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ASYMPTOTIC CONSISTENT EXPONENTIAL-TYPE INTEGRATORS FOR
KLEIN-GORDON-SCHRÖDINGER SYSTEMS FROM RELATIVISTIC TO

NON-RELATIVISTIC REGIMES∗
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Abstract. In this paper we propose asymptotic consistent exponential-type integrators for the Klein-Gordon-
Schrödinger system. This novel class of integrators allows us to solve the system from slowly varying relativistic up
to challenging highly oscillatory non-relativistic regimes without any step size restriction. In particular, our first- and
second-order exponential-type integrators are asymptotically consistent in the sense of asymptotically converging to
the corresponding decoupled free Schrödinger limit system.
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1. Introduction. The Klein-Gordon-Schrödinger (KGS) system

(1.1)
c−2∂ttz(t, x)−∆z(t, x) + c2z(t, x) = |n(t, x)|2,
i∂tn(t, x) + ∆n(t, x) + n(t, x)z(t, x) = 0

describes the dynamics of a complex-valued nucleon field n interacting with a neutral real-
valued scalar meson field z. It arises from coupling a Klein-Gordon (KG) equation nonlinearly
to a classical Schrödinger equation. For existence and uniqueness of global smooth solutions
we refer to [12, 13, 14] and references therein. Numerically, the Klein-Gordon-Schrödinger
system is extensively studied in the relativistic regime c = 1; see, for instance, [3, 22, 23].
In contrast, the non-relativistic regime, where the speed of light c formally tends to infinity,
is, due to the highly oscillatory behavior of the solution, much more numerically demanding.
Classical numerical methods break down as they fail to resolve the oscillations within the
solution. In particular, severe step size restrictions need to be imposed which leads to huge
computational effort and does not permit reasonably accurate simulations. Even more suitable
so-called Gautschi-type methods, which are especially designed for the numerical solution
of oscillatory second-order differential equations (see, e.g., [2, 17, 19]), do not allow a
reasonable approximation as they fail to capture the highly oscillatory parts. This phenomenon
is illustrated in Figure 1.1, in the slowly varying relativistic regime (c = 1) the Gautschi-type
method allows a precise approximation of the solution, whereas it fails in the highly oscillatory
non-relativistic regime (c � 1). For classical splitting-type methods we observe a similar
error behavior as for the Gautschi-type methods and refer to [10, 26] for their analysis in the
context of Schrödinger equations.

Based on a multiscale expansion technique an unconditionally stable accurate method
for the Klein-Gordon-Schrödinger system with (or without) damping was recently presented
in [4] (see also [1, 8] for results on classical Klein-Gordon equations). The derived method
converges, for sufficiently smooth solutions, uniformly in time with linear convergence rate
O(τ) for c ∈ [1,∞). However, optimal quadratic convergence rate O(τ2) is only reached in
the regime when either c = O(1) or cτ ≥ 1.
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FIG. 1.1. Numerical simulation (red, cross) simulated with time step size τ ≈ 10−2 of the Klein-Gordon-
Schrödinger system with a Gautschi-type method (see, e.g., [2]) for increasing values of c. Reference solution (blue,
continuous). In the non-relativistic regime, i.e., for large values of c, the approximation fails.

In comparison we establish a novel class of exponential-type integrators which allow con-
vergence with second-order accuracy in time uniformly for all c > 0. The key idea thereby
lies in exploiting the so-called twisted variables which are well known in the analysis of
partial differential equations at low regularity (see, e.g., [6, 7, 15, 29]) and also well known in
physics as the so-called “interaction picture”. In addition, they appear in numerical analysis,
for instance in the context of the modulated Fourier expansion [9, 17], adiabatic integrators
[17, 25] as well as Lawson-type Runge–Kutta methods [24]. Recently, this technique was also
established in the numerical analysis of low-regularity problems [21, 28] and introduced for
the highly oscillatory Klein-Gordon equation in [5]. In the latter we could develop uniformly
accurate exponential-type integrators for the classical Klein-Gordon equation up to order two
for the first time. Due to the coupled structure the analysis in the Klein-Gordon-Schrödinger
setting is, however, much more involved. In particular, their nonlinear resonance interaction
strongly differs. Therefore, we need to develop new, adapted techniques.

Let us explain the underlying strategy in a nutshell.
Strategy. In a first step we reformulate the Klein-Gordon part (in z) as a first-order system in
time via the transformation

u = z − ic−1〈∇〉−1
c ∂tz

which transforms the KGS system (1.1) into a coupled first-order system in the new variables
(u, n) (see Section 2 for details). This allows us to filter-out the highly oscillatory phases

e±i`c
2t with ` ∈ Z

explicitly by introducing the key idea of twisted variables (u∗, n∗) (see Section 2). The major
numerical advantage of looking at the system in (u∗, n∗) instead of (u, n) lies in the fact
that (∂tu∗, ∂tn∗) is bounded uniformly in c, whereas (∂tu, ∂tn) is of order c2. This allows
us to develop a novel class of uniformly accurate exponential-type integrators by iterating
Duhamel’s formula in (u∗, n∗). The essential point thereby lies in integrating the interactions
of the highly oscillatory phases exactly and only approximating the slowly varying parts; see
Sections 3 and 4.

This strategy allows us to develop high-order asymptotic consistent numerical meth-
ods which approximate Klein-Gordon-Schrödinger solutions from relativistic c = 1 up to
non-relativistic c � 1 regimes. Despite of this uniform approximation property, another
advantage of the novel class of integrators compared to classical methods is the following: the
method converges asymptotically (i.e., c→∞) to the numerical method of the corresponding
decoupled free Schrödinger limit system (c→∞ in (1.1)); for details see Section 5.
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Our theoretical convergence results are underlined with numerical experiments in Sec-
tion 6.

