.

Formen wissenschaftlicher Beratung von Parlamenten

Schon seit den 1990er Jahren beschäftigen sich die Politikwissenschaft und die Wissenschaftsforschung mit der Rolle der Wissenschaft bzw. der WissenschaftlerInnen als Beratende der Politik. Der Großteil dieser Literatur beschäftigt sich mit institutionellen Fragen, den wissenschaftlichen Beiräten, der Einrichtung der sog. „Chief Science Advisors“, den funktionalen Rollen der Wissenschaft gegenüber Politik und Gesellschaft, wobei diese Studien in der Regel nur auf ein Land fokussieren. Es wäre freilich

ein spannendes und lohnendes (internationales) Projekt zu untersuchen, in welcher Form wissenschaftliches Wissen tatsächlich Einfluss auf die Politik nimmt bzw. nehmen kann.

Der Fokus all dieser Untersuchungen lag bislang auf der Regierungsseite, während noch relativ wenige Analysen der Beziehungen zwischen Wissenschaft und Parlamenten vorliegen.3 Dieser Befund betrifft insbesondere auch den internationalen Vergleich.

Jüngst hat das niederländische Parlament versucht, diese Lücke schließen zu lassen. Auf Basis von Antworten auf eine Umfrage unter allen Mitgliedsparlamenten im Rahmen des European Centre for Parliamentary Research & Documentation (ECPRD)4 entstand eine Studie der Radboud Universität Nijmegen.5 Diese Studie berichtet im Wesentlichen über die Zusammenarbeit zwischen europäischen Parlamenten und Einrichtungen der Technikfolgenabschätzung (siehe dazu im Detail in Kapitel 2); zusätzlich zu letzteren werden noch die finnische Vereinigung der Abgeordneten und WissenschafterInnen TUTKAS und das Informationszentrum des schottischen Parlaments SPICe genannt. Ein Desiderat dieser Untersuchung ist es somit, dass verschiedene formelle und informelle Formen der Kooperation zwischen Wissenschaft und Parlamenten existieren.

Die Folgende Liste entstand aus unserer Analyse der Antworten der ECPRD-Anfrage:

1. **Parlamentarische Vereinigungen**, die der Diskussion wissenschaftlicher Themen zwischen Abgeordneten und WissenschafterInnen dienen (z.B. finnische Vereinigung der Abgeordneten und Wissenschafter TUTKAS oder die Swedish Society of Parliamentarians & Scientists RIFO; ähnlich auch, 1969-2009, der norwegische Joint Council of the Storting and Science);

2. „All party groups“ im britischen Parlament sind Gruppen von ParlamentarierInnen und teilweise externen Mitgliedern, die sich rund um eine Sachthema organisieren, auch zu wissenschaftlichen Themen, z.B. das „Parliamentary and Scientific Committee“;6

3. **Parlamentsbibliotheken und/oder Wissenschaftliche Dienste** innerhalb der Parlamente, die als Verbindungsglied der Abgeordneten zur Welt der Wissenschaft dienen (z.B. das Informationszentrum des schottischen Parlaments SPICs oder das parlamentarische Büro für Analysen BAS in Polen; im deutschen Bundestag organisiert der Wis-

3 Tyler ibid.; Tyler (2015 forthcoming).
4 ECPRD request # 2136 (2012) Forms of collaboration between parliament and science.
5 ten Cate, et al. (2013): Der Bericht ist auf Holländisch geschrieben, im Anhang befindet sich eine englischsprachige Zusammenfassung der Antworten auf die ECPRD-Anfrage.
6 Dieses Committee hat auch die verschiedenen formellen und informellen Beziehungen des britischen Parlaments zur Wissenschaft, auch auf Basis einer Umfrage unter Abgeordneten, untersucht, siehe Oxburgh (2011?).
senschaftliche Dienst auch eine für alle Abgeordnete offene wissen-
chaftliche Vortragsreihe, das „W-Forum“);

4. **Parlamentarische MitarbeiterInnen**, die auf individueller oder fraktio-
neller Basis ihren jeweiligen Abgeordneten als Verbindungsglied zu
wissenschaftlicher Expertise dienen;

5. **Formelle parlamentarische Ausschüsse**, die zu ihren Sitzungen wis-
senschaftliche ExpertInnen laden oder eigene Hearings und Enque-
ten veranstalten; in manchen Ländern werden Enqueten auch von
einzelnen Fraktionen und nicht von einem Ausschuss oder dem Ge-
samtparlament organisiert;

6. **Formelle Kooperationen mit Wissenschaftsakademien** und anderen
Wissenschaftsorganisationen, etwa in Form eines virtuellen Wissens-
Desks (z.B. als Pilotprojekt in den Niederlanden);

7. **Spezielle Beratungseinrichtungen**, die für Parlamente das verfügbare
wissenschaftliche Wissen aufbereiten und kommunizieren. Soweit
bekannt, gibt es solche Einrichtungen, die teils direkt im Parlament,
teils außerhalb angesiedelt sind, nur im Bereich Technologiepolitik
i.w.S. Dazu ausführlich in Kapitel 2.

Darüber hinaus findet in allen Ländern in unterschiedlichem Ausmaß in-
formeller Austausch zwischen Parlament und Wissenschaft statt:

8. **Bilaterale Treffen** zwischen Abgeordneten und WissenschafterInnen;

9. **Exkursionen** von Gruppen von Abgeordneten zu Forschungsstätten
(z.B. in Frankreich und Norwegen);

10. **Praktika** von (jungen) WissenschafterInnen im Parlament (z.B. in der
Schweiz);

11. **Abgeordnete mit wissenschaftlichem Background** stellen in ihrer ei-
gen Press ein Bindeglied zu ihrem (ehemaligen) beruflichen Um-
feld dar.
2 Parlamentarische TA-Einrichtungen und -Arbeitsweisen im internationalen Vergleich

2.1 Zur Geschichte der Technikfolgenabschätzung international und in Österreich

Diese Diskussion übernahmen in den achtziger Jahren auch einige europäische Länder, was ab etwa 1985 zu einer Gründungswelle von TA-Institutionen in Europa führte. Diese schlossen sich Anfang der neunziger Jahre zum Netzwerk European Parliamentary Technology Assessment (EPTA) zusammen. Derzeit sind 16 Institutionen in verschiedenen Staaten und Regionen, die entweder im oder für das jeweilige Parlament TA durchführen, Mitglieder des EPTA-Netzwerkes (siehe Tabelle 1).

8 www.eptanetwork.org.
Tabelle 1: EPTA-Mitglieder

<table>
<thead>
<tr>
<th>Land</th>
<th>TA-Einrichtung</th>
<th>Gründung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vollmitglieder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankreich</td>
<td>Office Parlementaire d’Evaluation des Choix Scientifiques et Technologiques – Parliamentary Office for Evaluation of Scientific and Technological Options (OPECST), Französisches Parlament</td>
<td>1983</td>
</tr>
<tr>
<td>Europäische Union</td>
<td>Scientific and Technological Options Assessment (STOA), Europäisches Parlament</td>
<td>1985</td>
</tr>
<tr>
<td>Dänemark</td>
<td>Teknoligirådet – Danish Board of Technology Foundation (DBT)</td>
<td>1986</td>
</tr>
<tr>
<td>Niederlande</td>
<td>Rathenau Institute der Königlich Niederländischen Akademie der Wissenschaften</td>
<td>1986</td>
</tr>
<tr>
<td>Österreich</td>
<td>Institut für Technikfolgen-Abschätzung (iTA) der Österreichischen Akademie der Wissenschaften</td>
<td>1988</td>
</tr>
<tr>
<td>Großbritannien</td>
<td>Parliamentary Office of Science and Technology (POST), Britisches Parlament</td>
<td>1989</td>
</tr>
<tr>
<td>Deutschland</td>
<td>Büro für Technikfolgen-Abschätzung beim Deutschen Bundestag (TAB)</td>
<td>1990</td>
</tr>
<tr>
<td>Schweiz</td>
<td>Zentrum für Technologiefolgen-Abschätzung (TA-Swiss)</td>
<td>1991</td>
</tr>
<tr>
<td>Finnland</td>
<td>Committee for the Future, Finnisches Parlament – Tulevaisuuusvaliokunta</td>
<td>1993</td>
</tr>
<tr>
<td>Griechenland</td>
<td>Committee on Technology Assessment, Griechisches Parlament</td>
<td>1997</td>
</tr>
<tr>
<td>Norwegen</td>
<td>Teknologirådet – Norwegian Board of Technology (NBT)</td>
<td>1999</td>
</tr>
<tr>
<td>Schweden</td>
<td>Parliamentary evaluation and research unit (PER), Schwedischer Riksdag</td>
<td>2007</td>
</tr>
<tr>
<td>Katalonien</td>
<td>CAPCIT (Conseil Assessor del Parlament sobre Ciència i Tecnologia) – The Advisory Board of the Parliament of Catalonia for Science and Technology, Katalanisches Regionalparlament</td>
<td>2008</td>
</tr>
<tr>
<td>Assoziierte Mitglieder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europarat</td>
<td>Unterausschuss für Kultur, Wissenschaft, Bildung und Medien der Parlamentarischen Versammlung des Europarats, Straßburg</td>
<td>(1948)</td>
</tr>
<tr>
<td>Polen</td>
<td>Bureau of Research (BAS), Polnisches Parlament</td>
<td>(1991)</td>
</tr>
<tr>
<td>USA</td>
<td>Center for Science, Technology, and Engineering (CSTE) des U.S. Government Accountability Office (GAO)</td>
<td>2002</td>
</tr>
</tbody>
</table>

Aktuelle europäische TA-Initiative PACITA zeitigt erste Erfolge

9 www.pacitaproxj.eu.
Parlamentarische TA-Einrichtungen und -Arbeitsweisen im internationalen Vergleich

Im Zuge der Entwicklungen der letzten dreißig Jahre wurde zudem immer deutlicher, dass neben wissenschaftlichen Fragen auch Werthaltungen, Standpunkte und Perspektiven unterschiedlichster Art in eine umfassende Beurteilung von Vor- und Nachteilen einfließen sollten. Ebenso stieg das Bewusstsein darüber, dass politische Entscheidungen nur dann sinnvoll umzusetzen sind, wenn sie von den BürgerInnen mitgetragen werden. Damit wurde die Partizipation von InteressensvertreterInnen und einer breiten Öffentlichkeit zu einem zentralen Entwicklungsfeld der TA. Gleichzeitig entwickelte sich die TA von einer vorerst stark experten-orientierten wissenschaftlichen Disziplin zunehmend zu einer moderierend darstellenden Akteurin im Feld der Governance von Technikentwicklung.10

Vor allem im deutschsprachigen Raum gibt es neben den parlamentarischen TA-Einrichtungen auch viele weitere Einrichtungen, die TA in der einen oder anderen Form betreiben: Netzwerke, Lehrstühle an Universitäten und thematisch spezialisierte Forschungseinheiten. Diese sind im Netzwerk Technikfolgenabschätzung (NTA)11 organisiert.

11 openta.net/netzwerk-ta.
de mit Unterstützung der Parlamentspräsidentin 2013 Vollmitglied von EPTA. Im Brief vom 7.2.2013 von Präsidentin Prammer an ihren finnischen Amtskollegen heißt es unter anderem:

„[…] the Parliament is now under way to establish a more regular communication channel that will therefore tie both institutions [d.h. das Parlament und das ITA] together more closely in the future. Austrian Parliamentarians are highly interested in issues regarding the possible impacts of new technologies on our society. We therefore appreciate the work done by ITA and are interested to engage in intensive exchange with ITA staff on issues related to the political and legislative activities of the Austrian Parliament. […]“

Neben der mittlerweile über 20-köpfigen TA-Einrichtung ITA an der ÖAW gibt es noch weitere Forschungseinrichtungen, die zumindest teilweise TA-Aktivitäten durchführen. Zu nennen ist insbesondere das Innovation Systems Department (IS) des Austrian Institute of Technology (AIT), das Institut für Sicherheits- und Risikowissenschaften (ISR) der Universität für Bodenkultur (BOKU), das Interuniversitäres Forschungszentrum für Technik, Arbeit und Kultur (IFZ) in Graz, das IDC (International Dialogue and Conflict management) in Wien und das ICT&S Center (Information and Communication Technologies and Society) der Universität Salzburg.

Der folgende internationale Vergleich startet bei der Frage, wie TA für Parlamente konkret institutionalisiert ist (2.1), welche Themen behandelt werden (2.2), welche Methoden zur Anwendung kommen (2.3) und in welchen Formen die Kommunikation mit und unter den Abgeordneten zu TA-Fragestellungen stattfindet (2.4). Der Vergleich basiert auf dem Studium der einschlägigen Literatur, eigenen Erhebungen, sowie zahlreichen Gesprächen mit den LeiterInnen parlamentarischer TA-Einrichtungen im Rahmen von EPTA.

2.2 Institutionalisierungsvarianten

Die TA-Aktivitäten der Parlamente sind in den verschiedenen Ländern sehr unterschiedlich institutionalisiert. In diesem Abschnitt werden die in Hinblick auf eine mögliche Institutionalisierung von TA im österreichischen Parlament wesentlichen Gestaltungsoptionen, wie sie international beobachtet werden können, dargestellt.

2.2.1 ParlamentarierInnen als AdressatInnen oder als BerichterstatterInnen

Je nach der Rolle der ParlamentarierInnen können folgende zwei Grundmodelle unterschieden werden:

A. Die Abgeordneten sind selbst als BerichterstatterInnen aktiv und werden dabei in ihrer TA-Arbeit durch ein Sekretariat bzw. wissenschaftliche MitarbeiterInnen und/oder durch Input von außen unterstützt.

B. Den Abgeordneten wird zugearbeitet, sprich diese fungieren als Auftraggeber der TA-PraktikerInnen, die dann auf die gestellten Fragen (mit einem TA-Bericht oder in anderer Form) antworten.

Fall A ist deutlich seltener, jedoch prominent realisiert in Frankreich (OPECST) sowie in Finnland (Committee for the Future) und in Griechenland13, früher auch in Italien. Alle anderen Länder haben, in unterschiedlichen Formen, Varianten des Falls B. Schweden ist ein Mischfall, da dort die Abgeordneten intensiv in die Erstellung der Reports einbezogen sind (A), aber dabei sehr stark von der TA-Einrichtung unterstützt werden (B).

2.2.2 Einheit im Parlament oder außerhalb

Zweitens kann nach dem Ort der Institutionalisierung unterschieden werden:

II. Die TA-Einrichtung ist gänzlich außerhalb des Parlaments angesiedelt und arbeitet (ausschließlich oder projektbezogen) in dessen Auftrag und in manchen Fällen von diesem finanziert.

13 Freilich findet TA in Griechenland derzeit kaum statt, sodass dieser Fall nicht einordenbar ist.
Das Paradebeispiel für Fall I ist Großbritannien: Das Parliamentary Office of Science and Technology (POST) hat rund ein Dutzend parlamentarische MitarbeiterInnen. In Frankreich, Katalonien, Schweden, Finnland und Griechenland, in gewisser Weise auch in Polen14, sind die entsprechenden Abteilungen hingegen sehr klein (ein bis drei Personen).

Das deutsche TAB nimmt eine Zwischenposition ein: Es ist außerhalb des Parlaments angesiedelt und dessen acht Angestellte gehören nicht der Parlementsverwaltung an, sondern sind formell Angestellte bei der betreibenden Forschungseinrichtung (ITAS Karlsruhe), jedoch arbeitet das TAB ausschließlich für den Bundestag und wird dementsprechend zu 100\% von ihm finanziert.

