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APPROXIMATIONS FOR VON NEUMANN AND RÉNYI ENTROPIES OF
GRAPHS USING THE EULER-MACLAURIN FORMULA∗

NATÁLIA BEBIANO†, SUSANA FURTADO‡, JOÃO DA PROVIDÊNCIA§, WEI-RU XU¶, AND

JOÃO P. DA PROVIDÊNCIA‖

Abstract. There have been many attempts of understanding graph structures by investigating graph entropies.
In this article we investigate approximations for von Neumann and Rényi-α entropies of paths and rings, using the
Euler-Maclaurin summation formula. For α an integer, the approximations become exact, and, in general, the obtained
estimates have a remarkable degree of accuracy.
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1. Introduction. The Euler-Maclaurin (E-M) formula is an important tool in numeri-
cal analysis and one of the most remarkable formulas in mathematics. It estimates a sum∑n
k=0 g(k) through the integral

∫ n
0
g(t) dt with an error term involving Bernoulli num-

bers [13]. One form of the E-M formula states

n−1∑
k=0

g(k) =

∫ n

0

g(t) dt− 1

2
(g(n)− g(0))

+
1

12
(g′(n)− g′(0))− 1

2

∫ n

0

B2({t})g′′(t) dt,

(1.1)

where k is a nonnegative integer, B2(x) = x2 − x+ 1/6 is the second Bernoulli polynomial,
and {t} denotes the fractional part of t. The condition imposed on the real function g is that
it should have a continuous second derivative for t ∈ (0, n). If g has a continuous second
derivative for t ∈ [0, n] and a continuous third derivative for t ∈ (0, n), then the following
form holds (see [8]):

n−1∑
k=0

g(k) =

∫ n

0

g(t) dt− 1

2
(g(n)− g(0))

+
1

12
(g′(n)− g′(0)) +

1

6

∫ n

0

B3({t})g′′′(t) dt,

(1.2)

where B3(x) = x3 − 3x2/2 + x/2 is the third Bernoulli polynomial.
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Under the weaker hypothesis that g′(0) or g′(n) do not exist, i.e., g′(t) exists only for
t ∈ (0, n), instead of (1.1) the following holds:

(1.3)
n−1∑
k=0

g(k) =

∫ n

0

g(t) dt− 1

2
(g(n)− g(0)) +

∫ n

0

B1({t})g′(t) dt,

where B1(x) = x− 1/2 is the first Bernoulli polynomial.
In this paper we discuss the application of the E-M formula in graph entropy. The

E-M formula is an important tool for numerical integration and numerical summation [14].
Mathematica also uses this famous formula [14, p. 917]. Interestingly, neither Euler nor
Maclaurin presented this formula with remainder. The first one to do so was Poisson in 1830.
Since then, it has been derived in different ways (see [1] and [8] for elementary derivations).

The notion of entropy is due to Rudolf Clausius (1850) and is connected with his famous
theorem which generalizes the equally famous Carnot Theorem on the efficiency of thermal
machines. The concept has gained many applications in several research areas such as statistical
mechanics, information theory, etc. Recently, there have been many attempts of understanding
graph structures by investigating graph entropies (see [3, 4, 12, 15] and references therein).

Let G be an undirected graph with n vertices and at least one edge, and let L(G) be the
combinatorial Laplacian matrix of G, that is, L(G) = D(G) − A(G), where D(G) is the
diagonal matrix whose (i, i)-th entry is the degree of the vertex i and A(G) is the adjacency
matrix of G [6]. Note that each row (and column) sum of L(G) is 0, and so L(G) is singular.
Normalizing this matrix by its trace, we get

ρ(G) =
1

TrL(G)
L(G),

called the density matrix of G. By the Gershgorin Theorem, all eigenvalues of ρ(G) are
nonnegative [7]. Thus, G can be seen as a quantum state since ρ(G) is a Hermitian positive
semidefinite matrix with unit trace. Therefore, it is natural to investigate the information
content of the graph as a quantum state [10].

Let λ1, . . . , λn be the eigenvalues of ρ(G). Note that

λ1 + · · ·+ λn = 1.

The von Neumann entropy of G is defined as

S(G) = −
n∑
i=1

λi log2 λi.