For practical implementation we impose periodic boundary conditions, i.e., x ∈ Td, where
Td := [0, 2π]d. In the following let r > d/2. We denote by ‖ · ‖r the standard Hr = Hr(Td)
Sobolev norm, where we in particular exploit the well-known bilinear estimate

(1.2) ‖fg‖r ≤ cr,d‖f‖r‖g‖r

which holds for some constant cr,d > 0.

2. Twisting the variables. In a first step, we rewrite the Klein-Gordon part (in z) of the
Klein-Gordon-Schrödinger system (1.1) as a first-order system in time. This will allow us to
resolve the limit-behavior c→∞ of the solution. Therefore, we define for a given c > 0 the
following operator (Japanese bracket)

〈∇〉c =
√
−∆ + c2.

Next we write (1.1) as a first-order system in time via the transformation (see, e.g., [27])

(2.1) u = z − ic−1〈∇〉−1
c ∂tz,

such that as z(t, x) ∈ R we have

(2.2) z =
1

2
(u+ u).

The corresponding KGS system in (u, n) reads

(2.3)
i∂tu = −c〈∇〉cu+ c〈∇〉−1

c |n|2, u(0) = z(0)− ic−1〈∇〉−1
c ∂tz(0),

i∂tn = −∆n− n1

2

(
u+ u

)
, n(0) = n0.

Note that the definition of the operator 〈∇〉c formally implies that for c→∞

(2.4) c〈∇〉c = c2 + “lower order terms in c”.

Next, following the approach in [5], we consider the corresponding twisted variables by
multiplying u with the phases e−ic

2t which creates the high oscillations in our problem. More
precisely, we set

u∗(t) = e−ic
2tu(t).

Note that for the Schrödinger part n of the KGS system (2.3) we do not need to apply this
twisting since no highly oscillatory action is linked to this variable. However, for notational
reasons we write n∗ instead of n.

A simple calculation shows that

(2.5) i∂tu∗ = −Acu∗ + c〈∇〉−1
c e−ic

2t|n|2 with Ac = c〈∇〉c − c2.

The advantage of looking at the twisted system in u∗ (instead of u) lies in the fact that the
leading operator formally satisfies Ac = O(1) in c, whereas c〈∇〉c = O(c2); see (2.4). This
can be shown easily with the Taylor series expansion of the function x →

√
1 + x2 which

formally implies that

(2.6) Ac = − 1
2∆ +O

(
∆2

c2

)
.
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Replacing the first line in (2.3) by (2.5) yields the twisted KGS system
(2.7)

i∂tu∗ = −Acu∗ + c〈∇〉−1
c e−ic

2t|n∗|2, u∗(0) = z(0)− ic−1〈∇〉−1
c ∂tz(0),

i∂tn∗ = −∆n∗ − 1
2

(
eic

2tu∗ + e−ic
2tu∗

)
n∗, n∗(0) = n(0),

with mild solutions

(2.8)

u∗(tn + τ) = eiτAcu∗(tn)− ic〈∇〉−1
c

∫ τ

0

ei(τ−s)Ace−ic
2(tn+s)|n∗(tn + s)|2ds,

n∗(tn + τ) = eiτ∆n∗(tn) +
i

2

∫ τ

0

ei(τ−s)∆
[
eic

2(tn+s)u∗(tn + s)

+ e−ic
2(tn+s)u∗(tn + s)

]
n∗(tn + s)ds;

see, e.g., [27, Section 2.1].
The crucial benefit in the above formulation is the uniform bound on the leading opera-

tor Ac

(2.9) ‖Acu‖r ≤
1

2
‖u‖r+2 ,

as well as on the operator in front of the nonlinear coupling which satisfies

(2.10)
∥∥c〈∇〉−1

c u
∥∥
r
≤ ‖u‖r ;

see [5, Lemma 3]. This in particular implies for all t ∈ R that (see [5, Lemma 4])

(2.11)
∥∥eitAc

∥∥
r

= 1 and
∥∥(e−itAc − 1)u

∥∥
r
≤ 1

2
|t| ‖u‖r+2 .

Thanks to the essential bound (2.9) uniform bounds also hold on the derivatives (u′∗(t), n
′
∗(t)).

More precisely, the solutions of (2.7) satisfy
(2.12)

‖u∗(tn + s)− u∗(tn)‖r ≤
1

2
|s| ‖u∗(tn)‖r+2 + |s| sup

0≤ξ≤s
‖n∗(tn + ξ)‖2r ,

‖n∗(tn + s)− n∗(tn)‖r ≤ |s| ‖n∗(tn)‖r+2 + |s| sup
0≤ξ≤s

(‖u∗(tn + ξ)‖r ‖n∗(tn + ξ)‖r) .

The above estimates on the derivatives can be proven using Duhamel’s formula for u∗ and n∗,
respectively, and employing the estimates (2.10) and (2.11); see [5, Lemma 5].

Next we state the necessary local well-posedness assumptions.
ASSUMPTION 2.1. Fix r > d/2 and assume that there exists a Tr > 0 such that the

solution u∗(t), n∗(t) of (2.7) satisfies

(2.13) sup
0≤t≤Tr

(
‖u∗(t)‖r + ‖n∗(t)‖r

)
≤M,

uniformly in c.
REMARK 2.2. Note that Assumption 2.1 holds under the following conditions on the

initial data

‖n(0)‖r ≤M1, ‖z(0)‖r +
∥∥c−1〈∇〉−1

c ∂tz(0)
∥∥
r
≤M2,
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where M1, M2 do not depend on c. This can be easily seen by using a classical fixed point
argument in Duhamel’s formula (2.8) together with the essential uniform bound (2.10) and
(2.11).