2.2.3 Zuständigkeit innerhalb des Parlaments

In den meisten Parlamenten, die TA betreiben oder sich von TA-Einrichtungen beraten lassen, gibt es einen Ausschuss bzw. eine Gruppe von ParlamentarierInnen, die als Kontaktstelle zu den Beratenden fungieren.

i. Ein einzelner, explizit zuständiger Ausschuss
ii. Ein Gremium, das teils aus ParlamentarierInnen, teils aus Externen besteht
iii. Keine direkte Zuständigkeit im Parlament für die TA-Einrichtung

Ein paar Beispiele für Fall i:

- In Deutschland ist es der „Ausschuss für Bildung, Forschung und Technikfolgenabschätzung“. Alle im Bundestag und damit in diesem Ausschuss vertretenen Fraktionen haben eine1N SprecherIn für Technikfolgenabschätzung, die die Gruppe der „TA-BerichterstatterInnen“ bilden. Diese Gruppe ist der direkte Ansprechpartner für das TAB und intern für alle Abgeordneten, auch aus anderen Ausschüssen (z.B. für

14In Polen sind nur ein paar MitarbeiterInnen des wissenschaftlichen Dienstes hin und wieder mit TA-Aktivitäten befasst.

- Das finnische Committee for the Future besteht aus 17 Abgeordneten von allen Fraktionen, die zu Zukunftsfragen diskutieren sowie Aufträge für die Einholung von Expertisen an das Sekretariat erteilen.

- In Griechenland besteht der Ständige Ausschuss für Technikfolgenabschätzung aus 25 Abgeordneten.

Beispiele für Fall ii (gemischte Gremien):

- In Katalonien ist das 18-köpfige CAPCIT ein gemischtes Gremium, das zur Hälfte aus Abgeordneten und zur anderen Hälfte aus VertreterInnen der wichtigsten Wissenschaftseinrichtungen besteht, darunter auch die Akademie der Wissenschaften. Der Ausschuss wird durch ein aus einer Person bestehendes Sekretariat unterstützt.

- In Großbritannien arbeitet das POST mit dem POST Board zusammen, der sich aus 14 Abgeordneten der beiden Kammern (House of Commons und House of Lords) zusammensetzt und grob die Mehrheitsverhältnisse im Parlament abbildet; weiters sind Mitglieder des POST Board führende VertreterInnen der Wissenschafts- und Tech-

15 Industry, Research and Energy; Employment and Social Affairs; Environment, Public Health and Food Safety; Internal Market and Consumer Protection; Transport and Tourism; Agriculture.
Beispiele für Fall iii (keine direkte Zuständigkeit im Parlament):

Schweiz

Schweden, Niederlande, Norwegen

Dänemark
- Das dänische DBT hat nach seiner Neugründung 2012 aktuell keine formellen Beziehungen mit dem Parlament, an der Wiederherstellung der engen Beziehungen zum parlamentarischen Wissenschaftsausschuss sind fast alle Fraktionen des Parlaments interessiert und es wird aktiv daran gearbeitet.

Überraschend große Unterschiede bestehen hinsichtlich der Frequenz, mit der sich diese diversen parlamentarischen Ausschüsse treffen, insb. im Vergleich mit den Rhythmen im österreichischen Nationalrat. So tagen die Ausschüsse in Deutschland etwa dreimal pro Monat für einen Halbtag, in Finnland und Schweden sogar zweimal wöchentlich zwei bis drei Stun-
den.

2.2.4 Fallbezogene Finanzierung bzw.
Beauftragung oder Rahmenvertrag

Bei der Vergabe von Aufträgen für TA-Studien an Dritte, kann man folgendes unterscheiden:

a. Von Thema zu Thema wird ein neuer Auftrag erteilt (gegebenenfalls auch ausgeschrieben) und nicht prinzipiell immer von derselben TA-Einrichtung durchgeführt.
b. Es wird mit einer oder mehreren TA-Einrichtungen ein Rahmenvertrag geschlossen, wobei diese Einrichtung(en) dann für eine bestimmte Periode immer zum Zuge kommt bzw. kommen.

c. Das Parlament vergibt keine Aufträge im engeren Sinne, die Mission der aus öffentlichen Mitteln finanzierten TA-Einrichtung sieht vor, dass das Parlament über die Ergebnisse aktueller Studien zu informieren ist.

Fall a ist beispielsweise in Finnland realisiert, wo einzelne Studien fallbezogen nach außen vergeben werden. Dies ist auch in Katalonien der Fall, wobei jedoch die beauftragten externen ExpertInnen nicht vom Parlament finanziert werden.

Fall b ist auf Einrichtungsebene in Deutschland realisiert, wo nach einer öffentlichen Ausschreibung jeweils für fünf Jahre eine TA-Einrichtung (bzw. ein Konsortium) vom Bundestag mit dem Betrieb des TAB beauftragt wird.

Der Fall des Europäischen Parlaments kombiniert beide Varianten auf Projektebene: Das STOA-Sekretariat schreibt Rahmenverträge für bestimmte Themenschwerpunkte aus (Fall b), für ein konkretes Thema werden dann die Einrichtungen oder Konsortien mit Rahmenvertrag aufgefordert zu bieten (Fall a). Einige EPTA-Mitglieder haben die „European TA Group“ (ETAG) gebildet und diese Gruppe hat einen solchen Rahmenvertrag mit STOA zu einigen Themenbereichen.16

In Norwegen, den Niederlanden und in der Schweiz, früher auch in Dänemark, werden die TA-Einrichtungen von Regierungsseite finanziert und berichten dem Parlament (Fall c).

2.2.5 Mission: Fokus auf das Parlament oder offene Auftraggeberstruktur

Während Einheiten innerhalb des Parlaments in der Regel ausschließlich für ihr Parlament tätig sind, können externe TA-Einheiten auch für andere Auftraggeber tätig sein:

α. Die (externe) TA-Einrichtung ist ausschließlich im Auftrag des Parlaments tätig.

β. Die Einrichtung kann auch Aufträge anderer Institutionen, etwa von Regierungseinrichtungen (Ministerien), annehmen oder betreibt parallel einen Forschungsbetrieb, der bspw. über Forschungsfonds oder eine sonstigen Basisfinanzierung alimentiert wird.

16 Das ITA ist Teil von ETAG und ist daher immer wieder an TA-Projekten für das Europäische Parlament beteiligt.

17 Der Gesetzesvorschlag, den das wallonische Parlament aktuell diskutiert, sieht vor, dass die geplante TA-Einheit zwar innerhalb des Parlaments angesiedelt sein soll, aber auch für die Regierung arbeiten wird.
Das Paradebeispiel für Fall α ist das deutsche TAB. Die meisten anderen TA-Einrichtungen entsprechen dem Fall β. In einigen Fällen sind Projekte direkt für das Parlament sogar die Ausnahme, entweder dauerhaft (z.B. in der Schweiz) oder in bestimmten Phasen (z.B. in Dänemark, Niederlande). Das niederländische Rathenau Institut ist derzeit die einzige parlamentarische TA-Einrichtung, die neben der politischen Beratungstätigkeit in erkennbarem Ausmaß auch wissenschaftlich publiziert.

2.2.6 Rechtlicher Status

Die TA-Einrichtungen, die für die diversen Parlamente tätig sind, sind auf unterschiedliche Weise entstanden und in unterschiedlichen Formen rechtlich organisiert. Folgende Möglichkeiten gibt es:

x. Beschluss des Parlaments (Gesetz, Änderung der Geschäftsordnung, Entscheidung des Parlamentspräsidiums etc.)

y. Einrichtung durch ein Ministerium (Verordnung) oder eine sonstige öffentliche Einrichtung und ev. spätere (formelle oder informelle) Anbindung an das Parlament.

z. Stiftung, ev. initiiert durch Abgeordnete und ev. spätere Anbindung an das Parlament.

Die Schweiz und Frankreich sind Beispiele für Fall x, wo die TA-Einrichtung durch ein Gesetz eingerichtet wurde. In Deutschland war es eine Resolution des Bundestags, in Katalonien ein Beschluss des Parlamentspräsidiums, der zu Beginn jeder Legislaturperiode erneuert werden muss. Im Europäischen Parlament kam STOA ebenfalls durch einen Beschluss des Parlamentspräsidiums (Bureau) zustande, ebenso in Griechenland, Polen und Schweden.

Fall y wird repräsentiert durch die Niederlande, wo die TA-Einrichtung unter dem Dach der Akademie der Wissenschaften vom Ministerium für Bildung, Kultur und Wissenschaft per Erlass eingerichtet wurde. In Norwegen wurde das NBT vom Wissenschaftsrat im Auftrag (und auf Rechnung) des Ministeriums für Handel und Industrie gegründet.18

Die dänische TA-Einrichtung wurde jüngst als Stiftung neu gegründet (Fall z), wobei die Initiative nur indirekt von Abgeordneten ausging.19 Die Vorgängerinstitution gleichen Namens war eine unabhängige öffentlich-rechtliche Einrichtung, die vom Wissenschaftsministerium gegründet und finanziert wurde (Fall y). Auch die erste TA-Einrichtung Großbritanniens war ursprünglich als Stiftung organisiert und wurde nach ein paar Jahren vom Parlament übernommen. Derzeit ist die Neugründung von TA-Swiss

18 Auch TA-Swiss war zu Beginn an den Schweizer Wissenschaftsrat angegliedert.
19 Die Regierungsfaktionen kürzten jenen Teil des Wissenschaftsbudgets, der für das DBT vorgesehen war; die Gründung einer gemeinnützigen Stiftung war die Lösung, um das DBT, fortan ausschließlich über Drittmittel finanziert, zu erhalten.
als Stiftung (weiterhin innerhalb des Verbunds der Schweizer Akademien der Wissenschaften) in Umsetzung.

2.3 Welche Themen werden behandelt?

2.3.1 Themenfindung

Zentral für die Wirksamkeit der Unterstützung des Parlaments ist die Vorgangsweise bei der Themenfindung. Die TA-Einrichtung kann dabei mehr oder weniger unabhängig bei der Themensetzung sein:

i. Die TA-Einrichtung (bzw. dessen Board) führt regelmäßig oder kontinuierlich Themen-Monitoring-Aktivitäten durch und startet aus eigener Initiative Projekte und kommuniziert die Ergebnisse an das Parlament.

ii. Das thematische Programm (die konkreten Projekte und deren Priorisierung) wird zwischen dem Parlament und der TA-Einrichtung akkordiert und in bestimmten Rhythmen festgelegt.

Im Fall ii sind verschiedene Varianten verwirklicht, die bisweilen in Kombination auftreten:

a. Es gibt einen einzigen zuständigen Ausschuss, der die Entscheidungen über das abzuarbeitende Programm trifft.

b. Die Befassung kann durch verschiedene thematische Ausschüsse oder eine gesamte Kammer des Parlaments erfolgen.

c. Eine parlamentarische Steuerungsgruppe fungiert als Clearingstelle für Vorschläge von Abgeordneten, egal aus welchem Ausschuss.

d. Die Befassung der TA-Einrichtung erfolgt durch die Parlamentsdirektion.

e. Befassung aufgrund eines Materiegesetzes.

f. Anfragen einzelner Abgeordneter.

Typische Beispiele für Fall i sind Norwegen, Finnland, die Niederlande, die Schweiz und Großbritannien. Im norwegischen NBT entscheidet das Board unabhängig über die vom NBT-Sekretariat zu bearbeitenden Themen und zwar in einem Zweijahres-Rhythmus, wobei jedoch thematische Flexibilität bei aktuellen Themen gewahrt bleibt. Das norwegische Parlament spielt bei der Themenfindung nur indirekt eine Rolle, nämlich als wichtige Zielgruppe, d.h. dass das NBT versucht, ausschließlich politisch relevante Themen zu bearbeiten, die auch im Parlament Interesse finden werden. Das britische POST führt regelmäßig ein Monitoring durch, zu Beginn jeder Legislaturperiode werden die voraussichtlich wichtigen Themen in einer eigenen POST-Note veröffentlicht; in diesen Monitoring-Prozess fließen auch Vorschläge von ParlamentarierInnen, der wissenschaftlichen Community, der Wirtschaft und der Zivilgesellschaft ein; letztlich entscheidet das POST-Board in vierteljährlichen Sitzungen über die kommenden Studien. Auch in der Schweiz erfolgt die Themenfestlegung auf Basis kontinuierlichen Monitorings der technologischen und gesell-

Auch im Fall des US-amerikanischen GAO gibt es die Möglichkeit, sich selbst zu befassen und zwar auf Anordnung der GAO-Leitung an die TA-Abteilung selbst. Der wissenschaftliche Dienst des polnischen Parlaments kann ebenfalls auf eigene Initiative tätig werden, wenn erkannt wird, dass ein Thema für die zukünftige parlamentarische Arbeit relevant sein wird. Auch der 24-köpfige Scientific Council des französischen OPECST hat die Aufgabe, die wichtigsten Themen zu eruieren und nimmt auch entsprechende Signale aus der wissenschaftlichen Community auf, die formelle Befassung erfolgt jedoch auf anderen Wegen (s.u.).

Das französische OPECST kann auf dreierlei Weise befasst werden: einerseits von der Parlamentsdirektion, entweder auf dessen eigene Initiative, oder auf Initiative eines/r Fraktionsführers/in (Variante f) oder aufgrund eines Votums von mindestens 60 Abgeordneten bzw. 40 SenatorInnen (Variante d). Die zweite Form ist ein Votum eines thematischen Ausschusses (Variante b). Da sich OPECST nicht selbst befassen kann, ist es daher darauf angewiesen, dass andere ParlamentarierInnen (die nicht OPECST angehören) informell zu einer thematischen Initiative gebracht werden. Eine dritte, sonst nirgendwo etablierte Form ist die Befassung aufgrund gesetzlicher Vorschriften in bestimmten, genau spezifizierten Fällen (Variante e).

Auch in Schweden und Polen erfolgt die Befassung der internen TA-Einrichtungen durch die Ausschüsse. In Schweden wird die genaue Fragestellung nach dem prinzipiellen Beschluss zur Durchführung einer Studie in einem interaktiven Prozess zwischen PER und einer ad-hoc-
Gruppe, gebildet aus thematisch interessierten Abgeordneten, festgelegt. Das STOA-Panel des Europäischen Parlaments erhält ebenfalls Anre- gungen durch die verschiedenen thematischen Ausschüsse sowie durch seine eigenen Mitglieder; letztentscheidend ist aber das STOA-Panel selbst, wobei einige Kriterien berücksichtigen muss (z.B. parlamentari- sche Relevanz, strategische Bedeutung usw.). Ebenso entscheidet in Kata- lonien CAPCIT alleine darüber, welche Themen in Angriff genommen werden, wobei hier insbesondere über die Mitgliedschaft der wissen- schaftlichen Community in CAPCIT Themenvorschläge eingebracht wer- den.

Die Projektarbeit der TA-Abteilung des US-amerikanischen GAO wird dadurch ausgelöst, dass i.d.R. ein Ausschuss eine Anfrage stellt (Variante b), wobei aufgrund der eingeschränkten Ressourcen nicht jede Anfrage sofort beantwortet werden kann; bei der konkreten Themenauswahl lässt sich GAO davon leiten, dass sowohl die parlamentarische Mehrheits- als auch die Minderheitsfraktion (beider Kammern) zum Zuge kommen. Es gibt aber auch die Möglichkeit für einzelne Abgeordnete, eine Anfrage zu stellen (Variante f). Darüber hinaus kann die TA-Einheit auch selbstständig tätig werden (s.o.).