From now on, we will use the natural logarithm in the definitions of the entropy. (The two
definitions, using log2 or log, are equivalent up to a positive constant.) We make the convention
that 0 log 0 = 0. We will use the following notations for a graph on n vertices: K1,n−1 denotes
the star graph, Pn denotes the path, Cn denotes the ring, and Kn denotes the complete graph.

It is well known that the Laplacian spectrum of the star graph is

σ(L(K1,n−1)) = {0, n, 1, . . . , 1},

where the eigenvalue 1 has multiplicity n− 2. Thus, we have

(1.4) S(K1,n−1) = log(2n− 2)− n

2n− 2
log(n),
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and

lim
n→∞

S(K1,n−1)

log(n− 1)
=

1

2
.

In [3, Conjecture 1.3], it has been conjectured that
CONJECTURE 1.1. For all connected graphs G on n vertices,

S(K1,n−1) ≤ S(G).

The conjecture was proved for almost all graphs with n vertices [3, Theorem 2.3]. In the same
article the following conjecture was also formulated:

CONJECTURE 1.2. For any tree T on n vertices,

S(T ) ≤ S(Pn).

LetG be a graph with at least one edge. Consider the density matrix ρ(G). Forα ∈ (0, 1)∪
(1,∞) fixed, the Rényi-α entropy of G [11] is defined as

Hα(G) =
1

1− α
log

n∑
i=1

λαi

and is also denoted as Hα(ρ(G)). For a fixed graph G, the Rényi-α entropy Hα(G) is a
monotonically decreasing function of α [3],

Hα(G) ≤ Hα′(G) for α > α′.

It was proved in [3, Proposition 3.1] that Hα(λ), for α > 1 and n ≥ 1, when viewed as a
function of a probability distribution, λ = (λ1, . . . , λn)

1. is minimized by the distribution λ0 = (1, 0, . . . , 0), and this is the only probability
distribution (up to a permutation of the entries) that does so;

2. is maximized by the constant distribution λc = (1/n, . . . , 1/n).
We have

(1.5) Hα(K1,n−1) = (1− α)
−1

log((nα + n− 2)(2n− 2)
−α

).

In [3, Conjecture 3.3], the following conjecture has been formulated.
CONJECTURE 1.3. For α > 1 and any connected graph G on n vertices,

Hα(K1,n−1) ≤ Hα(G).

Note that, as

lim
α→1+

Hα(G) = S(G),

the veracity of Conjecture 1.3 implies that Conjecture 1.1 has a positive answer.
This article is organized as follows: In Section 2 some useful background is presented.

In Section 3, estimates of the Rényi-α entropy of paths and rings on n vertices are obtained
for α ∈ (1,∞). The obtained approximations are shown to be exact in the case of α being an
integer. In Section 4, approximations for the von Neumann entropy are given. The key tool for
obtaining these estimates is the E-M formula. In Section 5, some final remarks are presented.
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2. Preliminary results. Given a path Pn, up to a permutation similarity, L(Pn) is the
tridiagonal matrix

(2.1) L(Pn) =


1 −1 0 · · · 0
−1 2 −1

0 −1
. . . . . .

...
...

. . . 2 −1
0 · · · −1 1

 .

The eigenvalues of L(Pn) are well known in the literature and can be readily obtained [6].
LEMMA 2.1. Let Pn be a path on n vertices. Then the eigenvalues of L(Pn) are

βk = 2 + 2 cos(kπ/n), k = 1, . . . , n.

The Laplacian matrix of the ring Cn is the circulant matrix

L(Cn) =


2 −1 0 −1
−1 2 −1

0 −1
. . . . . .
. . . 2 −1

−1 0 −1 2

 .

LEMMA 2.2 ([4]). The eigenvalues of L(Cn) are

βk = 2− 2 cos(2πk/n), k = 1, 2, . . . , n.

PROPOSITION 2.3. The Rényi-2 entropies of Pn and Cn are, respectively,

H2(Pn) = 2 log(2n− 2)− log(6n− 8) and H2(Cn) = 2 log(2n)− log(6n).

Proof. Observing that TrPn = 2n− 2, TrCn = 2n, by easy computations, we get
n∑
k=1

(
2 + 2 cos

kπ

n

)2

= 6n− 8, and
n∑
k=1

(
2− 2 cos

2kπ

n

)2

= 6n,

and the result follows.