For further details on the local well-posedness of highly oscillatory Klein-Gordon equa-
tions we refer to [27] and references therein.

In our analysis we will employ the concept of the so-called ϕ-functions [20] which are
defined as follows.

DEFINITION 2.3 (The ϕ-functions [20]). For ξ ∈ C set

ϕ0(ξ) := eξ and ϕk(ξ) :=

∫ 1

0

e(1−θ)ξ θk−1

(k − 1)!
dθ for k ≥ 1,

such that in particular we have that

ϕ0(ξ) = eξ, ϕ1(ξ) =
eξ − 1

ξ
, ϕ2(ξ) =

ϕ1(ξ)− 1

ξ
.

In addition, we define

Ψk(ξ) :=

∫ 1

0

eθξ
θk−1

(k − 1)!
dθ for k ≥ 1,

such that, in particular, we have that

Ψ2(ξ) =
ϕ0(ξ)− ϕ1(ξ)

ξ
.

3. Construction of a first-order asymptotic consistent integrator. In this section, we
derive a first-order exponential-type integrator for the solution (u∗, n∗) based on Duhamel’s
formula (2.8). We also refer to [5] for the analysis in the classical Klein-Gordon setting.
In order to construct a scheme of first order, we need to impose some additional regularity
assumptions on the exact solutions.

ASSUMPTION 3.1. Fix r > d/2 and assume that u∗, n∗ ∈ C([0, T ];Hr+2(Td)) with, in
particular,

sup
0≤t≤T

(
‖u∗(t)‖r+2 + ‖n∗(t)‖r+2

)
≤M3,

where M3 can be bounded uniformly in c.
Note that the above assumption can be easily played back to the initial values thanks to

Remark 2.2.
Below we give a detailed derivation of the numerical scheme for un+1

∗ approximating
u∗(tn+1) (with tn+1 = tn + τ ) followed by a more compact derivation of the schemes for
nn+1
∗ . Recall Duhamel’s formula for u∗ (see (2.8))

u∗(tn + τ) = eiτAcu∗(tn)− ic〈∇〉−1
c

∫ τ

0

ei(τ−s)Ace−ic
2(tn+s)|n∗(tn + s)|2ds.

The exponential term eiτAc is uniformly bounded in c thanks to (2.11). Therefore, the
remaining task lies in resolving the highly oscillatory phases in the integral. Using the formal
Taylor series expansions

(3.1) n∗(tn + s) = n∗(tn) +O(sn′∗) and e−isAc = 1 +O(sAc)
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in the above integral allows us to integrate the highly oscillatory phases∫ τ

0

e−ic
2sds = τϕ1

(
−ic2τ

)
exactly. The formal expansion of eisAc given in (3.1) is thereby understood as the application
of the operator eisAc to some sufficiently smooth function f in the sense that

(3.2) e−isAcf = f + sR(Acf),

where the remainder R(Acf) satisfies the bound

‖R(Acf)‖r ≤
1

2
‖f‖r+2.

The above bound on the remainder is a direct consequence of (2.11). It is important to note
that additional smoothness on f is needed in the expansion (3.2)

Together with the definition of ϕ1 (Definition 2.3) we thus obtain that

(3.3)
u∗(tn + τ) =eiτAcu∗(tn)− ic〈∇〉−1

c eiτAce−ic
2tnτϕ1(−ic2τ)|n∗(tn)|2

+R1(τ, tn, u∗, n∗),

where the remainder R1(τ, tn, u∗, n∗) satisfies, thanks to the bounds (2.9), (2.10) and (2.12)
(which hold uniformly in c),

(3.4) ‖R1(τ, tn, u∗, n∗)‖r ≤ τ2kr(M3)

for a constant kr which can be chosen independently of c.
This motivates us to define the following numerical scheme in u∗

un+1
∗ = eiτAcun∗ − iτc〈∇〉−1

c eiτAce−ic
2tnϕ1(−iτc2)|nn∗ |2.

Given the numerical scheme in un+1
∗ we can easily compute zn+1 as follows (see (2.2))

zn+1 =
1

2

(
un+1
∗ + un+1

∗

)
.

For n∗ we proceed as follows. Recall Duhamel’s formula (see (2.8))

n∗(tn + τ) =eiτ∆n∗(tn)

+
i

2

∫ τ

0

ei(τ−s)∆
[
eic

2(tn+s)u∗(tn + s)

+e−ic
2(tn+s)u∗(tn + s)

]
n∗(tn + s)ds.

Carrying out the formal Taylor series expansions
(3.5)
u∗(tn+s) = u∗(tn)+O(su′∗), n∗(tn+s) = n∗(tn)+O(sn′∗), and e−is∆ = 1+O(s∆)

in the above integral allows us to integrate the highly oscillatory phases e±ic
2s exactly. To-

gether with the definition of ϕ1 (Definition 2.3) we therefore obtain that

(3.6)

n∗(tn + τ) =eiτ∆n∗(tn)

+
i

2
eiτ∆τ

[
eic

2tnϕ1(ic2τ)u∗(tn)n∗(tn)

+e−ic
2tnϕ1(−ic2τ)u∗(tn)n∗(tn)

]
+R1(τ, t, u∗, n∗),
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where the remainder R1(τ, t, u∗, n∗) satisfies a similar (in particular uniform) bound to (3.4)
thanks to (2.12).

This motivates us to define the following numerical scheme in n∗

nn+1
∗ = eiτ∆nn∗ +

i

2
τeiτ∆

[
eic

2tnϕ1(ic2τ)un∗n
n
∗ + e−ic

2tnϕ1(−ic2τ)un∗n
n
∗

]
.