2.3.2 Technologiebezug

Während sich die meisten Projekte der parlamentarischen TA-Ein- richtungen um Technologien drehen, wie z.B. Sicherheitstechnologien, Energiefragen, Gentechnik, Nanotechnologien oder das Internet, wird Technikfolgenabschätzung nicht überall in einem engeren Sinne als aus- schließlich auf technologische Fragen fokussiert verstanden, bisweilen werden unter diesem Label bzw. in diesem Zusammenhang auch über- greifende Themen behandelt, die nur einen verhältnismäßig geringen Technologiebezug aufweisen. Insbesondere überall dort, wo Foresight ei- ne größere Rolle spielt (etwa in Dänemark und Finnland) oder wo auch Wissenschaftsfolgen-Abschätzung im allgemeinen ein explizites Thema ist (wie z.B. in den Niederlanden), kann der Technologiebezug bisweilen auch geringer ausfallen.

Beispiele für nicht primär technische Themen finden sich in der gemein- samen Projektliste der EPTA-Einrichtungen: das Management von Pandemien, Lehren aus dem Ausbruch des isländischen Vulkans oder die Beziehung zwischen Gesundheit und Umweltfaktoren (Frankreich), Ver- schlechterung der Qualität der Ackerböden, Jungendstrafen oder Alzheimer (Großbritannien), Beziehungen zu Russland, Wohlfahrtsgesellschaft oder das Bildungssystem (Finnland), Biodiversität, Wissenschaft im Dia- log oder Adipositas (Dänemark), Überalterung der Gesellschaft oder Lachszucht (Norwegen), akademische Karrierepfade, Aufstieg Asiens o-

\[\text{eptanetwork.org/index.php/database/projects}\]
der Vertrauenswürdigkeit von wissenschaftlichen Einrichtungen (Niederlande), Tourismustrends, Trends der Industriarbeit oder Biodiversität (Deutschland).

Schließlich sei noch darauf hingewiesen, dass es neben der klassischen TA auch den Bereich Health Technology Assessment (HTA) gibt, der in den meisten Ländern eigens institutionalisiert ist, wobei es freilich thematische Überschneidungen gibt.

2.3.3 Thematischer Zeithorizont

Die Art der TA-Projekte, die für das Parlament durchgeführt werden, unterscheidet sich auch vom Zeithorizont:

(1) Langfristige Perspektiven: Grand Challenges
(2) Mittelfristig
(3) Kurzfristige Entscheidungshilfe

TA-Projekte mit langem Zeithorizont

TA-Projekte haben bisweilen sehr langfristige Perspektiven zum Gegenstand (1), etwa den Klimawandel, die Biodiversität, den demographischen Wandel (die altiernde Gesellschaft), Nachhaltigkeit oder Energiezukünfte. Oftmals werden Technologien analysiert, deren Realisierung noch in weiter Ferne liegen, etwa die synthetischen Biologie, das menschliche Klonen, Geo-Engineering oder Human Enhancement.

TA-Projekte mit mittlerem Zeithorizont

Während die meisten TA-Studien hingegen eher einen mittelfristigen Zeithorizont haben und sich mit technologischen und gesellschaftlichen Trends auseinandersetzen, die sich innerhalb der nächsten drei bis fünf Jahre manifestieren (2), führen TA-Einrichtungen mitunter auch Projekte durch, deren Zeithorizont sehr kurz ist und die darauf ausgerichtet sind, aktuelle Entwicklungen zu begleiten, zu analysieren oder zu evaluieren (3). Beispiele dafür sind etwa Studien bei anstehenden Entscheidungen zur Lagerung nuklearen Abfalls, zur Standortentscheidung einer 380-KV-Stromleitung, zur Beratung bei der Ausrichtung von Forschungsprogrammen, zur Evaluierung partizipativer Verfahren oder zum Regulierungsbedarf bei e-Zigaretten.

Aus diesen unterschiedlichen Zeithorizonten ergeben sich auch verschiedene methodische Herangehensweisen. So spielen offensichtlich Methoden des Foresight bei längeren Perspektiven eine größere Rolle.

21 So auch in Österreich: Das Ludwig-Boltzmann-Institut für Health Technology Assessment (LBI-HTA), hta.lbg.ac.at, ist aus einer Arbeitsgruppe des Instituts für Technikfolgen-Abschätzung (ITA) hervorgegangen.
2.4 Arbeitsweisen

2.4.1 „TA-Sekretariat“ oder „In-House“-TA

Die TA-Einrichtung (extern oder intern, bestehend aus Abgeordneten oder nicht) hat entweder

(01) ein multidisziplinäres TA-Expertinnen-Team und führt die TA-Studien selbst durch oder

(02) sie vergibt die Studien (ganz oder teilweise) nach außen, etwa an ExpertInnen von Universitäten oder an andere TA-Einrichtungen.

Der Fall (01) ist z.B. realisiert in Norwegen, Dänemark, Großbritannien, in den Niederlanden (und in Österreich). Im Bedarfsfall werden freilich auch externe ExpertInnen in die Projekte einbezogen bzw. die Projekte überhaupt in Kooperation mit weiteren Einrichtungen durchgeführt. Ein Beispiel für letzteres ist die Kooperation im Rahmen der European TA Group (ETAG), die Studien für STOA durchführt.

Das Europäische Parlament, sowie Deutschland, die Schweiz und Katalonien entsprechen Fall (02). In Deutschland ist es so, dass pro Thema in der Regel eine oder mehrere Expertisen ausgeschrieben werden, die dann im TAB (Büro für TA beim Deutschen Bundestag) zusammen mit eigenen Recherchen zu einem TA-Bericht zusammengeführt werden. Im Schweizer Fall werden ebenfalls alle Expertisen nach außen vergeben, das TA-Swiss-Team hat jedoch eine hohe Kompetenz bei der Ausarbeitung von TA-Fragestellungen sowie Prozesskompetenz bei der Durchführung von partizipativen Veranstaltungen; die externen Auftragnehmer von TA-Swiss werden jedoch in mehreren Sitzungen von den TA-ExpertInnen unterstützt bzw. sogar gecoacht. Die Studien für das katalanische CAPCIT werden ebenfalls immer außer Haus (und ohne Zusatzfinanzierung durch das Parlament) von Universitäten und anderen Forschungseinrichtungen (egal ob sie in CAPCIT vertreten sind oder nicht) durchgeführt, ohne nennenswerte Redaktion mangels eines entsprechend ausgestatteten TA-Sekretariats. In Finnland wird ebenfalls Expertise von außen eingeholt, allerdings in viel geringerem Ausmaß. Auch das französische OPECST hat ein Budget, um externe ExpertInnen einzubeziehen, tut dies aber selten, ebenso die TA-Abteilung des US-amerikanischen GAO.

2.4.2 Zur Anwendung kommende Methoden

Die verschiedenen TA-Einrichtungen unterscheiden sich auch hinsichtlich der zum Einsatz kommenden Vorgangsweisen:

(1) Experten-TA: Literaturstudium, Delphi, Fokusgruppen etc.
(2) Partizipative Verfahren: Einbeziehung
 a. von InteressensvertreterInnen (Stakeholder)
 b. von Laien (BürgerInnen)
(3) Foresight

STOA, CAPCIT und TA-Swiss als die paradigmatischen „TA-Sekretariate“

TAB als Zwischenform

Selbst das für seine expertenorientierte Arbeitsweise bekannte deutsche TAB hat sich freilich kürzlich mit BürgerInnenbeteiligungsverfahren beschäftigt. Seit 2013 wurde das Aufgabenspektrum des TAB um partizipative Elemente erweitert. Der neue Arbeitsbereich heißt „Diskursanalyse und Dialog mit gesellschaftlichen Akteuren“. Dessen Ziel ist es, ein Dialogforum für Gesellschaft und Politik zur Diskussion und Beurteilung wissenschaftlich-technischer Entwicklungen aufzubauen („Stakeholder-Panel“).

Schließlich ergeben sich methodologische Unterschiede für Themen mit unterschiedlichen Zeithorizonten (siehe 2.3.3). Foresight-Methoden spielen offensichtlich bei längeren Perspektiven, insb. bei der Bewältigung der Grand Challenges eine besondere Rolle.

2.4.3 Personalausstattung und Budget

Die TA-Einrichtungen unterscheiden sich aufgrund ihrer Arbeitsweise und ihrer Aufträge in Hinblick auf Personalausstattung und Budget.
Tabelle 2: Größe und Budget ausgewählter TA-Einrichtungen

<table>
<thead>
<tr>
<th>Land</th>
<th>TA-Einrichtung</th>
<th>Personal</th>
<th>Basisbudget p.a. MEUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niederlande</td>
<td>Rathenau-Institut</td>
<td>4422</td>
<td>4,4</td>
</tr>
<tr>
<td>Dänemark</td>
<td>DBT</td>
<td>34</td>
<td>1,2</td>
</tr>
<tr>
<td>Deutschland</td>
<td>TAB</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Schweiz</td>
<td>TA-Swiss</td>
<td>8</td>
<td>1,7</td>
</tr>
<tr>
<td>Großbritannien</td>
<td>POST</td>
<td>11</td>
<td>0,7</td>
</tr>
<tr>
<td>Norwegen</td>
<td>NBT</td>
<td>8</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Bei einigen TA-Einrichtungen kommen zu diesem Basisbudget in unterschiedlichem Ausmaß noch Drittmittel hinzu (von Forschungsfonds, aus den Forschungsrahmenprogrammen der EU, den Regierungen etc.), wobei jenen Einrichtungen, die direkt im oder beim Parlament angesiedelt sind, diese Finanzierungsquelle in der Regel verschlossen ist.23

2.5 Umgang mit TA-Ergebnissen im Parlament

2.5.1 Schriftliche Kommunikation

Unabhängig von einer Veranstaltung, bei der die TA-Ergebnisse auch diskutiert werden (siehe Abschnitt 2.4.2 unten), werden diese jedenfalls auch schriftlich den Abgeordneten präsentiert. Folgende Textsorten haben sich international bewährt:

22Das Rathenau-Institut hat zwei Abteilungen: Science Assessment und TA; die TA-Abteilung hat rund 14 VZÄ.

23Im derzeit verhandelten Gesetzesvorschlag für die Einrichtung einer TA-Einheit im wallonischen Parlament gibt es erstmals dafür eine spezielle Bestimmung, die explizit auch die Finanzierung durch Dritte und damit auch durch die Regierungssseite erlaubt.

24Siehe die Policy-Briefs-Datenbank der EPTA: eptanetwork.org/index.php/database/policy-briefs-reports.
Längere Projektberichte werden nicht überall publiziert

• Reports/Berichte: In der Regel bilden längere Projektberichte die Basis für die o.g. Policy-Briefs. Im Falle Deutschlands sind die sogenannten TAB-Berichte bis zu 250 Seiten stark und werden fast immer als Bundestags-Drucksache, in einigen Fällen auch als Buch veröffentlicht (auch in der Schweiz); ähnlich dicke Berichte produziert auch das französische OPECST. In Katalonien hingegen werden die Berichte nicht publiziert, sondern unter den Abgeordneten verteilt; allerdings haben die AutorInnen (in den Universitäten etc.) das Recht, ihren Report selbst zu veröffentlichen. Um den Abgeordneten und ihren MitarbeiterInnen diese Berichte besser zugänglich zu machen, werden sie von den meisten TA-Einrichtungen teilweise graphisch aufwändig gestaltet (etwa mit Graphiken und Marginalien).

• Executive Summaries, also (in der Regel mehrseitige) Kurzfassungen der wesentlichsten Ergebnisse, einschließlich Handlungsoptionen bzw. Empfehlungen (s.u.), sind ein typischer Bestandteil der Berichte, die oftmals auch separat veröffentlicht (und gegebenenfalls auch übersetzt) werden, so etwa in der Schweiz (wo es bislang keine eigene Policy-Brief-Reihe gibt).

• Präsentationsunterlagen: Anlässlich einer mündlichen Vorstellung der TA-Ergebnisse im Parlament (s.u. 2.4.2) werden i.d.R. als Handout auch die Präsentationsunterlagen (z.B. Powerpoint-Folien) verteilt.

• Wissenschaftliche Artikel werden hingegen in aller Regel als nichtprobate Textsorte für die Kommunikation zwischen Forschung und Politik gesehen. Dennoch gibt es einige TA-Einrichtungen, die stärker in der wissenschaftlichen Community verankert sind, gegebenenfalls auch nach wissenschaftlichen Kriterien evaluiert werden, sodass wissenschaftliche Publikationen teilweise einen Großteil der Publikationen ausmachen (z.B. beim Betreiber des deutschen TAB, dem ITAS in Karlsruhe oder beim österreichischen ITA).

Abgesehen vom schriftlichen Format unterscheiden sich die von den TA-Einrichtungen an die Parlamente kommunizierten Studienergebnisse auch inhaltlich:

• Empfehlungen sind die Ausnahme

Empfehlungen: Bisweilen werden von den TA-Einrichtungen nach Abwägung der verfügbaren Informationen und Auflistung der Optio-

25Selbst das britische POST produziert bisweilen, aber bei weitem nicht immer, längere Berichte, nur i.d.R. die sog. „Notes“, also kurze Policy-Briefs.

2.5.2 Mündliche Vorstellung und Diskussion

In den verschiedenen Parlamenten haben sich unterschiedliche Formen der diskursiven Verarbeitung von Beratungsinput, der von der TA erarbeitet wurde, etabliert:

- **Hearing**: Zum Thema der TA-Studie wird ein formelles Hearing im Parlament organisiert, bei der nicht nur die AutorInnen der TA-Studie, sondern auch weitere ExpertInnen und/oder Stakeholder geladen sind, die jeweils aus ihrer Perspektive einen kurzen mündlichen (ev. auch gleichzeitig schriftlichen) Input für die Abgeordneten leisten, der anschließend unter den Abgeordneten diskutiert wird. Dies findet etwa im niederländischen und im dänischen Parlament statt. In manchen Fällen wird bei solchen Veranstaltungen mit dafür speziell entworfenen Regeln für die Art der Interventionen der ExpertInnen und der Abgeordneten experimentiert, etwa eine strikte zweiminütige Redezeitbegrenzung, damit möglichst viele zu Wort kommen und die Chance auf eine lebendige Debatte erhöht wird.

- **Bilaterale Termine mit einzelnen Abgeordneten (oder Fraktionen)**: Die TA-ExpertInnen bieten den Abgeordneten Gespräche (ev. auch nur am Telefon) an, um die TA-Ergebnisse zu erläutern. Während solche Termine in allen Ländern (zusätzlich) üblich sind, ist es in der Schweiz die übliche Standardvorgangsweise.
3 Foresight: Von der Exekutive zur Legislative

Mit Foresight-Methoden und mit der Expertise über die unterschiedlichen Zukunftserwartungen und Entwicklungsoptionen von technowissenschaftlichen Trends wird erwartet, die langfristige legislative Handlungsfähigkeit sowohl der einzelnen ParlamentarierInnen als auch die des Parlaments als Institution in diesem Bereich zu stärken.