3. On the Rényi-α entropy of paths and rings.

3.1. Estimates for paths. The main results in this section are Theorems 3.5 and 3.6. To
prove them, some auxiliary lemmas are needed. We start by presenting them. Throughout the
article, the following form of the E-M formula is used:

LEMMA 3.1. Let n be a positive integer, and let f be a real function of class C2 in [0, 1].
Then

(3.1)
n∑
k=1

f(k/n) = n

∫ 1

0

f(x) dx+
1

2
(f(1)− f(0)) +

1

12n
(f ′(1)− f ′(0)) +Rn,

with

Rn =
1

6n2

∫ 1

0

B3({nx})f ′′′(x) dx,(3.2)

B3(x) = x3 − 3x2/2 + x/2 the third Bernoulli polynomial, and {x} the fractional part of x.
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Proof. By the E-M formula (1.2), we have

n∑
k=1

f(k/n) = f(n/n)− f(0/n) +

n−1∑
k=0

f(k/n)

= f(n/n)− f(0/n) +

∫ n

0

f(t/n) dt− 1

2
(f(n/n)− f(0/n))

+
1

12

df(t/n)

dt

∣∣∣∣t=n
t=0

+
1

6

∫ n

0

B3({t})d3(t/n)

dt3
dt

=

∫ n

0

f(t/n) dt+
1

2
(f(n/n)− f(0/n))

+
1

12

df(t/n)

dt

∣∣∣∣t=n
t=0

+
1

6

∫ n

0

B3({t})d3f(t/n)

dt3
dt.

Changing variables x = t/n, the result follows.
LEMMA 3.2. Let f : R→ R

f(x) := (2 + 2 cos(πx))
α
, α ∈ R.

Then for Rn in (3.2) and α > 1

lim
n→∞

nRn = 0.

Proof. Notice that

f ′′(x) = −απ
2

2
(2 + 2 cos(πx))

α
(1− α+ α cos(πx)) sec2(πx/2),

f ′′′(x) =
απ3

2
(2 + 2 cos(πx))

α
(−1 + 3α− α2 + α2 cos(πx)) sec2(πx/2) tan(πx/2)

and that f ′′′(x0) = 0 for

x0 =
1

π
arccos((1− 3α+ α2)/α2),

where f ′′′(x) changes sign. By easy computations and having (1.2) in mind, we find for
α > 1, ∫ 1

0

|f ′′′(x)|dx = f ′′(0) + f ′′(1)− 2f ′′(x0)

=
α
(
−4α +

(
4α + 4

(
4 + 2/α2 − 6/α

)α)
α
)
π2

2(−1 + α)
=: dα.

Having in mind that

|B3(x)| ≤ 1

12
√

3
,

we get

|Rn| ≤
dα

72
√

3n2
,

and the result follows.
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Throughout, we use the following formula as given in Mathematica:

(3.3)
∫ 1

0

(2 + 2 cos(2πx))
α

dx =
4αΓ(1/2 + α)√
πΓ(1 + α)

=: cα,

where α > −1/2 and Γ is the well-known Gamma function.
LEMMA 3.3. For α > 1, we have

lim
n→∞

n

(
n∑
k=1

(2 + 2 cos(kπ/n))
α − 4αΓ(1/2 + α)√

πΓ(1 + α)
n+

4α

2

)
= 0.

Proof. For f(x) := (2 + 2 cos(πx))
α, we have f(1) = 0, f(0) = 4α, f ′(1) = 0,

f ′(0) = 0. This function is of class C2 in the interval [0, 1]. By Lemma 3.1, we get

n∑
k=1

(2 + 2 cosπk/n)
α

= n

∫ 1

0

f(x) dx+
1

2
(f(1)− f(0)) +

1

12n
(f ′(1)− f ′(0)) +Rn

= n
4αΓ(1/2 + α)√
πΓ(1 + α)

− 4α

2
+Rn,

where nRn → 0 as n→∞, by Lemma 3.2.
In Table 3.1 we compare, for n = 40, the sum

∑n
k=0 β

α
k , where β1, . . . , βn are the

eigenvalues of L(Pn), its approximation cαn− 4α/2, and Rn. The vanishing values of Rn
suggest that, for α a positive integer, Rn = 0.

TABLE 3.1
Comparing

∑n
k=0 βk , cαn− 4α/2, and Rn, for n = 40.