Collecting the results yields the following full numerical scheme in u∗ and n∗

(3.7)

un+1
∗ = eiτAcun∗ − iτe−ic

2tnϕ1(−iτc2)c〈∇〉−1
c eiτAc |nn∗ |2,

u0
∗ = z(0)− ic−1〈∇〉−1

c ∂tz(0)

nn+1
∗ = eiτ∆nn∗ +

i

2
τeiτ∆

[
eic

2tnϕ1(ic2τ)un∗n
n
∗ + e−ic

2tnϕ1(−ic2τ)un∗n
n
∗

]
,

n0
∗ = n0,

where we used the transformation (2.1) for the initial value.

3.1. Convergence analysis of the first-order asymptotic consistent scheme. The ex-
ponential-type integration scheme (3.7) converges (by construction) with first order in time
uniformly with respect to c; see Theorem 3.2 below.

THEOREM 3.2 (Convergence bound for the first-order scheme). Fix r > d/2 and assume
that Assumption 3.1 holds. For u∗ defined in (3.7) we set

zn :=
1

2

(
eic

2tnun∗ + e−ic
2tnun∗

)
.

Then, there exists a T > 0 and τ0 > 0 such that for τ ≤ τ0 and tn ≤ T we have for all c > 0
that

‖z(tn)− zn‖r + ‖n(tn)− nn‖r ≤ τKr,T,M,M3 ,

where the constant Kr,T,M,M3 can be chosen independently of c.
Proof. Fix r > d/2.
Stability. In the following we set for f, g ∈ Hr

Φτ (f, g) := eiτAcf − iτe−ic
2tnϕ1(−iτc2)c〈∇〉−1

c eiτAc |g|2

Ψτ (f, g) := eiτ∆g +
i

2
τeiτ∆

[
eic

2tnϕ1(ic2τ)fg + e−ic
2tnϕ1(−ic2τ)fg

]
such that, in particular, un+1

∗ = Φτ (un∗ , n
n
∗ ) and nn+1

∗ = Ψτ (un∗ , n
n
∗ ).

Note that for all t ∈ R we have that ‖eitAc‖r = 1 and ‖c〈∇〉−1
c ‖r ≤ 1 (see (2.10) and

(2.11), respectively). Furthermore, the following stability bound holds on the ϕ1 function

(3.8)
∥∥ϕ1(iτc2ξ)

∥∥
r
≤ 1 for all ξ ∈ R;

see also [20]. This implies (together with the bilinear estimate (1.2)) that

‖Φτ (f1, g1)− Φτ (f2, g2)‖r ≤ ‖f1 − f2‖r + τK (‖g1‖r, ‖g2‖r) ‖g1 − g2‖r,

where the constant K depends on ‖g1‖r and ‖g2‖r, but can be chosen independently of c. A
similar bound holds for Ψ.

Global error. Thanks to the local error bound given in (3.4) the assertion then follows by
induction, respectively, a Lady Windermere’s fan argument; see, for example [18, 26].

In the next section we derive the second-order asymptotic consistent method for the KGS
system and state the corresponding convergence result.
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4. Construction of a second-order asymptotic consistent integrator. In this section
we derive a second-order integrator for the KGS system (1.1) based on Duhamel’s formula
(2.8) in the twisted variables (u∗, n∗).

Naïvely, one would think that the second-order integrator can be easily derived by simply
including the next terms (of order s) in the Taylor series expansions (3.1) and (3.5). This
would, however, not allow a uniform approximation in c due to the observation that formally

∂tu∗ = O(1) in c, however, ∂ttu∗(t) = O(c2)

(similarly for n∗). The construction of a numerical scheme based on a second-order Taylor
series expansion of u∗(t) would thus introduce an error of order O(τ2c2), but would not yield
the desired uniform second-order error bound O(τ2).

Therefore, we need to carry out a much more careful analysis by iterating Duhamel’s
formula twice which allows us to integrate the highly oscillatory terms e±ic

2`t (with ` ∈ Z)
exactly.

To obtain second-order approximations we need to impose additional regularity on the
exact solutions u∗(t) and n∗(t).

ASSUMPTION 4.1. Fix r > d/2 and assume that u∗, n∗ ∈ C([0, T ];Hr+4(Td)) with in
particular

sup
0≤t≤T

(
‖u∗(t)‖r+4 + ‖n∗(t)‖r+4

)
≤M4,

where M4 can be bounded uniformly in c.

4.1. Second-order approximation of u∗. In a first step we iterate Duhamel’s for-
mula (2.8) in u∗(tn+τ) by plugging Duhamel’s formula for n∗(tn+s) into the corresponding
integral in u∗(tn + τ). This yields

(4.1)

u∗(tn + τ) =

eiτAcu∗(tn)− ic〈∇〉−1
c

∫ τ

0

ei(τ−s)Ace−ic
2(tn+s)

∣∣∣∣∣eis∆n∗(tn)

+
i

2

∫ s

0

ei(s−θ)∆n∗(tn + θ)
(
eic

2(tn+θ)u∗(tn + θ)

+ e−ic
2(tn+θ)u∗(tn + θ)

)
dθ

∣∣∣∣∣
2

ds

=:eiτAcu∗(tn)

− ic〈∇〉−1
c

∫ τ

0

ei(τ−s)Ace−ic
2(tn+s)U1 (n∗(tn + s), u∗(tn + s)) ds .