In partizipativen Foresight-Prozessen wird Wissen über Handlungsoptionen generiert, die aus unterschiedlichen Perspektiven zu möglichen Zukünften führen können. Zugleich wird dabei sichtbar, welches Wissen zur Entwicklung geeigneter Maßnahmen noch fehlt. Die Ebenen, auf denen regulatives Wissen zur Gestaltung generiert werden soll, können dabei von konkreten Technologien, aber auch von Technologiefeldern, von so-

genannten gesellschaftlichen Herausforderungen (Klimawandel, Demografischer Wandel etc.) oder vom Forschungsbedarf zu deren Bewältigung ausgehen.

3.1 Die Entwicklung von Foresight international und in Österreich

3.1.1 Foresight in Europa

Foresight in seiner europäischen Tradition verbindet analytisch prospektiv orientierte mit partizipativ gestaltungsorientierten Methoden der Gewinnung von Zukunftswissen. Foresight beruht auf der Grundannahme, dass Zukunft offen ist und in diesem Sinne prinzipiell gestaltbar:

„Foresight can be defined as a systematic, participatory, future intelligence gathering and medium-to-long-term vision-building process aimed at present-day decisions and mobilising joint actions.“

Wissenschaft und Technik bilden vielfach den Ausgangspunkt zur Antizipation zukünftiger Veränderungen auf Ebene von Staaten, Regionen, Branchen, Technologien, aber auch auf der Ebene von Städten oder Kontinenten. In Foresight-Prozessen wird wissenschaftlich-technische Expertise mit partizipativen Methoden verbunden. Im Mittelpunkt stehen unterschiedliche Zukunftsoptionen, die die unterschiedlichen Anforderungen der Beteiligten aufgreifen und zusammenführen.

Um einen Überblick über nationale, europäische und internationale Foresight-Aktivitäten zu gewinnen und Foresight-Expertise stärker kontinuierlich zu nutzen, wurde 2005 das European Foresight Monitoring Network (EFMN) und diesem nachfolgend 2009 die European Foresight Platform (EFP) finanziert, beide ebenfalls unter Beteiligung des AIT. Im Falle von EFP stellt das AIT außerdem die Koordinatorin. Mit der Neuausrichtung der EU-Forschungs- und Innovationspolitik auf die Bewältigung von großen gesellschaftlichen Herausforderungen („Grand Challenges“) wurde EFP auch in verstärktem Maße in Anspruch genommen, um vorausschauende Expertise zu diesen Zukunftsthemen bereitzustellen. Dabei konnte auf die umfangreiche EFP-Foresight-Datenbank zurückgegriffen werden, die Informationen zu mehr als 2500 Foresight-Projekten weltweit umfasst.\(^{33}\)

Auf europäischer Ebene wurden zudem die unterschiedlichen Ansätze und Methoden, die TA und Foresight verbinden, in den letzten Jahren im Rahmen von Konferenzen zu Future-oriented Technology Analysis (FTA)\(^{34}\) diskutiert. In der europäischen Politik wird der Begriff der „forward-looking activities“ für Studien und Prozesse verwendet, wobei zu meist Methoden des „foresight and forecast but also technology assessment and horizon scanning“\(^{35}\) verbunden werden.

Parallel zu diesen institutionellen Entwicklungen hat die EU-Kommission in den vergangenen Jahren umfangreiche Foresight-Projekt und Prozesse

\(^{33}\) www.foresight-platform.eu/briefs-resources/.

Analyse internationaler Erfahrungen in der FTI-Politikberatung

gefördert. Das AIT Innovation Systems Department hat in dieser Zeit rund dreißig Projekte für die EU-Kommission abgewickelt, und dabei ein breites thematisches Spektrum abgedeckt.

Derzeit erfährt Foresight auf europäischer Ebene einen neuen Impuls durch die Etablierung des European Forum on Forward-Looking Activities (EFFLA)36, das u.a. die Aufgabe hatte, Vorschläge für die systematische Integration von Foresight in die strategische Politikentwicklung der EU zu entwickeln. Inzwischen wurden diese Aufgaben von den Nachfolgeregemen RISE (Research, Innovation and Science Policy Experts High-Levvel Group) und SFRI (Strategic Foresight for Research and Innovation in Horizon 2020) übernommen. Das AIT ist in diesen Beratungsgremien seit 2011 vertreten.

3.1.2 Foresight in Österreich

Während also auf europäischer Ebene Foresight nach wie vor auf hohes Interesse stößt, spielt es in Österreich noch eine Nebenrolle. Zwar wurden in den vergangenen Jahren eine Reihe kleinerer Foresight-Projekte auf sektoral-thematischer Ebene oder für einzelne Städte durchgeführt; eine umfassendere Strategie, um politische Entscheidungsprozesse in vorrausschauender Form zu unterstützen, fehlt jedoch. Bekanntheit erlangten neben dem (vom ITA durchgeführten) Österreich-Delphi in der zweiten Hälfte der neunziger Jahre vor allem der Prozess „Wien denkt Zukunft“ zur Innovationspolitik der Stadt Wien, und die Bemühungen, längerfristige Transformationsprozesse in Bereichen wie nachhaltige Produktion, Infrastrukturentwicklung und Energieversorgung zu antizipieren. Einzelne österreichische Unternehmen greifen auch zunehmend auf Methoden der Vorausschau zurück, um ihre strategischen Überlegungen anzuleiten.

3.2 Charakteristika von Foresight

Foresight-Aktivitäten unterscheiden sich hinsichtlich der mit ihnen verfolgten Ziele, der gewünschten Form der Unterstützung, in Bezug auf die gewünschten Wissensbestände, die Art der Organisation und der Integration von Akteuren.

Zentral ist dabei, dass sich die Antizipation der Zukunft heute mit Innovationsprozessen und Innovationssystemen auseinandersetzt und somit genau die Rahmenbedingungen analysiert, die gesamtgesellschaftlich einen hohen Einfluss auf zukünftige Anwendungen und Innovationspfade haben. Das systemische Verständnis von Innovationsprozessen nutzt Prognosen und traditionelle Technikfolgenabschätzung und bindet auf der

36ec.europa.eu/research/era/effla_en.htm.
Grundlage dieser Wissensbestände Stakeholder in partizipative Prozesse ein, um vielversprechende Innovationspfade zu identifizieren.37

Die Erfahrungen aus Foresight lassen sich in fünf Dimensionen darstellen: Die Zieldimension, die Dimension der Zukunftsperspektive, die Koordination des Prozesses, die Einbindung von Stakeholdern und die gewünschten Ergebnisse.

3.2.1 Ziele: Prioritätensetzung oder Ermittlung gesellschaftlicher Bedarfe

Foresight wird in der Identifikation von vorrangigen Bereichen und Themen der FTI-Politik eingesetzt, um technologische Entwicklungen auf nationalstaatlicher Ebene zu erheben, die Forschungsförderung in prioritären Bereichen zu spezifizieren und die Entwicklung in den prioritären Bereichen zu stimulieren. Ziel von Foresight ist damit die Unterstützung der FTI-Politik durch eine Verbesserung der Zusammenarbeit zwischen den verschiedenen Akteuren und damit auch der Unterstützung der Umsetzung.

Aufgrund des Querschnittcharakters von FTI-Politik dienen Foresight-Prozesse zugleich breiteren gesellschaftlichen Zielen: Der gesellschaftlichen und wirtschaftlichen Entwicklung generell, insbesondere der Förderung von Wirtschaftswachstum und die nationalstaatlicher Wettbewerbsfähigkeit unter Berücksichtigung von sozialen, ökologischen, kulturellen und wirtschaftlichen Faktoren sowie der Identifikation von Lösungen hinblicklich kontroverser Technologien.38

3.2.2 Zukunftsperspektiven: explorativ oder normativ

Die Antizipation von Zukunft in Foresight-Prozessen kann explorativ erfolgen oder auch eine normative Orientierung haben. Explorativ bedeutet in diesem Fall, dass unterschiedliche Zukünfte z.B. über Szenarien entwickelt werden, in denen sichtbar wird, welche unterschiedlichen Entwicklungen denkbar und plausibel sind, von welchen Faktoren diese unterschiedlichen Entwicklung abhängen und welche möglichen Ereignisse in der Zukunft (z.B. auch bestimmte Gesetze, Förderentscheidungen und Regulierungsregime) für die eine oder andere Zukunft bestimmend sind.

In solchen Prozessen werden verschiedene Zukunftspfade sichtbar, aber auch die erwarteten Konsequenzen von bestimmten Maßnahmen.

Die Entwicklung von normativ gewünschten Zukünften z.B. in Form von Visionen kann dazu dienen, konsensuale oder zumindest breit geteilte Zukunftsbilder zu entwickeln. Diese dienen dann als Grundlage, um Prioritäten zu bestimmen und festzustellen, welche weiteren Akteure und Stakeholder eingebunden werden können, um Ziele zu erreichen, und welche Maßnahmen notwendig sind, um sich eben dieser Vision anzunähern.

Beide Formen können in unterschiedlicher Weise auch gekoppelt sein, indem beispielsweise erst eine breite Vielzahl an unterschiedlichen Szenarien entwickelt wird und aus diesen heraus eine Variante gewählt wird, die zu einer Vision im Sinne eines Good-practice-Szenario weiterentwickelt wird.

Auch kann ein international vorgegebenes Ziel, z.B. die Halbierung von CO₂-Emissionen, der normative Ausgangspunkt sein, um verschiedene Szenarien auf nationalstaatlicher oder regionaler Ebene zu entwickeln, um eben dieses Ziel umzusetzen.

3.2.3 Partizipation: ExpertInnen-basiert oder Stakeholder/BürgerInnen-Beteiligung

Foresight-Prozesse unterscheiden sich auch im Hinblick auf diejenigen, die daran beteiligt sind. Partizipation kann breit und umfassend sein und auch BürgerInnen beteiligen; Foresight-Prozesse können aber auch primär die Expertise unterschiedlicher Stakeholder, Disziplinen und Organisationen einbinden.

3.2.4 Koordination: intern oder extern

Foresight-Prozesse können entweder organisationsextern koordiniert werden oder aber durch eine beauftragte Organisation. Formen der kontinuierlichen Unterstützung von FTI-Politik wie beispielsweise durch Horizon Scanning in Großbritannien oder den Niederlanden haben eine Koordina-

Koppelung von explorativen und normativen Zukünften

Ziel bestimmt den TeilnehmerInnen-Kreis
tion, die direkt mit einem oder auch mehreren Ministerien verbunden sind. Auf der anderen Seite sind Foresight-Prozesse oft über öffentliche Aufträge vergeben und werden von dem jeweiligen Auftragnehmer koordiniert.

Oft lässt sich auch eine Mischform bei Public Foresight feststellen, bei der Forschungseinrichtungen, die über die entsprechende Expertise verfügen, in Folge Foresight-Prozesse durchführen, zum Teil in sich verändernden Konsortien.

Die Koordination von Foresight-Prozessen bedarf klarer Regeln und Rollenverteilung, um das Wissen, die Positionen und die Ideen der relevanten Akteure einfließen zu lassen und eben diesen Akteuren auch gerecht zu werden. Da die Teilnehmenden aus heterogenen Organisationskulturen kommen, (Wissenschaft, Wirtschaft, Industrie, öffentlichen Einrichtungen, NGOs, Politik etc.) braucht es Verfahren und Methoden, um Wissen, Positionen und Ideen in kooperativer Form zu erheben und zu verbinden. Transparente und klare Regeln und Rollen können dabei die Kohärenz des Prozesses und die Legitimität des Prozesses gewährleisten.

3.2.5 Ergebnisse: Erweiterte Wissensbasis oder direkte Entscheidungsunterstützung

Ergebnisse aus Foresight-Prozessen bestehen sowohl aus einer erweiterten Wissensbasis zur Unterstützung von Entscheidungen, haben aber auch darüber hinaus eine Wirkung, da sie den beteiligten Akteuren einen Überblick über die Strategien und Rationalitäten bieten. Sie können aber auch primär darauf ausgerichtet sein, direkt Optionen zur Entscheidungsunterstützung zu liefern.

die auf die großen Herausforderungen (Grand Challenges) gerichtet sind, generieren primär eine breite Wissensbasis, die alternative Innovationspfade sichtbar macht.

Foresight-Prozesse, die darauf ausgerichtet sind, direkt Entscheidungen zu unterstützen, sind insbesondere im Bereich des engeren Technology Foresight zu finden. In diesen Foresight-Prozessen, die vielfach von Ministerien in Auftrag gegeben werden, geht es um Förderentscheidungen und darum, strategische Partnerschaften (z.B. Wissenschaft/Wirtschaft) oder auch gemeinsame Aktionspläne zu entwickeln.

3.3 Foresight an Parlamenten

Um Parlamenten und Ministerien Expertise für eine zukunftsorientierte Innovationspolitik zur Verfügung zu stellen, werden zunehmend Ansätze aus TA und Foresight verbunden. TA und Foresight haben sowohl methodische Überschneidungen als auch komplementäre Ansätze. Dabei lassen sich grob drei Varianten feststellen:

1. TA-Einrichtungen nutzen Foresight-Methoden und beziehen explizit einen breiteren Zukunftshorizont ein (Beispiel: DBT, Finish Committee for the Future).
2. Einrichtungen werden von TA-Institutionen und Foresight-Institutionen getragen (Beispiel: TAB).
3. Parlamentarische Beratungs-Institutionen entwickeln sich in Richtung Foresight (Beispiel: STOA).

In einigen europäischen Ländern wurden die komplementären Kompetenzen aus TA und Foresight auch mittelfristig zusammengeführt. In Deutschland wurde etwa das Büro für Technikfolgenabschätzung beim Deutschen Bundestag (TAB) zwischen 2002 und 2012 vom Institut für Technikfolgenabschätzung und Systemanalyse (ITAS) getragen in Kooperation mit dem Fraunhofer-Institut für System- und Innovationsforschung (ISI), das u.a. die Foresight-Prozesse des BMBF durchführt. Seit 2013 wird das TAB neben dem ITAS vom Institut für Zukunftsstudien und Technologiebewertung gGmbH (IZT) und der VDI/VDE Innovation + Technik GmbH getragen, welche speziell Horizon-Scanning-Aktivitäten in die Arbeit des TAB einbringt.\footnote{www.tab-beim-bundestag.de/de/ueber-uns/geschichte.html.}

Das dänische DBT führt regelmäßig Foresight-Studien durch und beschäftigt sich auch intensiv auf methodischer Ebene damit. Vom DBT und seinen Partnern wurden beispielsweise im EU-Projekt CIVISTI participative Methoden eingesetzt und weiterentwickelt, bei der BürgerInnen und ExpertInnen zusammenwirken, um Visionen zu Fragen von Wissenschaft, Technologie und Innovation zu entwickeln.