α
∑n
k=0 β

α
k cαn− 4α/2 Rn

3/2 131.812 131.812 4.03876× 10−6

2 232 232 0
5/2 418.599 418.599 −1.1875× 10−8

3 768 768 0
7/2 1426.05 1426.05 7.7307× 10−11

4 2672 2672 0
9/2 5041.97 5041.97 9.09495× 10−13

5 9568 9568 0

It is interesting to consider the case when α is an integer. For α = m ∈ Z+, we may write

4αΓ(1/2 + α)√
πΓ(1 + α)

=
4mΓ(1/2 +m)√
πΓ(1 +m)

=
4m(m− 1/2)(m− 3/2) · · · 1/2

m!

=
2m(2m− 1)!!

m!
,

where (2m− 1)!! = (2m− 1)(2m− 3) · · · 1.
LEMMA 3.4. For m,n ∈ Z+,

n∑
l=1

(2 + 2 cos(πl/n))
m

= n2m
(2m− 1)!!

m!
− 4m

2
.
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Proof. For t ∈ R and p, k ∈ Z+, by the binomial theorem, the following identity holds:

(2 + 2 cos(t))
m

= 2m
m∑
p=0

cosp(t)

(
m

p

)
, m ∈ Z+.

Considering (eit + e−it)/2 = cos(t), we easily find, again by the binomial theorem, that(
eit + e−it

2

)p
=

1

2p

p∑
k=0

(
p

k

)
e2ikt−itp =

1

2p

p∑
k=1

(
p

k

)
cos(2kt− tp)

because
(
p
k

)
=
(
p

p−k
)
. Hence,

cosp(t) =
1

2p

p∑
k=0

cos((2k − p)t)
(
p

k

)
.

As the sum of the n roots of unity is zero,

n∑
k=1

e2iksπ/n = 0, 0 6= s ∈ Z,

for r = 2s, 0 6= s ∈ Z, we have

n∑
k=1

cos(πrk/n) = 0.

For r = 2s+ 1, s ∈ Z, it can be easily seen that

n∑
k=1

cos(πrk/n) = −1.

Thus,

n∑
l=1

(2 + 2 cos(πl/n))
m

= n2m
[m/2]∑
q=0

m!

22q(m− 2q)!q!q!
− 2m

qmax∑
q=0

(
m

2q + 1

)
,

where qmax = m/2− 1 if m is even and qmax = (m− 1)/2 if m is odd.
The following identity holds (see [2]):

[m/2]∑
q=0

m!

22q(m− 2q)!q!q!
=

(2m− 1)!!

m!
.

We easily conclude that

2m
qmax∑
q=0

(
m

2q + 1

)
=

4m

2
,

and the result follows.
THEOREM 3.5. For α an integer and cα in (3.3), the E-M approximation

ncα −
4α

20
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to the sum
n∑
l=1

(2 + 2 cos(πl/n))
α

is exact.
Proof. This is a simple consequence of Lemma 3.4.
We recall that

(3.4) Hα(Pn) =
1

1− α

(
log

n∑
k=1

βαk − α log(2n− 2)

)
,

where the βk are the eigenvalues of L(Pn) in (2.1). We use the notation

(3.5) H̃α(Pn) =
1

1− α

(
log

(
4αΓ(1/2 + α)√
πΓ(1 + α)

n− 4α

2

)
− α log(2n− 2)

)
.

THEOREM 3.6. For α > 1 and H̃α(Pn) in (3.5), we have

lim
n→∞

n(Hα(Pn)− H̃α(Pn)) = 0.

Further, it holds that

lim
n→∞

Hα (Pn)

log(n− 1)
= 1.

Proof. Let β1, . . . , βn be the eigenvalues of L(Pn). We may write

Hα(Pn) =
1

(1− α)

(
log

n∑
i=1

βαi − α log(2n− 2)

)
(3.6)

=
1

1− α

(
log

(
4αΓ(1/2 + α)√
πΓ(1 + α)

n− 4α

2
+Rn

)
− α log(2n− 2)

)
(3.7)

so that for cα in (3.3) we find

n(Hα(Pn)− H̃α(Pn)) =
1

1− α

(
log

(
cαn−

4α

2
+Rn

)n
− log

(
cαn−

4α

2

)n)
=

1

1− α

(
log

(
1 +

Rn
cαn− 4α/2

)n)
.