The Taylor series expansions (3.1) and (3.5) imply that

U1 (n∗(tn + s), u∗(tn + s)) =∣∣∣∣eis∆n∗(tn) +
i

2
sn∗(tn)

(
eic

2tnϕ1(ic2s)u∗(tn) + e−ic
2tnϕ1(−ic2s)u∗(tn)

)∣∣∣∣2
+R3(s, tn, u∗, n∗),

where the remainder satisfies the estimate

‖R3(s, tn, u∗, n∗)‖r ≤ s2kr(M3)
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uniformly in c. Simplifying the absolute value square and employing the Taylor series
expansion eis∆ = 1 + is∆ +O(s2∆2) in the terms of order s furthermore implies that

U1 (n∗(tn + s), u∗(tn + s)) = |n∗(tn)|2 − is (∆n∗(tn))n∗(tn) + is (∆n∗(tn))n∗(tn)

+R4(s, tn, u∗, n∗).

Plugging U1 into (4.1) we thus obtain, together with the observation that Ac + c2 = c〈∇〉c,
the following second-order expansion in u∗

u∗(tn + τ) =eiτAcu∗(tn)− ic〈∇〉−1
c eiτAce−ic

2tn∫ τ

0

e−isc〈∇〉c

(
|n∗(tn)|2 − is (∆n∗(tn))n∗(tn) + is (∆n∗(tn))n∗(tn)

)
ds

+R4(τ, tn, u∗, n∗),

where the remainder satisfies

(4.2) ‖R4(τ, tn, u∗, n∗)‖r ≤ τ3kr(M4)

uniformly in c.
In order to derive a stable numerical scheme we carry out the following manipulation in

the exponential based on the observation (2.6) which implies that

se−isc〈∇〉c = se−is(c〈∇〉c−
1
2 ∆) +O(s2∆).

The above relation allows the following expansion of u∗(tn + τ):

u∗(tn + τ) = eiτAcu∗(tn)− ic〈∇〉−1
c eiτAce−ic

2tn∫ τ

0

e−isc〈∇〉c |n∗(tn)|2

+ ise−is
(
c〈∇〉c−

1
2∆
)(
− (∆n∗(tn))n∗(tn) + (∆n∗(tn))n∗(tn)

)
ds

+R4(τ, tn, u∗, n∗),

where the remainder R4 satisfies the bound (4.2). Integration by parts together with Defini-
tion 2.3 yields ∫ τ

0

e−isc〈∇〉cds = τϕ1

(
− iτc〈∇〉c

)
,∫ τ

0

se−is
(
c〈∇〉c−

1
2∆
)
ds = τ2Ψ2

(
−iτ

(
c〈∇〉c − 1

2∆
))
,

which yields

u∗(tn + τ) = eiτAcu∗(tn)− ic〈∇〉−1
c eiτAce−ic

2tn

(
τϕ1

(
− iτc〈∇〉c

)
|n∗(tn)|2

+ iτ2Ψ2

(
−iτ

(
c〈∇〉c − 1

2∆
)) (

n∗(tn) (∆n∗(tn))− n∗(tn) (∆n∗(tn))
))

+R4(τ, tn, u∗, n∗).
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This motivates us to define the following scheme in u∗:

(4.3) un+1
∗ = eiτAcun∗ − ic〈∇〉−1

c eiτAce−ic
2tnInu∗

(nn∗ )

with

Inu∗
(nn∗ ) := τϕ1

(
− iτc〈∇〉c

)
|nn∗ |2

+ iτ2Ψ2

(
−iτ

(
c〈∇〉c − 1

2∆
)) (

nn∗ (∆nn∗ )− nn∗ (∆nn∗ )
)
.

4.2. Second-order approximation of n∗. To approximate n∗ up to second order uni-
formly in c we proceed as above. Recall Duhamel’s formula (2.8) in the twisted variable n∗

(4.4)

n∗(tn + τ) =eiτ∆n∗(tn) +
i

2

∫ τ

0

ei(τ−s)∆
[
eic

2(tn+s)u∗(tn + s)

+ e−ic
2(tn+s)u∗(tn + s)

]
n∗(tn + s)ds.

In a first step we derive uniform approximations in n∗(tn + s) and u∗(tn + s) up to order s2 .
1) Approximation of n∗(tn + s): Thanks to the first-order approximation in n∗ given in

(3.6) we know that

(4.5)
n∗(tn + s) = eis∆n∗(tn) +

i

2
eic

2tnsϕ1

(
ic2s

)
n∗(tn)u∗(tn)

+
i

2
e−ic

2tnsϕ1

(
− ic2s

)
n∗(tn)u∗(tn) +R3(s, tn, u∗, n∗),

where the remainder satisfies

(4.6) ‖R3(s, tn, u∗, n∗)‖r ≤ s2kr(M3)

uniformly in c.
2) Approximation of u∗(tn + s): Thanks to the first-order approximation (3.3) we obtain

together with (3.1) that
(4.7)
u∗(tn + s) = eisAcu∗(tn)− ie−ic

2tnc〈∇〉−1
c sϕ1

(
−ic2s

)
|n∗(tn)|2 +R3(s, tn, u∗, n∗),

where the remainder satisfies (4.6) for some constant kr(M3) independent of c.
Plugging the first-order approximations (4.5) and (4.7) into (4.4) yields

(4.8)

n∗(tn + τ) =eiτ∆n∗(tn) +
i

2
eiτ∆

∫ τ

0

e−is∆

·
[
eis∆n∗(tn) +

i

2
eic

2tnsϕ1

(
ic2s

)
n∗(tn)u∗(tn)

+
i

2
e−ic

2tnsϕ1

(
− ic2s

)
n∗(tn)u∗(tn)

]
·
[
eic

2(tn+s)eisAcu∗(tn)− ieic
2sc〈∇〉−1

c sϕ1

(
−ic2s

)
|n∗(tn)|2

+e−ic
2(tn+s)e−isAcu∗(tn) + ie−ic

2sc〈∇〉−1
c sϕ1

(
ic2s

)
|n∗(tn)|2

]
ds

+R3(τ, tn, u∗, n∗),
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where the remainder satisfies (4.6) for some constant kr(M3) independent of c.