Im Europäischen Parlament wurde im September 2014 STOA umbenannt und heißt nun Scientific Foresight (STOA) Unit. Der Dienst umfasst das STOA-Sekretariat und den Scientific Foresight Service. Der Zeithorizont, den der Foresight Service analysiert bearbeitet, integriert eine Langfristperspektive von 30-50 Jahren. Es ist vorgesehen, dass zu bestimmten Themen nach einem spezifischen Horizon-Scanning auf Basis von Szenarien gearbeitet werden wird, was letztlich in einen legislative backcas-

43 Z.B. das Finland Futures Research Centre der University of Turku.
44 Siehe z.B. doingforesight.org, eine Plattform mit zahlreichen Foresight-Metho-
den, die auch von der Technikfolgenabschätzung eingesetzt werden.
45 civisti.org; das ITA war an diesem und Folgeprojekten beteiligt; siehe auch ITA- Dossier Nr. 8 epub.oeaw.ac.at/ita/ita-dossiers/ita-dossier008.pdf.
ting” genannten Prozess münden soll, der heutige Handlungsoptionen
des europäischen Gesetzgebers ableitet.46

STOA wird Foresight insbesondere zur Unterstützung des Parlaments in
der Agenda-Setting-Phase des Politikzyklus nutzen. Die Foresight-
Studien und Prozesse sind darauf ausgerichtet, die Abgeordneten zu un-
terstützen, um

- eine breite Palette von möglichen langfristigen Ergebnissen von tech-
nisch-wissenschaftlichen Innovationen berücksichtigen zu können,
- Verständnis der Bedeutung gegenwärtiger Maßnahmen zur Errei-
chung wünschenswerter Zukünfte zu erweitern,
- Entscheidungen abzustimmen, mit denen wünschenswerte, langfris-
tige Ergebnisse beim Agenda-Setting und der Antizipation des Ge-
setzgebungsbündels erreicht werden können.47

Für das österreichische Parlament wurden bis dato noch keine Foresight-
Prozesse durchgeführt. Der im Rahmen des Pilotprojekts „Industrie 4.0”
im Juni 2015 durchgeführte Szenario-Workshop gab jedoch einen ersten
Einblick in die Arbeitsweise mit einer typischen Foresight-Methode.

46 Siehe die programmatik STOA-Publikation dazu: Van Woensel/Vrščaj
47 Ibid.
4 Zwischenfazit

Die Unterschiede zwischen den verschiedenen Institutionalisierungsvarianten, Arbeitsweisen usw. der TA-Einrichtungen sind groß und nicht zufällig:
- Parlamente unterscheiden sich in ihrer Arbeitsweise stark.
- Die politischen Traditionen sind sehr unterschiedlich.
- Seit der Etablierung von TA ist unterschiedlich viel Zeit vergangen.

All das wirkt sich auf die Erfahrungen mit TA und die Verfeinerung der Prozeduren im Laufe der Zeit aus.

Foresight wird seit langem genutzt, um die Arbeit der Regierungen zu unterstützen. Ausgehend vom Technology Foresight zur Unterstützung von Forschungsministerien und innovationsorientieren Regierungsprogrammen wird Foresight heute breiter zur Unterstützung zukunftsorientierter, antizipierender Politiken eingesetzt.

Foresight kann mit seinem Methodenset, dem Zeithorizont von in der Regel mehr als 15 Jahren und der Orientierung an ressortübergreifenden Problemlösungen genutzt werden, um gesamtgesellschaftliche Zukunftsoptionen sichtbar zu machen.

Einige Parlamente nutzen bereits regelmäßig Foresight, um antizipativ und zukunftsorientiert Entscheidungen in einem breiten Zeithorizont vorzunehmen.

Insgesamt geht es darum, die Erfahrungen aus der TA-Institutionalisierung zu nutzen und den breiten Zukunftshorizont der gestaltungsorientierten und formativen Foresight-Tradition zu integrieren.

Die Zwischenergebnisse dieses Arbeitspakets werden zusammen mit den Ergebnissen aus den anderen Arbeitspaketen in den Endbericht integriert.
Literatur

Burgelman, J.-C., Chioupková, J. und Wobbe, W., 2014, Foresight in support of European research and innovation policies: The European Commission is preparing the funding of grand societal challenges, European Journal of Futures Research 2(1), 1-7 < http://dx.doi.org/10.1007/s40309-014-0055-4 >; auch veröffentlicht in: Eur J Futures Res.

Grünewald, R. (Hg.), 2012 Parliamentary Technology Assessment in Europe, Berlin: TAB.

Analyse internationaler Erfahrungen in der FTI-Politikberatung

Torgersen, H. und Hampel, J., 2002, The Gate-Resonance Model The Interface of Policy, Media and the Public in Technology Conflicts. ITA manuscript Nr. 01-03, Vienna: Institute of Technology Assessment <http://epub.oeaw.ac.at/ita/ita-manuscript/ita_01_03.pdf>.

Screening potenzieller FTI-Themen mit Relevanz für das österreichische Parlament

Zwischenbericht zu Arbeitspaket 4 des Projekts F&TA
Parlament

Studie zum Projekt F&TA
im Auftrag der Parlamentsdirektion des Österreichischen Parlaments

Projektleitung der Studie: Michael Nentwich
Petra Schaper-Rinkel

Autorinnen: Petra Schaper-Rinkel
Dana Waterbacher

gemeinsam mit: P. Biegelbauer, J. Fröhlich, N. Gudowsky,
M. Nentwich, W. Peissl

Koordination des Projektes F&TA:

Wien, November 2015
Inhalt

Zusammenfassung .. 5

1 Einleitung ... 7

2 Relevante Zukunftsthemen aus der Sicht österreichischer Akteure .. 9
 2.1 Aktuell relevante Schwerpunkte – Zukunftsthemen ... 9
 2.1.1 Zukunftstechnologien ... 9
 2.1.2 Gesellschaftliche Herausforderungen – Grand Challenges ... 11
 2.1.3 Innovationssystem – Ermöglichung von Wandel .. 12
 2.1.4 Parlamentarische Herausforderungen ... 13
 2.2 Voraussetzungen und Kriterien für Zukunftsthemen .. 14
 2.3 Anforderungen an parlamentsrelevante Zukunftsthemen: generisch und spezifisch 15

3 Identifikation von Themen: Internationale Trends und Erfahrungen .. 17
 3.1 Monitoring von Zukunft: Horizon-Scanning ... 17
 3.2 Auswahl und Spezifikation von F&TA-Themen – methodisch .. 18
 3.2.1 Auswahl von Foresight-Themen .. 18
 3.2.2 Kombination von Thema, Perspektive und Methoden .. 20

4 Potenzielle Themen mit Relevanz für das österreichische Parlament ... 23
 4.1 Foresight und TA als Quellen für relevante, parlamentarische Themen 23
 4.2 Themenschwerpunkte von Foresight und TA ... 24
 4.2.1 Mobilität .. 25
 4.2.2 Gesundheit .. 27
 4.2.3 Sicherheit ... 28
 4.2.4 Umwelt und Klimawandel ... 30
 4.2.5 Energie ... 31
 4.2.6 Konverzierende Technologien ... 32
 4.2.7 Wirtschaftliche Entwicklung, Produktion und Märkte .. 33
 4.2.8 Governance und Öffentlichkeit .. 35
 4.2.9 Bildung und Lernprozesse ... 35
 4.2.10 Forschung und Wissenschaft ... 36
 4.2.11 Innovationssystem – Neue Formen von Innovation .. 37
 4.3 Foresight und TA-Themen am Parlament: Das Beispiel Finnland ... 37
 4.4 Foresight und TA-Themen aktuell: Beispiel Europäisches Parlament 38

5 Schlussfolgerungen ... 41
 5.1 Themenvorschläge aus dem Vergleich relevanter Themen ... 41
 5.2 Monitoring von Zukunftsthemen .. 45

Literatur ... 47
Abbildungsverzeichnis

Abbildung 1: Zukunftsthemen .. 9
Abbildung 2: Zur Einordnung von Zukunftsthemen ... 16
Abbildung 3: Themenschwerpunkte von F&TA ... 25
Abbildung 4: Themenfeld Mobilität ... 26
Abbildung 5: Themenfeld Gesundheit .. 28
Abbildung 6: Themenfeld Sicherheit .. 29
Abbildung 7: Themenfeld Umwelt und Klimawandel ... 31
Abbildung 8: Themenfeld Energie ... 32
Abbildung 9: Verortung aktueller Themen ... 45

Tabellenverzeichnis

Tabelle 1: Fragen für eine vorausschauende Rechtsetzung (Europäisches Parlament): 39
Tabelle 2: Aktuelle Themen mit hoher FTI-politischer Relevanz .. 41
Zusammenfassung

1 Einleitung

Um ein Themen-Screening durchzuführen und Themen vorzuschlagen, wurde folgendermaßen vorgegangen:

- Die relevanten Themen aus der Sicht österreichischer Akteure wurden in Interviews erhoben. Für das Screening der parlamentsrelevanten Zukunftsthemen wurden dabei die FTI-politischen Schwerpunkte der parlamentarischen Arbeit sowie die Zukunftsthemen, die in den Interviews als wichtig erachtet werden, analysiert (Abschnitt 2.1). Die Interviews wurden daraufhin ausgewertet und analysiert, welche Kriterien und Ansprüche aus der Perspektive des Parlaments an ein Screening zu stellen sind (Abschnitt 2.2).
- Internationale Erfahrungen zur Identifikation von Themen wurden analysiert und auf der Grundlage der österreichischen Rahmenbedingungen bewertet (Kapitel 3).

\(^1\) Grand Challenges können unterschiedlich gefasst werden. Aktuell werden als Grand Challenges auf europäischer Ebene insbesondere die im Forschungsrahmenprogramm Horizon 2020 adressierten Herausforderungen verstanden: Gesundheit, demografischer Wandel und Wohlergehen; Ernährungssicherheit; nachhaltige Land- und Forstwirtschaft, Meeres- und Süßwasser-Forschung und die Biowirtschaft; sichere, saubere und effiziente Energie; intelligenter, umweltfreundlicher und integrierter Verkehr; Klimaschutz, Umwelt, Ressourceneffizienz und Rohstoffe; Integrative, innovative und reflexive Gesellschaften; sichere Gesellschaften.

Die Arbeiten wurden parallel durchgeführt, so dass im Projektverlauf bereits potentielle Themen herausgearbeitet und zur Diskussion gestellt werden konnten. Ein erstes Screening führte zu einer Auswahl an Themen, die dem Beirat vorgeschlagen wurden und aus dem die thematische Auswahl des Pilotprojektes (Industrie 4.0) resultierte.

Ziel ist es, aktuell relevante Themen für die nächsten Jahre zu identifizieren. Darüber hinaus schlägt dieser Bericht ein Monitoring-Vorgehen vor, um in Zukunft langfristig und kontinuierlich Themen zu identifizieren, die durch die Bereitstellung von Expertise aus F&TA unterstützt werden können.

² foresight-platform.eu.
³ eptanetwork.org.
2 Relevante Zukunftsthemen aus der Sicht österreichischer Akteure

2.1 Aktuell relevante Schwerpunkte – Zukunftsthemen

Die in den Interviews genannten wichtigen Themen lassen sich vier Themenbereichen zuordnen. Erstens sind es Zukunftstechnologien bzw. gerade in der Entwicklung und öffentlichen Diskussion befindliche Technologien; zweitens sind es Themen aus dem Bereich der großen gesellschaftlichen Herausforderungen (Grand Challenges); zudem Themen, die das Innovationssystem als solches betreffen und schließlich Herausforderungen für die parlamentarische Arbeit durch aktuelle technologische Veränderungen (siehe dazu bereits allgemein im Zwischenbericht zu AP1 und AP2, Kapitel 5, im Anhang B).

2.1.1 Zukunftstechnologien

In Bezug auf Technologien, für die ein vorausschauendes Handeln des Parlaments wesentlich erscheinen, wurden in den Interviews mit den ParlamentarierInnen drei übergreifende Schwerpunkte identifiziert: Die Digitalisierung ist weiterhin zentral für die parlamentarische Arbeit, wobei die Zukunftsthemen sowohl in der Bearbeitung generischer Fragestellungen wie Datenschutz bestehen, als auch in Bereichsspezifischen Fragen der Digitalisierung von Lebensbereichen wie der Pflege, die bisher als weniger technologisiert gelten. Ein weiterer Bereich der Zukunftstechnologien ist Industrie 4.0, das bereits im Pilotprojekt im Überblick bearbeitet wurde. Politisch relevant sind schließlich jene Zukunftstechnologien, die kontrovers diskutiert werden.

Die Digitalisierung ist zudem für die parlamentarische Arbeit selbst ein Zukunftsthema, da sich die Arbeit im Parlament durch Digitalisierung verändert (siehe 2.1.4, Seite 13): Zu den Veränderungen gehören elektronische Abstimmungsanlagen, Videowalls, Social Media, wie Twitter, Facebook etc. sowie Datenverarbeitung etwa in Zusammenhang mit Untersuchungsausschüssen.

Das Thema Industrie 4.0 wurde in den Interviews als wichtig genannt: So zum Beispiel das Internet of Things, Baukastensysteme der Produktion, 3D Printer. Hinsichtlich der breiten politischen Implikationen wurden die Möglichkeit der Re-Industrialisierung angesprochen wie auch veränderte Wertschöpfungsketten (z. B. durch 3D Printer), Beschäftigung in der Zukunft sowie die zukünftig möglicherweise steigende Flexibilität von Arbeitsorten und -zeiten. Die Potentiale und die umfassenden Auswirkungen würden kaum erkannt werden.

2.1.2 Gesellschaftliche Herausforderungen – Grand Challenges

Die Grand Challenges sind für die interviewten ParlamentarierInnen in doppelter Weise relevant, da sie zum einen zentrale Themenbereiche von FTI beinhalten, aber auch, weil es sich um Fragestellungen handelt, die auf das Parlament zugeschnitten sind. Es handelt sich um gesamtgesellschaftlich entscheidende Fragen, weshalb es notwendig ist, schon früh und vorausschauend Antworten und Konzepte zu finden, die ressortübergreifend sind.

Auf der gesamtgesellschaftlichen Ebene wurde in den Interviews die Dekarbonisierung thematisiert, was die Transformation nicht nur der Energiewirtschaft, sondern der gesamten Wirtschaft hin zu einer Abkehr von der Nutzung kohlenstoffhaltiger Energieträger bedeutet. Das Thema Energie wurde als ein breites Thema für wichtig erachtet und beinhaltet dabei umfassende Fragen wie etwa den Energiebedarf der Zukunft bis 2030 oder 2050.

Energiewende als aktuelles Zukunftsthema würde dabei übergreifende politische Strategien wie die Europäische Energieunion, die Infrastrukturen zur Energiebereitstellung und die Energiemärkte sowie die Schnittstellen energiepolitischer Themen zu Stadtentwicklung (Smart City) und Mobilität umfassen.

In den Interviews zeigte sich, dass Themen im Energiebereich eine hohe Kontinuität aufweisen: So zum Beispiel die Frage der Förderung von thermischer Sanierung/Dämmen aber auch die weitere Entwicklung erneuerbarer Energieformen wie Solarthermie und Windkraft sowie deren gesetzliche Rahmenbedingungen (Ökostromgesetz).

Aktuelle Themen sind zudem spezielle Technologien im Bereich Speicherung (Akkus) und neue Produktionstechnologien und damit die Frage, wie bahnbrechende Innovationen bei kohlenstoffarmen Technologien durch koordinierte Forschung unterstützt werden können.

Ein weiteres, in unterschiedlichen Dimensionen genanntes Zukunftsthema bleibt Mobilität. Auch in Fragen der Mobilität zeigt sich das Ineinandergreifen von politikfeld- und technologieübergreifenden Fragestellungen. Dazu gehören der Infrastrukturausbau, die Digitalisierung, Elektromobilität, zukünftige Verkehrssystems sowie die Steuerungsmaßnahmen für Treibstoffe und Transport.

Zu den Themen, die immer wieder erwähnt wurden, obwohl sie nicht direkt FTI-Themen sind, zählen das Steuersystem der Zukunft, die Frage nach einer ökonomisch und ökologisch zukunftsfähigen Wirtschaft, nachhaltige Sozialsysteme und die zukünftigen Möglichkeiten staatlichen Handelns. Auch Lebensmittelsicherheit und in diesem Zusammenhang das Transatlantische Freihandelsabkommen TTIP (Transatlantic Trade and Investment Partnership) wurden als mögliche Fragestellungen für wissenschaftliche Informationsaufbereitung genannt.

2.1.3 Innovationssystem – Ermöglichung von Wandel

Ein strukturelles und generisches Gegenwartsthema, das zugleich als wichtiges Zukunftsthema genannt wird, ist die Gestaltung des Innovationssystems und des damit eng gekoppelten Bildungssystems. Für Bildung, Ausbildung und Innovation stellt sich die Frage, wie diese in der Zukunft aussehen soll, um dem technischen Wandel gerecht zu werden und Menschen zu befähigen, diesen gestalten zu können.

Im Hinblick auf das Bildungssystem und dessen Verbindung mit dem Innovationssystem wurden in Interviews Fragen thematisiert, die eine hohe Ambivalenz zeigen. Einerseits wird davon ausgegangen, dass die Schnelligkeit des naturwissenschaftlichen und technischen Fortschritts unterschätzt würde und das Bildungssystem diese Dimension von Wandel nicht entsprechend aufnehmen würde. Andererseits wird das Bildungssystem kritisch in einem Anpassungsdruck an industrielle Bedarfe gesehen, und die Frage gestellt, wie das Schulsystem auf eigenständiges kritisches Denken vorbereiten kann und somit Grundlage für die Eigenständigkeit im beschleunigten technischen Wandel sein kann.

Für eine systematische Abschätzung zukünftiger Innovationen wurde ein Themen-Monitoring-System angeregt.
Ein generisches Thema ist die Globalisierung und ihre Bedeutung für die parlamentarische Arbeit. Ein Zukunftsthema wie der Klimawandel hat einerseits eine starke regionale Bedeutung, wenn es um die Zukunft der Schigebiete geht. Das Thema hat aber auch eine globale Dimension wie die, dass „global die Ärmsten zahlen“, sich also die Konsequenzen des Ressourcenverbrauchs primär an anderen Orten zeigen als dort, wo der Klimawandel verursacht wird. Auch Verteilungsprobleme wurden in ihrer globalen Dimension thematisiert.

2.1.4 Parlamentarische Herausforderungen

Die Frage, welchen Beiträge FTI direkt zur Lebensqualität leisten kann, verweist auf aktuelle internationale FTI-politische Debatten, die auch in den Interviews thematisiert wurden. Über die Bearbeitung der Grand Challenges durch FTI verändert sich der Anspruch an FTI, was in den Interviews deutlich wurde, da nun Technologieentwicklung mit direkten Ansprüchen an Lebensqualität verbunden ist und nicht mehr nur über die Steigerung der Wirtschaftsleistung. Damit stehen Fragen der Partizipation auf der Tagesordnung, um die Ansprüche an FTI zu konkretisieren.

Die steigende Komplexität in der Regulierung führt zu einer Vielzahl an gesetzlichen Anforderungen, die eigentlich eine hohe Spezialisierung erfordern, die ParlamentarierInnen aufgrund der Vielzahl der Gebiete jedoch kaum erfüllen können. Hier verändern Entwicklungen im Bereich FTI zusammen mit Beschleunigung und Internationalisierung die Anforderungen an parlamentarische Arbeit.

Internationale Entwicklungen und insbesondere EU-Vorgaben führen zu neuen Anforderungen und sind für die parlamentarische Arbeit mit hoher Unsicherheit verbunden, da die Wirkungen bestimmter Regulierungen im europäischen Kontext für Österreich nicht unbedingt sofort sichtbar sind.
2.2 Voraussetzungen und Kriterien für Zukunftsthemen

Grad der Neuheit

Für die Parlementsrelevanz eines Zukunftsthemas ist der Grad der Neuheit eines Themas ein wesentlicher Aspekt. Ein Zukunftsthema für das Parlament sollte neu und hinsichtlich der Aufgaben des Parlaments (Gesetzgebung, Kontrolle der Regierungsarbeit, Kommunikation mit BürgerInnen) von Bedeutung sein.

Grad der Gestaltungsmöglichkeit

Aktualität und öffentliches Interesse

Von besonderer Bedeutung ist den ParlamentarierInnen dabei die Verbindung von wissenschaftsbasierter Expertise über zukünftige Entwicklungen mit legistischer Expertise. Es wurde ein Bedarf an der Koppelung mit legistischer Expertise konstatiert, um der Komplexität der Veränderungen gerecht werden zu können.

Zeithorizont

Die Aktualität für breitere Kreise sind wesentliche Merkmale von Zukunftsthemen für ParlamentarierInnen. Themen müssen dabei so zugeschnitten sein, dass die Relevanz des Themas unterschiedlichen Akteuren und der breiten Öffentlichkeit schnell und eindeutig verständlich gemacht werden können.

Grad der Neuheit

Für die Parlementsrelevanz eines Zukunftsthemas ist der Grad der Neuheit eines Themas ein wesentlicher Aspekt. Ein Zukunftsthema für das Parlament sollte neu und hinsichtlich der Aufgaben des Parlaments (Gesetzgebung, Kontrolle der Regierungsarbeit, Kommunikation mit BürgerInnen) von Bedeutung sein.

Grad der Gestaltungsmöglichkeit

Aktualität und öffentliches Interesse

Von besonderer Bedeutung ist den ParlamentarierInnen dabei die Verbindung von wissenschaftsbasierter Expertise über zukünftige Entwicklungen mit legistischer Expertise. Es wurde ein Bedarf an der Koppelung mit legistischer Expertise konstatiert, um der Komplexität der Veränderungen gerecht werden zu können.

Zeithorizont

Die Aktualität für breitere Kreise sind wesentliche Merkmale von Zukunftsthemen für ParlamentarierInnen. Themen müssen dabei so zugeschnitten sein, dass die Relevanz des Themas unterschiedlichen Akteuren und der breiten Öffentlichkeit schnell und eindeutig verständlich gemacht werden können.

2.3 Anforderungen an parlamentsrelevante Zukunftsthemen: generisch und spezifisch

Parlamentarisch relevante Zukunftsthemen sind durch die Ambivalenz gekennzeichnet, dass einerseits ganz spezifische und kleinteilige Themen auf das Parlament zukommen und andererseits die ParlamentarierInnen für die gesamtgesellschaftlichen Rahmenbedingungen der Zukunft verantwortlich sind. Darunter auch dafür, gesellschaftlich wünschbare Innovationen zu unterstützen oder überhaupt zu ermöglichen. Die spezifischen Zukunftsthemen werden oft in Form von Regulierungsanforderungen an hoch spezifische Technologien und Anwendungen an das Parlament herangetragen.

Im Kontext parlamentarischer Arbeit geht es daher darum, sich nicht nur auf die Zukunft von Technologien zu konzentrieren, sondern eine breitere Perspektive einzunehmen, Innovationen einschätzen zu können und somit eine Wissenserweiterung hinsichtlich sozialer Implikationen von Innovationen zu erzielen. Die generischen Zukunftsthemen beziehen sich entweder auf Fragestellungen, die ganz unterschiedliche Technologien und Anwendungen an das Parlament herangetragen.

Abbildung 2: Zur Einordnung von Zukunftsthemen
3 Identifikation von Themen: Internationale Trends und Erfahrungen

3.1 Monitoring von Zukunft: Horizon-Scanning

Screening potenzieller FTI-Themen mit Relevanz für das österreichische Parlament

Ein kontinuierliches Horizon Scanning ist in einigen Ländern etabliert. In Großbritannien wird Horizon Scanning seit vielen Jahren durchgeführt und ist mittlerweile in Form eines „Horizon Scanning Programme Team“ institutionalisiert.⁸ Dabei werden entsprechende Arbeiten unterschiedlicher Ministerien koordiniert und der Öffentlichkeit zugänglich gemacht.

3.2 Auswahl und Spezifikation von F&TA-Themen – methodisch

Die Identifikation und Spezifikation von F&TA-Themen bedarf zu Beginn strategischer Entscheidungen: Zu bestimmen sind der Fokus, die Ziele, die erwarteten Ergebnisse, der Umfang, Ansatz, Zeithorizont und der Zeitrahmen des jeweiligen Prozesses/Projektes.⁹

Der Fokus bestimmt, was im Zentrum des Interesses steht und setzt damit die Grenzen des Themas. Damit wird die Perspektive bestimmt, aus der bzw. für die der Foresight-Prozess aufgesetzt wird. Die Besonderheit von F&TA für Parlamente ergibt sich daraus, dass das Thema gerade nicht qua Institution eingegrenzt wird (wie bei Ministerien und ihren Fachabteilungen) und dass es nicht darum geht, das institutionell eigene Handeln strategisch an potentiell unterschiedlich veränderten Rahmenbedingungen auszurichten (wie im Fall von Unternehmen oder Interessensgruppen), sondern darum, diese Rahmenbedingungen gesamtgesellschaftlich zu setzen.

3.2.1 Auswahl von Foresight-Themen

Die Auswahl und der Zuschnitt eines F&TA-Themas ist durch das Interesse und Ziel bestimmt, aber auch durch die Methoden und Ressourcen, die eingesetzt werden sollen. Technologieorientierte F&TA-Prozesse fokussieren auf bestimmte Zukunftstechnologien: Nanotechnologie, Biotechno-

⁷ Neben kommerziellen internationalen Datenbanken, deren Zugang mit hohen Kosten verbunden ist, bieten auch öffentlich geförderte Datenbanken Zugang zu wissenschaftlicher Literatur bzw. zu Metadaten inklusive Abstracts. Die wichtigste kommerzielle Datenbank ist international die des kanadischen Medienkonzerns Thomson Reuters, die den Science Citation Index (SCI), Social Sciences Citation Index (SSCI) sowie den Arts & Humanities Citation Index (A&HCI) in einem Portal vereinigen. In Österreich ist es möglich über den Bibliothekenverbund Fachliteratur zu recherchieren. Zeitschriften wie Nature, Spektrum der Wissenschaft und Science bieten Überblicke über wichtige Zukunftstrends in den Naturwissenschaften.
⁸ gov.uk/government/groups/horizon-scanning-programme-team.
⁹ Vgl. Forlearn unter foresight-platform.eu und doingforesight.org.
logie und Kommunikationstechnologie waren und sind zentrale Themen von Foresight und TA. Je nach Auftraggeber und Gestaltungsinteresse kann es dabei um so unterschiedliche Entwicklungen gehen, wie um die detaillierte Gestaltung technologischer Innovationspfade (beispielsweise international in der Halbleiterindustrie seit langem üblich)\(^\text{10}\), um die Identifikation von zukünftigen Schlüsseltechnologien (Forschungsministerien), die internationale Entwicklung von Forschung\(^\text{11}\) oder (wie in neuerer Zeit) auch um FTI-Lösungen für große gesellschaftliche Herausforderungen (Grand Challenges).\(^\text{12}\) Während aus der Tradition von Technology Foresight von Technologien ausgehend sozio-ökonomische Veränderungen analysiert werden, wird F&TA auch zunehmend genutzt, um ressort- und politikfeld-übergreifend die Herausforderungen von demografischem Wandel, Gesundheit, Mobilität, Energie und Klimawandel zu bearbeiten. Die Antizipation von Zukunft in Public Foresight setzt den Schwerpunkt auf die Handlungsfähigkeit der Akteure und damit auf die relevanten Faktoren, die von eben jenem Akteur maßgeblich gestaltbar sind.

Bereits bei der Themenwahl ist es daher wichtig zu berücksichtigen, wie stark es um eine Gestaltung von gewünschter Zukunft einerseits geht (Visionen) und inwieweit es andererseits um den Umgang mit zukünftigen, als wahrscheinlich angesehenen Rahmenbedingungen geht (Szenarien). In beiden Fällen ist die Analyse von Barrieren, aber auch von Treibern die Voraussetzung, um die tatsächlichen Handlungsspielräume sichtbar zu machen. Sowohl thematisch als auch hinsichtlich der bearbeitbaren Faktoren ist es wichtig, die Grenzen des F&TA-Themas zu Beginn schon zu bestimmen, um bearbeitbare Zukunftsoptionen und Handlungsspielraum zu bestimmen.

Die Perspektive bezieht sich auf die Art und Weise, wie das Zukunftsthema bearbeitet wird und welche die zentralen Fragen sind. F&TA kann auf die wissenschaftlichen und technologischen Fragen fokussiert sein, kann aber auch die institutionellen, sozialen, ökologischen, wirtschaftlichen und politischen Auswirkungen erforschen. Projekte können auf unterschiedliche Perspektiven hin entwickelte werden:

- fokussierte Perspektive,

indem ein Aspekt im Zentrum steht, wie zum Beispiel die technologische Entwicklung auf einem Gebiet, wobei die sozio-ökonomischen,

\(^{10}\) International Technology Roadmap for Semiconductors.

\(^{11}\) Vgl. ICSU (2011); ICSU (2012).

kulturellen und politischen Aspekte zu Faktoren werden, die die Technologieentwicklung beeinflussen, oder eine eher

- umfassende Perspektive,

sodass die Interaktion zwischen verschiedenen Faktoren, z.B. gesellschaftlichen und technologischen im Mittelpunkt steht.

Beide Perspektiven lassen sich aber auch modular verbinden. Um kurzfristig Zukunftsoptionen für spezifische Technologien und ihre innovationspolitischen regulatorischen Anforderungen zu entwickeln, bietet sich eine fokussierte Perspektive an. Um mittel- und langfristig Zukunftsoptionen auf einer bestimmten Ebene (z.B. Nationalstaat) zu bestimmen und die konkreten Handlungsspielräume von Institutionen (in diesem Fall: Parlament) zu spezifizieren, bieten sich systemische Zukunftsprozesse an. Durch systemische Zukunftsprozesse ist es möglich, eine Vielzahl von neuen Entwicklungen zu kontextualisieren und somit langfristig vorausschauend agieren zu können.

3.2.2 Kombination von Thema, Perspektive und Methoden

Der idealtypische Ablauf einer TA-Studie kann folgendermaßen aussehen:13

- Problemdefinition
- Beschreibung der Technologie
- Voraussage der zukünftigen Technologieentwicklung
- Beschreibung der Gesellschaft, der Betroffenen
- Voraussage sozialer Entwicklungen
- Identifikation, Analyse und Bewertungen von Folgen
- Analyse politischer Handlungsoptionen
- allgemeinverständliche Vermittlung der Resultate

Ein typischer Foresight-Prozess kann folgendermaßen aussehen:14

- **Pre-Foresight:** Diese Phase dient der Ziel- und Themenklärung sowie der Konzeption des Gesamtprozesses. In der Themenerarbeitung kommen analytische Methoden zum Tragen, wie z.B. Stakeholder-Analyse, Trendextrapolation und bibliometrischen Verfahren.

- **Post-Foresight:** Entwicklung von Handlungsempfehlungen und Evaluie- ren des Gesamtprozesses auf dessen Umsetzungsrelevanz.

4 Potenzielle Themen mit Relevanz für das österreichische Parlament

4.1 Foresight und TA als Quellen für relevante, parlamentarische Themen

Die European Foresight Plattform (EFP) bietet einen Überblick über Foresight-Projekte in Europa und darüber hinaus. Die Plattform unterstützt Foresight-ExpertInnen, politische EntscheiderInnen und Personen, die sich über Foresight informieren wollen. Im Rahmen ihrer Foresight-Strategie hat die Europäische Kommission (European Commission 2002) im Jahr 2004 eine europäische Wissensplattform, das „European Foresight Moni-

15 Diese Auswertung ist mit dem methodischen Problem konfrontiert, dass sich die Daten auf abgeschlossene Projekte beziehen, es sich also nicht um aktuell laufende Foresight-Prozesse handelt.
16 eptanetwork.org/index.php/database/projects.