3) Approximation of the integral In∗(u∗(tn), n∗(tn)): The remaining task lies in the
approximation of the integral in (4.8), called In∗ henceforth. Using the approximation
se−is∆ = s+O(s2∆) and se−isAc = s+O(s2Ac) we obtain that

(4.9)

In∗ =

∫ τ

0

e−is∆
[(

eis∆n∗(tn)
) (

eic
2(tn+s)eisAcu∗(tn)

)]
ds

+

∫ τ

0

e−is∆
[(

eis∆n∗(tn)
) (

e−ic
2(tn+s)e−isAcu∗(tn)

)]
ds

+ i

∫ τ

0

sn∗(tn)
[
c〈∇〉−1

c |n∗(tn)|2
]

·
(
−eic

2sϕ1

(
−ic2s

)
+ e−ic

2sϕ1

(
ic2s

))
ds

+
i

2

∫ τ

0

s
[
eic

2tnϕ1

(
ic2s

)
n∗(tn)u∗(tn)

+e−ic
2tnϕ1

(
−ic2s

)
n∗(tn)u∗(tn)

]
·
[
eic

2(tn+s)u∗(tn) + e−ic
2(tn+s)u∗(tn)

]
ds

+R4(τ, tn, u∗, n∗),

where the remainder R4 satisfies

(4.10) ‖R4(τ, tn, u∗, n∗)‖r ≤ τ3kr(M4)

uniformly in c.

The latter two integrals can be easily solved by exploiting the relations for σ ∈ R,

∫ τ

0

s e−σic
2sϕ1(σic2s)ds =

∫ τ

0

sϕ1(−σic2s)ds = τ2ϕ2

(
−σic2τ

)
∫ τ

0

s eσic
2sϕ1(σic2s)ds = σ

1

ic2

∫ τ

0

(
ϕ0(σ2ic2s)− ϕ0(σic2s)

)
ds

= σ
τ

ic2

(
ϕ1(σ2ic2τ)− ϕ1(σic2τ)

)
,

which follow from the observation

eσic
2τϕ1

(
−σic2τ

)
= ϕ1

(
σic2τ

)
together with integration by parts and Definition 2.3.

The first two integrals need to be analysed with care. For the first integral In∗,1 we obtain
by Taylor series expansion together with the relation (see also Definition 2.3)

∫ τ

0

seσis(c
2−∆)ds = τ2Ψ2

(
σiτ(c2 −∆)

)
, σ = ±1(4.11)
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that

(4.12)

In∗,1 :=

∫ τ

0

e−is∆
[ (

eis∆n∗(tn)
) (

eic
2(tn+s)eisAcu∗(tn)

) ]
ds

=eic
2tn

∫ τ

0

eis(c
2−∆)

[
n∗(tn)u∗(tn) + (is∆n∗(tn))u∗(tn)

+ n∗(tn) (isAcu∗(tn))
]
ds+R4(τ, tn, u∗, n∗)

=eic
2tnτϕ1

(
iτ(c2 −∆)

)
n∗(tn)u∗(tn)

+ τ2eic
2tnΨ2

(
iτ(c2 −∆)

)
·
[

(i∆n∗(tn))u∗(tn) + n∗(tn) (iAcu∗(tn))
]

+R4(τ, tn, u∗, n∗).

For the second integral In∗,2 we similarly have

In∗,2 :=

∫ τ

0

e−is∆
[ (

eis∆n∗(tn)
) (

e−ic
2(tn+s)e−isAcu∗(tn)

) ]
ds

=e−ic
2tn

∫ τ

0

e−is(c
2−∆)e−2is∆

[ (
eis∆n∗(tn)

) (
e−isAcu∗(tn)

) ]
ds

=e−ic
2tn

∫ τ

0

e−is(c
2−∆)

[
n∗(tn)u∗(tn)

]
ds

+ e−ic
2tn

∫ τ

0

e−is(c
2−∆) (−2is∆)

[
n∗(tn)u∗(tn)

]
ds

+ e−ic
2tn

∫ τ

0

e−is(c
2−∆)

[
(is∆n∗(tn))u∗(tn) + n∗(tn) (−isAcu∗(tn))

]
ds

+R4(τ, tn, u∗, n∗).

Together with the definition of the ϕ1 function (Definition 2.3) and relation (4.11) we thus
obtain that
(4.13)

In∗,2 = e−ic
2tnτϕ1

(
−iτ(c2 −∆)

) [
n∗(tn)u∗(tn)

]

+ e−ic
2tnτ2Ψ2

(
−iτ(c2 −∆)

)
(−2i∆)

[
n∗(tn)u∗(tn)

]

+ e−ic
2tnτ2Ψ2

(
−iτ(c2 −∆)

) [
(i∆n∗(tn))u∗(tn) + n∗(tn)

(
− iAcu∗(tn)

)]
+R4(τ, tn, u∗, n∗).

Recall that by (4.8) and (4.9) we have that

n∗(tn + τ) = eiτ∆n∗(tn) +
i

2
eiτ∆In∗(u∗(tn), n∗(tn)).