4.2 Themenschwerpunkte von Foresight und TA

Zukunftstechnologien

17 Vgl. dazu auch den Zwischenbericht zu AP3, Abschnitt 3.1.1, Anhang C.
Insgesamt zeigt die Auswertung vergangener F&TA-Themen, dass neben der Analyse von Technologien immer stärker auch Innovationssysteme und komplexe zukünftige Bedarfslagen in Bereichen wie Energie, Mobilität und demografischem Wandel thematisiert werden.

4.2.1 Mobilität

\(^\text{20}\) Z.B. Access to public transport and mobility in Poland.
\(^\text{21}\) Z.B. Opportunities and risks of electromobility in Switzerland oder Electric mobility concepts and their significance for the economy, society and the environment.
\(^\text{22}\) Transport and Mobility in an Enlarged Europe – 2020, FreightVision, Freight Vision Austria 2050.

\(^{23}\) Delphi based disruptive and surprising transformation scenarios on the future of aviation, BMBF/CFS/EBS.

\(^{24}\) Studie «Verkehrstelematik», TA-SWISS.

\(^{25}\) Future of Superintelligent Transport Systems, STT.

\(^{26}\) Autonomous Road Vehicles, POST.

\(^{27}\) FreightVision, EC.

\(^{28}\) Electric Vehicles, POST.

\(^{29}\) Transport Biofuels, POST.

\(^{30}\) Perspektiven eines CO\(_2\) und emissionsarmen Verkehrs, TAB.

\(^{31}\) FreightVision Austria 2050, BMVIT/AIT.
4.2.2 Gesundheit

\(^{32}\) Weak Signals and Emerging Issues in Health, EC/TNO.
\(^{33}\) Scientific Technological and Ethical Stakes in the Personalized Medicine, OPECST.
\(^{34}\) Siehe z.B. TA-Studien zu Personalised Medicine und Personalised medicine and cancer care.
\(^{35}\) Robotics for Healthcare.
4.2.3 Sicherheit

Sicherheit bezieht sich in F&TA-Projekten auf Ressourcensicherheit, wie jene in der Wasserversorgung, auf Umweltsicherheit in Bezug auf Risiken des Klimawandels und Naturkatastrophen aber auch auf grundlegende soziale Bedingungen für (gesellschaftliche) „Sicherheit“. Zur Garantie von Nahrungsmittelsicherheit werden die Einrichtung eines Rückverfolgungssystems und neue Wege industrieller Entwicklung\(^{37}\) thematisiert. Im militärischen Bereich stehen Fragen der strategischen Intelligenz, militärische Bewertungen, sowie die Themen Ausrüstung und Funktionen im Zentrum. Darüber hinaus geht es um den Einsatz von zivilen Technologien, Verteidigungstechnologien und Technologien mit gleichzeitig friedlichem und militärischem Verwendungszweck („dual-use technology“\(^{38}\)).

Auch im Bereich Sicherheit ist die Informations- und Kommunikationstechnologie eine wesentliche Treiberechnologie\(^{39}\). Sie ermöglicht die Nutzbarmachung kollektiver Intelligenz, agentenbasierte Modellierung, visuelle Analytik und Simulation. Integriertes Systemdesign und integrierte Systementwicklung, informationsbasierte Diensteleistungen, Simulation und Training, künstliche Umgebungen, sowie Sicherheit im Internet\(^{40}\) ste-

\(^{37}\) Taiwan Agricultural Technology Foresight, Council of Agriculture/Institute of Economic Research, Taiwan.

\(^{38}\) SANDERA project, EC/Univ. Manchester.

\(^{39}\) Siehe dazu TA-Projekte im Bereich Cyber Security: Digital Safety and Risks, OPECST oder Improving user protection and security in cyberspace, CoE.

\(^{40}\) Siehe z.B. FESTOS - Foresight of Evolving Security Threats Posed by Emerging Technologies, EC/ICTAF.
Potenzielle Themen mit Relevanz für das österreichische Parlament

... (Zitat...)

... (Fortsetzung...)

41 Data-Mining – social and legal challenges, TAB
42 PRISE, OeAW/ITA
43 Monitoring Safety and Security in Nuclear Installations, OPECST.
44 Increasing resilience in surveillance societies, OeAW/ITA oder SurPRISE, The Danish Board of Technology (DBT)
4.2.4 Umwelt und Klimawandel

45 Assessment of Global Megatrends: The European Environment - State and Outlook 2010, EEA.
46 World Wide Views on Biodiversity, OeAW ITA.
48 Climate engineering: Technical status, future directions, and potential response, GAO, The evaluation of the magnitude of the climate changes, OPECST Climate Change: Impacts, Costs and Adaptation in the Baltic Sea Region, DBT, Bottom-up Climate Adaptation Strategies towards a Sustainable Europe, DBT.
4.2.5 Energie

verbrauch53 und in Mikroenergie aus der Umwelt (Energiewandler und selbsterhaltende Systeme) gesehen. Langfristigere Zukunftsthemen sind Kernfusion54 und Nullpunktsenergie-Generatoren. Generische Themen sind die Entwicklung eines strategischen Energietechnologieplans (SET Plan55), Energiegewinnung, -speicherung und -verteilung, CO\textsubscript{2}-Abscheidung und -speicherung und erneuerbare Energiesysteme. Eine spezifischere Zukunftsvorstellung ist die lokale Energieerzeugung und -speicherung in Gebäuden und die optimale Einbindung in das Gebäudemanagement.

4.2.6 Konvergierende Technologien

In F&TA-Projekten bilden Nano- und Biotechnologie, Robotik, Informations- und Kommunikationstechnologie (IKT) und die Erforschung neuer Materialien sowie die übergeordnete Kategorie der konvergierenden Technologien einen Schwerpunkt. Dazu zählen Innovationen aus Bio- und Nanotechnologie56, das Prinzip von Natur als Quelle der Inspiration (Bio-

53 Taiwan Agricultural Technology Foresight, Council of Agriculture, Council of Agriculture/Institute of Economic Research, Taiwan.

54 Z.B. Future nuclear technologies, POST.

55 Visions for Horizon 2020 from Copenhagen Research Forum, Capital Region of Denmark, Technical University of Denmark, University of Copenhagen.

56 Z.B. Nanotechnology, RI.
Potenzielle Themen mit Relevanz für das österreichische Parlament

Wien, November 2015

4.2.7 Wirtschaftliche Entwicklung, Produktion und Märkte

57 International competitiveness of the European economy with regard to the EU state aid policy: The case of Nanoelectronics, TAB.
58 Future of Superintelligent Transport Systems, STT.
59 Expert Vision on Big Data and Smart Algorithms, RI.
60 FESTOS – Foresight of Evolving Security Threats Posed by Emerging Technologies, EC/ICTAF.
61 Towards Transformative Innovation Priorities, EC/Fraunhofer ISI.
62 Z.B. im Kontext von Delphi based disruptive and surprising transformation scenarios on the future of aviation, BMBF/CFS/EBS.

Internet der Dinge

Individualisierung von Massenproduktion

57 International competitiveness of the European economy with regard to the EU state aid policy: The case of Nanoelectronics, TAB.
58 Future of Superintelligent Transport Systems, STT.
59 Expert Vision on Big Data and Smart Algorithms, RI.
60 FESTOS – Foresight of Evolving Security Threats Posed by Emerging Technologies, EC/ICTAF.
61 Towards Transformative Innovation Priorities, EC/Fraunhofer ISI.
62 Z.B. im Kontext von Delphi based disruptive and surprising transformation scenarios on the future of aviation, BMBF/CFS/EBS.
Arbeitsmuster63. Dazu kommen veränderte Innovationsmuster, neue Arbeitskonzepte, neue Typen von Arbeit, neue Einstellungen zu Arbeit und Kommunikation. Die industrielle Entwicklung und die Veränderung der Stadtgrößen stehen in Zusammenhang mit nachhaltigen Produktions- und Konsumationsweisen, mit gesundheitsbezogenen Themen, mit Informations- und Kommunikationstechnologien für den Dienstleistungsbereich64, sowie mit Strategieentwicklung.

\begin{itemize}
\item 63Arbeiten in der Zukunft – Strukturen und Trends in der Industriearbeit, TAB.
\item 64PRISMA – Providing Innovative Service Models and Assessments, OeAW ITA.
\item 65Human-machine interaction. Between artificial intelligence and human enhancement, TAB.
\item 66STRATCLU, SEZ, MicroTEC Südwest Cluster.
\item 67Towards Transformative Innovation Priorities, EC/Fraunhofer ISI.
\item 68Beispielsweise Pharmacogenomics, TA-SWISS.
\end{itemize}
4.2.8 Governance und Öffentlichkeit

Open Data\(^69\), E-Government und kollaborative Politikmodelierung\(^70\) sind zentralen Themen von F&TA. IKT-basierte Governance soll zur Offenheit und Transparenz von Regierungshandeln beitragen. F&TA beschäftigt sich auch mit den Themen Internet Governance\(^71\), öffentliche Beteiligung\(^72\) und Governance-Vergleiche auf nationalstaatlicher Ebene\(^73\).

4.2.9 Bildung und Lernprozesse

\(^{69}\) Towards Transformative Innovation Priorities, EC/Fraunhofer ISI.
\(^{70}\) Envisioning Digital Europe 2030: Scenarios for ICT in Future Governance and Policy Modelling, EC/JRC-IPTS.
\(^{71}\) Internet Governance, POST.
\(^{72}\) Techpol 2.0: Awareness – Participation – Legitimacy, OeAW ITA.
\(^{73}\) Governance and organization in six countries, RI.
4.2.10 Forschung und Wissenschaft

Ein weiteres Themenfeld in den analysierten F&TA-Projekten ist Forschung und Wissenschaft. Dabei werden partizipative Ansätze, methodische Innovationen und neue Technologien diskutiert und angewandt, wobei der Schwerpunkt auf IKT liegt75. Zukunftsvisionen fokussieren auf soziale Netzwerke und soziale Innovation als Domäne für eine erfolgreiche Entwicklung des europäischen FTI-Sektors. BürgerInnen oder spezifisch angesprochene Gruppen wie z.B. Jugendliche und Studierende generieren in Projekten76 und sozialen Netzwerken77 Zukunftsbilder. Im Zusammenhang mit Forschung und Innovation steht die Forschungsförderung in Europa78, die Offenheit von Daten (openness of data)79, die Mobilität von WissenschaftlerInnen sowie die Reorganisation von Forschungsgovernance durch vertikale Integration. IKT unterstützen eine offene Wissenschaft und helfen bei der Entwicklung neuer Wachstumsmodelle. Intellektuelle Eigentumsrechte und ihre Kontrolle stellen eine zukünftige Herausforderung dar. Text-Mining-Software soll die Nutzung von wissenschaftlichen und technologischen Datenbanken80 sowie von Patentdatenbanken erleichtern.

Die Erforschung sozialer Netzwerkdynamiken, sowie die Operationalisierung und Wirkungsmessung von Netzwerkeffekten ist ein Schwerpunkt, der eng mit Lerneffekten in F&TA-Prozessen verwoben ist. Die Transition zu einer wissensbasierten Gesellschaft steht als Leitkonzept im Vordergrund. Konvergierende Technologien fassen die zukünftig relevanten Bereiche aus Forschung und Wissenschaft zusammen81. Veränderte Ansprüche an ein Forschungs- und Wissenschaftssystem, die mit konvergierenden Technologien einhergehen, sind ausgeglichene Förderschienen, langfristige Orientierung, persönliche Kontakte, Netzwerkressourcen, Belohnungs- und Anreizsysteme, Mobilität, Austausch und Brückeninstitutionen82.

75Research and Innovation Futures 2030, EC/AIT.
76CIVISTI, EC/ITA, Leben 2050, ITA, Future Food 4 Men & Women, ITA; Rio+20, ITA.
77F212.org Online Platform. Imagining the Future through Social Media as a Tool for Social Innovation, FECYT/FUTURLAB.
78CIMULACT, EC/ITA in 30 Ländern.
79Open Access to Scientific Information, POST.
80Data-Mining – social and legal challenges, TAB.
81Converging technologies study for Council of Europe, RI.
82Towards Professionalising ‘International S&T Co-operation Foresight’, EC/ZSI.
4.2.11 Innovationssystem – Neue Formen von Innovation

Foresight-Projekte identifizieren z.B. systematisch neue Formen von Innovation (open innovation, user innovation, community innovation, social innovation and design innovation) und eruieren Handlungsmöglichkeiten politischer Akteure, diese neuen Muster zu nutzen und zu unterstützen\(^{83}\) sowie Innovationsstrategien im europäischen Raum transnational zu koordinieren.\(^{84}\) TA-Projekte beschäftigen sich damit, wie sich beispielsweise das Vorsorgeprinzip in der öffentlichen Förderung von Innovationen stärker etablieren lässt\(^{85}\), welche potentiellen politischen und ökonomischen Auswirkungen neue Innovationsdynamiken haben können und wie Regulierung in diesem Kontext eingesetzt werden kann.\(^{86}\)

4.3 Foresight und TA-Themen am Parlament: Das Beispiel Finnland

- Nachhaltiges Wachstum,
- Eine inspirierte Gesellschaft (An Inspired Society)

\(^{83}\) **INFU – Innovation Futures**, EU-Foresight.
\(^{84}\) **Transregional Foresight**, EU-Foresight.
\(^{86}\) **Responding to a new innovation dynamic / Innovation and regulation**, Rathenau Institut (RI).
Screening potenzieller FTI-Themen mit Relevanz für das österreichische Parlament

- Neues Wissen (Acquiring New Knowledge)
- Kann der Wohlfahrtsstaat bestehen?
 (Can the Welfare Society Endure?)
- Crowdsourcing
- Radical Technologies
- Unvorhersehbare Ereignisse (Black Swans)

Die Themen wurden entsprechend den Interessen der Ausschussmitglieder gewählt, aber auch unter dem Gesichtspunkt ausgesucht, auf einen Bericht der Regierung zu reagieren, in dem es um eine Analyse der finnischen Situation in einer sich unvorhersehbar verändernden Welt mit vielfältigen und mehrdimensionalen Ungewissheits geht.87

Die Zukunftsthemen des finnischen Parlaments zeigen ein Themenportfolio, das technologische Themen und ihre Wissensgrundlagen berücksichtigt (Radical Technologies, Neues Wissen), neue Formen von Innovationen bearbeitet (crowdsourcing, inspirierte Gesellschaft), die Veränderungen auf der wirtschaftlichen und gesellschaftlichen Meta-Ebene thematisiert (Nachhaltiges Wachstum, Zukunft des Wohlfahrtsstaates) und sich der Zukunft selbst widmet (Black Swans).