Thus, plugging (4.12) and (4.13) into (4.9) motivates us (together with (4.3)) to define the
following numerical scheme

(4.14)
un+1
∗ = eiτAcun∗ − ic〈∇〉−1

c eiτAce−ic
2tnInu∗

(nn∗ ),

nn+1
∗ = eiτ∆nn∗ +

i

2
eiτ∆Inn∗

(un∗ , n
n
∗ )
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with

(4.15)
Inu∗

(nn∗ ) := τϕ1

(
− iτc〈∇〉c

)
|nn∗ |2

+ iτ2Ψ2

(
−iτ

(
c〈∇〉c − 1

2∆
)) (

nn∗ (∆nn∗ )− nn∗ (∆nn∗ )
)

and

(4.16)

Inn∗
:= eic

2tnτϕ1

(
iτ(c2 −∆)

)
nn∗u

n
∗

+ τ2eic
2tnΨ2

(
iτ(c2 −∆)

) [
(i∆nn∗ )u

n
∗ + nn∗ (iAcun∗ )

]
+ e−ic

2tnτϕ1

(
−iτ(c2 −∆)

) [
nn∗u

n
∗

]
+ e−ic

2tnτ2Ψ2

(
−iτ(c2 −∆)

) [
(−2i∆) (nn∗u

n
∗ )

+ (i∆nn∗ )u
n
∗ + nn∗

(
− iAcun∗

)]
+

τ

2c2
e2ic2tn

(
ϕ1

(
2ic2τ

)
− ϕ1

(
ic2τ

) )
nn∗ (u

n
∗ )

2

− τ

2c2
e−2ic2tn

(
ϕ1

(
−2ic2τ

)
− ϕ1

(
−ic2τ

) )
nn∗ (u

n
∗ )

2

+ iτ2
(
− ϕ2

(
ic2τ

)
+ ϕ2

(
−ic2τ

) )
nn∗
(
c〈∇〉−1

c |nn∗ |2
)

+
iτ2

2

(
ϕ2

(
ic2τ

)
+ ϕ2

(
−ic2τ

) )
nn∗ |un∗ |2

with ϕ1, ϕ2 and Ψ2 given in Definition 2.3.

4.3. Convergence analysis of the second-order scheme. The exponential-type integra-
tion scheme (4.14) converges (by construction) with second order in time uniformly with
respect to c, see Theorem 4.2 below.

THEOREM 4.2 (Convergence bound for the second-order scheme). Fix r > d/2 and
assume that Assumption 4.1 holds. For u∗ defined in (4.14) we set

zn :=
1

2

(
eic

2tnun∗ + e−ic
2tnun∗

)
.

Then, there exists a T > 0 and τ0 > 0 such that for τ ≤ τ0 and tn ≤ T we have for all c > 0
that

‖z(tn)− zn‖r + ‖n(tn)− nn‖r ≤ τ
2Kr,T,M,M4

,

where the constant Kr,T,M4 can be chosen independently of c.
Proof. Fix r > d/2.
Stability. In the following we set for f, g ∈ Hr and

Φτ (f, g) := eiτAcf − ic〈∇〉−1
c eiτAce−ic

2tnInu∗
(g),

Ψτ (f, g) := eiτ∆g +
i

2
eiτ∆Inn∗

(f, g)

such that, in particular, un+1
∗ = Φτ (un∗ , n

n
∗ ) and nn+1

∗ = Ψτ (un∗ , n
n
∗ ).

Note that for all t ∈ R we have that ‖eitAc‖r = 1 and ‖c〈∇〉−1
c ‖r ≤ 1; see (2.10) and

(2.11), respectively. Recall that by Definition 2.3 we have that

Ψ2(ξ) =
ϕ0(ξ)− ϕ1(ξ)

ξ
.
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This implies (by looking at the corresponding operators in Fourier space) that the kth Fourier
coefficient satisfies

τΨ2

(
iτ
(
c〈∇〉c −

1

2
∆
))

k

=
ϕ0

(
iτ
(
c
√
c2 + |k|2 + 1

2 |k|
2
))
− ϕ1

(
iτ
(
c
√
c2 + |k|2 + 1

2 |k|
2
))

i
(
c
√
c2 + |k|2 + 1

2 |k|2
) .

Note that for all k ∈ Zd we have

|k|2

c
√
c2 + |k|2 + 1

2 |k|2
≤ 2.

As |ϕ0(iξ)| ≤ 1 for all ξ ∈ R and ϕ1 satisfies (3.8) this allows us to derive the essential
stability bound

τ2

∥∥∥∥Ψ2

(
iτ
(
c〈∇〉c −

1

2
∆
))

∆f

∥∥∥∥
r

≤ 4τ‖f‖r.

Similarly, we obtain due to the observations for the kth Fourier coefficients(
−∆

c2 −∆

)
k

=
|k|2

c2 + |k|2
≤ 1 and

(
Ac

c2 −∆

)
k

=
c
√
c2 + |k|2 − c2

c2 + |k|2
≤ 1

that

τ2
∥∥Ψ2

(
± iτ(c2 −∆)

)
Opf

∥∥
r
≤ Kτ‖f‖r for Op = ∆ or Op = Ac

for some constant K > 0 independent of c.
Furthermore, by the definition of ϕ2 together with the relation ϕ2(ξ) = ϕ1(ξ)−1

ξ (see
Definition 2.3) we readily obtain that

τ2
∣∣ϕ2(i`c2τ)

∣∣ ≤ τ min

{
2

|`|c2
, τ

}
for all ` ∈ Z, ` 6= 0

such that

τ2
∥∥ϕ2(i`c2τ)f

∥∥
r
≤ τ min

{
2

|`|c2
, τ

}
‖f‖r for all ` ∈ Z, ` 6= 0.

Together with the bilinear estimate (1.2) we thus obtain that

‖Φτ (f1, g1)− Φτ (f2, g2)‖r ≤ ‖f1 − f2‖r + τK (‖g1‖r, ‖g2‖r) ‖g1 − g2‖r,

where the constant K depends on ‖g1‖r and ‖g2‖r, but can be chosen independently of c. A
similar bound holds for Ψ.