4.4 Foresight und TA-Themen aktuell: Beispiel Europäisches Parlament

87 Tiihonen/Hietanen (2014).
Tabelle 1: Fragen für eine vorausschauende Rechtsetzung (Europäisches Parlament)

<table>
<thead>
<tr>
<th>Thema</th>
<th>Kurzbeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonome Fahrzeuge</td>
<td>Autonome Fahrzeuge werfen Fragen nach der Definition und Zuschreibung von Verantwortung, Schadensersatzhaftung, Datenschutz und Qualitätsstandards sowie Fragen des internationalen Datenschutzes auf.</td>
</tr>
<tr>
<td>Graphen</td>
<td>Graphen als Material mit vielen herausragenden Eigenschaften wirft die Frage auf, wie das Vorsorgeprinzip, das zur Sicherstellung eines höheren Umweltschutzniveaus genutzt wird, vorausschauend und innovationsförderlich für diese Technologie spezifiziert werden kann.</td>
</tr>
<tr>
<td>3D-Druck</td>
<td>3D-Druck ermöglicht die Herstellung und Gestaltung von Schmuck bis Waf-fenteilen. Fragen des geistigen Eigentums sind dabei relevant, aber auch die In-Verkehr-Bringung steht in neuer Form auf der Agenda der Rechtsetzung.</td>
</tr>
<tr>
<td>Offene Online-Kurse (MOOC)</td>
<td>Offene Online-Kurse bieten ein Lehrveranstaltungsangebot auf Plattformen, das über das Internet abrufbar und so für viele tausend Studierende gleichzeitig verfügbar ist. Die Frage nach den Eigentumsverhältnissen und der Qualitätssicherung von online gestellten Inhalten bleiben aus legistischer Perspektive offen.</td>
</tr>
<tr>
<td>Tragbare Technologien</td>
<td>Technologiearten und Materialien, die getragen werden können, wie z.B. Google-Glass-Technologie oder technische Textilien, sind von der Debatte um Privatsphäre und Datenschutz geprägt, da persönliche Daten oft unbe merkt durch das „Internet der Dinge“ überwacht und analysiert werden.</td>
</tr>
<tr>
<td>Drohnen</td>
<td>Drohnen sind automatisch betriebene Luftfahrzeuge (auch in anderer Umgebung, z.B. Wasser möglich), die u.a. in Hinblick auf ihr Gefährdungspotential (Beschädigung von Personen und Dingen bei Absturz) diskutiert werden. Bei militärischen Verwendungszwecken steht die Frage nach einheitlichen Luftraumregelungen bei überseeischem Einsatz im Vordergrund.</td>
</tr>
<tr>
<td>Aquaponik-Systeme</td>
<td>Aquaponik-Systeme sind Zucht- und Anbausysteme, die Wasser als Träger für einen geschlossenen Nährstoffkreislauf einsetzen. Da diese Technologie erst entwickelt wird, stellt sie einen möglichen Forschungsschwerpunkt für die Zukunft dar. Zugleich ist offen, ob solche Systeme im städtischen oder ländlichen Bereich angesiedelt sein werden.</td>
</tr>
<tr>
<td>Intelligente Haus(halts)technik</td>
<td>Intelligente Haushaltstechnik ist die Anwendung des „Internet der Dinge“ in Gebäuden und Wohnräumen. Angesichts der Vielzahl an Geräten, die in einem intelligenten Haushalt miteinander kommunizieren, sind Haftung und Datenschutzbestimmungen wesentliche Aspekte für die Regulierung.</td>
</tr>
<tr>
<td>Stromspeicherung (Wasserstoff)</td>
<td>Chemische Speichersysteme, die durch Elektrolyse Wasserstoff erzeugen, sind als erneuerbare Energiequellen für eine resilientere Energieerzeugung und -versorgung von Bedeutung. Für die Entscheidungsebene stellt sich die Frage, wann diese Technologie Marktreife erlangt, ob eine Förderung angemessen ist und welche Regulierungen in diesem Bereich notwendig sind.</td>
</tr>
</tbody>
</table>

5 Schlussfolgerungen

Im Rahmen dieses Arbeitspakets können Schlussfolgerungen auf zwei Ebenen gezogen werden: einerseits in Hinblick auf die aktuell für das Parlament relevanten FTI-Themen (5.1.), andererseits zur Notwendigkeit eines laufenden Monitorings von Zukunftsthemen (5.2).

5.1 Themenvorschläge aus dem Vergleich relevanter Themen

Vergleichen wir die Themen, die in den Interviews als relevant gesehen werden und die Themen, die in Foresight und TA bearbeitet wurden und werden, so lassen sich inhaltliche als auch übergreifende Themenfelder identifizieren (siehe Tabelle 2).

Tabelle 2: Aktuelle Themen mit hoher FTI-politischer Relevanz

<table>
<thead>
<tr>
<th>QUERSCHNITTSTHEMEN</th>
<th>DIGITALER RAUM</th>
<th>SMARTE MOBILITÄT</th>
<th>NACHHALTIGE ENERGIESYSTEME</th>
<th>NEUE FORMEN VON ARBEITEN, WOHNEN UND LEBEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Implizite Technologien (z.B. Ambient Persuasion Technologies)</td>
<td>• Open Government Data, Demokratie 2.0</td>
<td>• Autonome Systeme und intelligente Verkehrssysteme</td>
<td>• Erneuerbare Energien</td>
<td>• Mensch-Maschine-Interaktion</td>
</tr>
<tr>
<td>• Inklusionstechnologien (z.B. Spracherkennungssoftware im Bereich Migration)</td>
<td>• Security und Privacy, Sicherheit im Internet</td>
<td>• alternative Antriebe und Fahrzeugtypen</td>
<td>• Energieversorgung</td>
<td>• Human Enhancement, Cyborgs</td>
</tr>
<tr>
<td>• Konvergierende Technologien (NBIC – Nano, Bio, Info, Cogno)</td>
<td>• Monopolisierung Datendienste (Big Data)</td>
<td>• Multi-modale Integration</td>
<td>• Energiewende</td>
<td>• Smart City, Stadtentwicklung</td>
</tr>
<tr>
<td>• Komplexität von Technologien</td>
<td>• Algorithmische Entscheidungsfindung</td>
<td>• Grüner, intermodaler Frachttransport</td>
<td>• Smart Grids</td>
<td>• Ambient Assisted Living</td>
</tr>
<tr>
<td></td>
<td>• Neue Lebensstile, Entrepreneurship und soziale Medien</td>
<td>• Verkehrssysteme als Energiespeicher</td>
<td>• Zukunft Strommarkt</td>
<td>• Bioökonomie, Biomedizin; Synthetische Biologie</td>
</tr>
<tr>
<td></td>
<td>• Digitale Arbeitswelt</td>
<td>• Drohnen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diese Auswahl an aktuellen Themen mit hoher FTI-politischer Relevanz deckt verschiedene Herausforderungen ab, von denen das Projektteam jene mit besonderer Relevanz für das Parlament abschließend kurz beschreibt:
Die Querschnittsthemen bieten die Möglichkeit, parlamentarische Handlungsmöglichkeiten in Bezug auf Technologien zu entwickeln, die in unterschiedlichen Politikfeldern von hoher Relevanz sein werden.

- Ambient Persuasion Technologies werden als interaktive Computer- systeme zukünftig in verschiedenen Lebensbereichen eingesetzt um Einstellungen oder Verhalten von Menschen zu verändern.

- Inklusionstechnologien (z.B. Spracherkennungssoftware im Bereich Migration) setzen mit entsprechendem Design übergreifende Inklusionsansätze durch.

- Die Konvergenz von Nano- und Biotechnologie, sowie IKT und Kognitionsforschung (Konvergierende Technologien) gilt als Grundlage zukünftiger Schlüsseltechnologien, das Monitoring dieser Konvergenz daher als vielversprechend für neue Anwendungen und ihren Bedarf an Förderung und Regulierung.

- Die steigende Komplexität neuer Technologien bedarf eines systematischen Monitorings technischer Entwicklungen, um zukünftige Innovationspfade zu antizipieren und nicht-intendierte Effekte in der FTI-Politik vorausschauend adressieren zu können.

Digitaler Raum

Digitaler Raum charakterisiert die Veränderung von Gesellschaft, Wirtschaft und Politik durch digitale Technologien, die in ihrer Anwendung nationalstaatliche Grenzen überschreiten und damit Fragen nach der Gestaltbarkeit auf nationalstaatlicher Ebene aufwerfen.

- Open Government Data, Demokratie 2.0: Daten der öffentlichen Hand und deren freie Verfügbarkeit für privatwirtschaftliche Unternehmen können Basis für einen Innovationsschub in verschiedensten Bereichen darstellen. Die dadurch geförderte Transparenz öffentlicher Handlungen steigert die Partizipationsmöglichkeiten für BürgerInnen.

- Security und Privacy, Sicherheit im Internet: Die Miniaturisierung der Endgeräte und die Nutzung hoch integrierter IT-Systeme für Überwachungsmaßnahmen stellen für die notwendige Transparenz in demokratischen Gesellschaften große Herausforderungen dar. Auch die informationstechnische Sicherheit im speziellen und die starken Abhängigkeiten, die sich durch IT-Systemintegration und -kooperation ergeben, wurden bereits im Rahmen des Pilotprojekts Industrie 4.0 behandelt und dort als besonders relevant für Wirtschaft und Gesellschaft erachtet.

- Monopolisierung Datendienste: große Technologiekonzerne wie Google, Microsoft, Amazon oder Facebook bündeln zunehmend verschiedene Dienstleistungen, wodurch sich monopolartige Strukturen bilden, die über große personen- und handlungsbezogene Datenmengen verfügen. Je umfangreicher die Monopolisierung der jeweiligen Dienstleistungen ist, desto größer sind die Risiken für die Allgemeinheit in Bezug auf die Verwendung der jeweiligen Daten.

Schlussfolgerungen

Nachhaltige Energiesysteme bleiben ein wichtiges Thema für die Zukunft, da das Feld durch eine hohe Dynamik gekennzeichnet ist.

Energiewende: der Umstieg von kohlenstoffbasierten Energieformen auf erneuerbare Energieträger im Sinne einer Energiewende benötigt Rahmenbedingungen Notwendige Voraussetzungen beinhalten bei-
spielsweise die Verfügbarkeit von Technologien, eine entsprechende Anreizsetzung durch Stromtarife und die Bewusstseinsbildung der öffentlichen, betrieblichen und privaten EndverbraucherInnen. Der Nutzen derartiger Maßnahmen entsteht im Laufe der Zeit, während die Kosten bereits jetzt anfallen.

- **Smart Grids:** Die verstärkte Anwendung erneuerbarer Energien bedeutet, dass der Strombedarf nicht mehr durch einige wenige große, sondern eine Vielzahl dezentraler Energieeinspeiser gedeckt wird. Diese Wind-, Solar-, Biogas- etc. Anlagen sind ungleichmäßig über Regionen und Länder verteilt und produzieren Strom nicht regelmäßig, sondern nach Verfügbarkeit von, beispielsweise, Wind und Sonne. Um den Strom von den zahlreichen kleinen Produzenten zu den Abnehmern zu befördern, müssen Energienetze über „Smartness“ verfügen, also die Fähigkeit zu erkennen, wo im Augenblick Strom produziert bzw. gebraucht wird. Zur Herstellung der smarten Netze müssen diese über zahlreiche Messeinrichtungen (Smart Meter) verfügen, welche das Risiko in sich bergen, das Konsumverhalten der einzelnen VerbraucherInnen transparent zu machen.

Als **neue Formen von Arbeiten, Wohnen und Leben** lassen sich die Veränderungen charakterisieren, die Menschen und Maschinen in ein enges symbiotisches Verhältnis bringen, wobei die Einzelnen die Komplexität der von ihnen genutzten Technologien nur begrenzt einschätzen können.

- **Mensch-Maschine-Interaktion:** Die Schnittstellen zwischen Mensch und technologischen Systemen (User Interface) erweitern sich mit Touchtechnologien, Gestik als Eingabeform, flexiblen Formen von Displays, 3D bzw. Augmented Reality. Für die Zukunft ist Vertrauen zentral für die Nutzung wobei dieses Vertrauen aufgrund der Komplexität voraussichtlich gesellschaftlich breit vereinbarte Standards benötigt.

- **Human Enhancement, Cyborgs:** Damit werden Anwendungen zur pharmakologischen und technologischen Steigerung menschlicher Leistungsfähigkeit charakterisiert. Eine extreme Form sind Cyborg-Technologien, in der Mensch und Maschine verschmelzen. Anwendungen von Medikamenten und Technologien, die aus dem medizinisch-therapeutischen Bereich kommen, werden zur Leistungssteigerung eingesetzt und weiten medizinische Anwendungen aus und werfen weitreichende Fragen von Selbstbestimmung und sozialem Optimierungsdruck auf.

- **Bioökonomie, Biomedizin, Synthetische Biologie:** In einer zukünftigen Bioökonomie soll die umfassende Nutzung nachwachsender biologischer Ressourcen das fossile Energieregime der bisherigen Industrialisierung ablösen. Weitgehende Szenarien setzen darauf, dass die Fabrik der Zukunft eine digital gesteuerte Plantage sein wird, auf der CO2-frei und effizient neben Lebensmitteln auch Energie, Dämmstoffe, Pflanzenfasern für Kleidung und sogar Medikamente hergestellt werden. Biotechnologien sollen somit gleichermaßen die primäre Produktion (Lebensmittel und Rohstoffe), die gesamte Industrie sowie den Gesundheitsbereich transformieren.
Abbildung 9: Verortung aktueller Themen

5.2 Monitoring von Zukunftsthemen

Wenn relevante Themenfelder bereits frühzeitig identifiziert werden, können Einzelaspekte vorausschauend in breitere Strategien wissenschaftlich-technischer Prioritätssetzung integriert werden und die Relevanz von Einzelfragen, die durch Medien und Social Media kurzfristig eine hohe Relevanz erhalten, kann besser eingeordnet werden.

Das Monitoring erfolgt durch die fortlaufende Identifikation von neuen Themen in den Bereichen Foresight und Technikfolgenabschätzung: Neben der kontinuierlichen Auswertung neuer TA-Projekte in der EPTA-Datenbank und neuer Foresight Projekte der European Foresight Platform werden neue Themen über entsprechenden Konferenz- und Workshopbeiträge sowie über die entsprechenden Netzwerke identifiziert. Folgende regelmäßige stattfindende Konferenzen sind unter anderem für eine kontinuierliche Themenidentifikation geeignet:

- Die jährliche EPTA-Konferenz, die alle parlamentarischen TA-Einrichtungen Europas und der USA zusammenbringt und neben einem aktuellen Thema ebensowenig dem konkreten Erfahrungsaustausch zu neuen Entwicklungen Platz gibt wie die jährlichen Direktorentreffen in diesem Netzwerk.
- Die zweijährlich stattfindenden Konferenzen des Netzwerks Technikfolgenabschätzung (NTA), die insbesondere neue TA-Themen im deutschsprachigen Raum sichtbar macht.88
- Die jährlich stattfindende Konferenz des “European Forum for Studies of Policies for Research and Innovation” (Eu-SPRI Forum), die auf neue innovationspolitische Themen fokussiert.89
- Die zwei- bis dreijährig durchgeführte Konferenz zu Future Technology Analysis (FTA), die europäisch und international ausgerichtet ist und Foresight und TA verbindet.90

88 openta.net/nta-tagungen.
89 euspri-forum.eu.
Literatur

Burgelman, J.-C., Chloupková, J. und Wobbe, W., 2014, Foresight in support of European research and innovation policies: The European Commission is preparing the funding of grand societal challenges, European Journal of Futures Research 2(1), 1-7 dx.doi.org/10.1007/s40309-014-0055-4; auch veröffentlicht in: Eur J Futures Res.

Tiihonen, P. und Hietanen, O. (Hg.), 2014, An enabling state – Experimenting Finland: Committee for the future / Finland eduskunta.