Global error. Thanks to the local error bound given in (4.2) and (4.10), respectively, the
assertion then follows by induction, respectively, a Lady Windermere’s fan argument; see, for
example [18, 26].
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5. Asymptotic consistency. In this section we show that our novel class of exponential-
type integrators of first and second order is indeed asymptotically consistent: in the non-
relativistic limit (c→∞) the schemes converge to the numerical solution of the corresponding
non-relativistic limit system (i.e., c→∞ in (1.1)). The latter can be derived with, for instance,
Modulated Fourier Expansion techniques; see [9, 11, 16, 17] and references therein. In
particular, the leading order term z∞ in the asymptotic expansion of z reads

(5.1) z∞(t, x) =
1

2

(
eic

2tu∞(t, x) + e−ic
2tu∞(t, x)

)
,

where (u∞, n∞) solve the decoupled free Schrödinger limit system

(5.2)
∂tu∞(t, x) = − i

2∆u∞(t, x), u∞(0) = z(0)− ic−2∂tz(0),

∂tn∞(t, x) = i∆n∞(t, x), n∞(0) = n0.

For sufficiently smooth solutions (and well prepared initial data) asymptotic convergence of
order two holds, i.e.,

z(t, x)− z∞(t, x) = O(c−2) and n(t, x)− n∞(t, x) = O(c−2).

The crucial difference between the limit Schrödinger system (5.2) and the full nonlinear
Klein-Gordon-Schrödinger system (1.1) lies in the fact that the limit system is linear. Therefore,
it can be solved exactly in time. Nevertheless, in order to compare its solution with our
asymptotic consistent schemes, we formulate it as a numerical integration scheme as follows

(5.3) un+1
∞ = e−

i
2 τ∆un∞, u0

∞ = z(0)− ic−2∂tz(0),

nn+1
∞ = eiτ∆nn∞, n0

∞ = n0

with solutions

(5.4) zn+1
∞ =

1

2

(
eic

2tn+1un+1
∞ + e−ic

2tn+1un+1
∞

)
and nn+1

∞ .

Asymptotic convergence of the first-order method. We now motivate the asymptotic
convergence of our first-order asymptotic consistent exponential-type integrator (3.7) towards
the limit solution (5.3). Thereby we use (2.6) and (2.10) which yields

(5.5)

∥∥∥ (Ac − 1
2∆
)
u∗(t)

∥∥∥
r

+
∥∥∥ (c〈∇〉−1

c − 1
)
u∗(t)

∥∥∥
r
≤ c−2k ‖u∗(t)‖r+4,∥∥∥τϕ1(±iτc2)

∥∥∥
r
≤ 2

c2

for some constant k > 0 independent of c. Applying (5.5) to (3.7) formally yields

un+1
∗ = e−

i
2 τ∆un∗ +O(c−2), nn+1

∗ = eiτ∆nn∗ +O(c−2).

Hence, for sufficiently smooth solutions the exponential-type integration scheme (3.7) con-
verges asymptotically to the solution of the corresponding free Schrödinger limit system
(5.3).

Asymptotic convergence of the second-order method. Techniques similar to (5.5)
allow us to show that formally

Inu∗
= O(c−2) and Inn∗

= O(c−2).

Applying the observation (5.5) in (4.14) implies that also our second-order exponential-type
integration scheme (4.14) formally converges asymptotically with order c−2 to the solution of
the corresponding free Schrödinger limit system (5.3).

The asymptotic consistent behaviour of our novel class of integrators is illustrated with
numerical experiments in the following section.
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6. Numerical experiments. In this section we numerically illustrate the convergence
properties of our first- and second-order integrators. For the space-discretization we use a
standard Fourier pseudospectral method. In our numerical experiments we choose the highest
Fourier mode M = 256 in our discretization (which corresponds to ∆x ≈ 0.0245) and
integrate the initial values

z(0, x) =
1

2

cos(x)2

2− cos(x)
, ∂tz(0, x) =

1

2
c2

sin(x) cos(x)

2− cos(x)
, n(0, x) = 1 + i

sin(x)

2− cos(x)

up to T = 1.

Time convergence plots: In Figure 6.1 and Figure 6.2 we plot the time-step size versus the
discrete H1-error of the first-order (3.7), respectively, second-order scheme (4.14), in double
logarithmic scale.

Asymptotic consistency plots: Figure 6.3 shows the asymptotic convergence of the first-
and second-order integrators towards their limit approximation (5.3) with rate c−2 (measured
in H1). In the simulation we use a time step size τ ≈ 10−7.
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FIG. 6.1. Order plots of the first-order asymptotic consistent method (3.7) for different values of c =
1, 5, 10, 50, 100, 500, 1000, 5000, 10000.

In the numerical experiments we observe that the error does not increase for increasing
values of c which is the aim of our novel developed methods. In particular, it is indicated that
the error introduced by our schemes reduces with increasing c. This might be due to the fact
that our numerical schemes asymptotically converge with order O(c−2) (see also Figure 6.3)
to the decoupled free Schrödinger limit system (5.2) which is indeed solved exactly in time.
Our numerical observations, in particular, suggest a global error behavior of type min{τ, c−2}
and min{τ2, c−2} for the first-order (3.7) and second-order (4.14) exponential-type integrator,
respectively.
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FIG. 6.2. Order plots of the second-order asymptotic consistent method (4.14) for different values of
c = 1, 5, 10, 50, 100, 500, 1000, 5000, 10000.
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FIG. 6.3. Asymptotic consistency plot. The derived integrators converge asymptotically with rate c−2 to the
limit solutions (5.3).
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