We have

lim
n→∞

log

(
1 +

Rn
cαn− 4α/2

)n
= log lim

n→∞

(
1 +

Rn
n(cα − 4α/(2n))

)n
= 0

because limn→∞
Rn

cα−4α/(2n) = 0. It follows that

lim
n→∞

n(Hα(Pn)− H̃α(Pn)) = 0.

We may also write

Hα(Pn) = log(n− 1) +
log(cα + (cα − 4α/2 +Rn)/(n− 1))− α log 2

1− α
so that

Hα(Pn)

log(n− 1)
= 1 +

log (cα + (cα − 4α/2 +Rn)/(n− 1))− α log 2

(1− α) log(n− 1)
.

Then, the last statement follows.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

ENTROPIES OF GRAPHS 235

TABLE 3.2
Comparing H3/2(Pn), H̃3/2(Pn), H3/2(K1,n−1), and nRn.

n H3/2(Pn) H̃3/2(Pn) H3/2(K1,n−1) nRn

5 1.111 714 14 1.112 040 36 0.934 611 644 0.010 583 9
10 1.871 835 31 1.871 852 66 1.312 307 03 0.002 599 12
20 2.597 927 55 2.597 928 56 1.558 842 76 0.000 646 914
40 3.307 369 78 3.307 369 84 1.723 602 20 0.000 161 550
80 4.008 615 81 4.008 615 82 1.834 772 78 0.000 040 376 5

160 4.705 799 76 4.705 799 76 1.910 290 25 0.000 010 093 5

3.1.1. Numerical experiments. In Table 3.2 we compare the Rényi-3/2 entropy of the
path Pn with the approximate result in Theorem 3.6, denoted by H̃3/2(Pn), and with the
Rényi-3/2 entropy of K1,n−1 using equations (3.4), (3.5), and (1.5). The values of nRn are
also presented, suggesting that nRn behaves like 1/n2 so that Rn behaves like 1/n3.

Notice that (3.5), which has been derived having (1.1) in mind, remains valid also if
α < 1. In this case, we use (1.3), the only difference is the so obtained Rn because in the
actual application of the formula it turns out that g′(n) = g′(0) = 0.

In Table 3.3 we compare the Rényi-1/2 entropy of the path Pn with H̃1/2(Pn) and with
the Rényi-1/2 entropy of K1,n−1 using equations (3.4), (3.5), and (1.5). The values of nRn
are also presented, suggesting that nRn remains almost constant so that Rn behaves like 1/n.

TABLE 3.3
Comparing H1/2(Pn), H̃1/2(Pn), H1/2(K1,n−1), and nRn.

n H1/2(Pn) H̃1/2(Pn) H1/2(K1,n−1) nRn

5 1.261 154 63 1.280 797 66 1.231 700 12 −0.262 231
10 2.029 866 28 2.034 335 96 1.934 708 30 −0.261 907
20 2.755 813 29 2.756 883 80 2.586 966 12 −0.261 826
40 3.464 256 28 3.464 518 47 3.226 368 81 −0.261 806
80 4.164 790 32 4.164 855 21 3.867 939 69 −0.261 801

160 4.861 567 40 4.861 583 55 4.517 167 54 −0.261 800

TABLE 3.4
Comparing H1/4(Pn), H̃1/4(Pn), H1/4(K1,n−1), and

√
nRn.

n H1/4(Pn) H̃1/4(Pn) H1/4(K1,n−1)
√
nRn

5 1.318 667 98 1.366 411 22 1.310 910 50 −0.368 592 936
10 2.101 769 31 2.117 273 19 2.076 760 80 −0.368 499 782
20 2.833 087 94 2.838 363 06 2.789 408 62 −0.368 476 500
40 3.543 421 84 3.545 253 41 3.483 322 38 −0.368 470 680
80 4.244 573 58 4.245 215 50 4.171 580 73 −0.368 469 225

160 4.941 530 05 4.941 756 03 4.859 123 26 −0.368 468 861

In Table 3.4 we compare the Rényi-1/4 entropy of the path Pn with H̃1/4(Pn) and with
the Rényi-1/4 entropy of K1,n−1 using (3.4), (3.5), and (1.5). The values of

√
nRn are also

presented, suggesting that
√
nRn remains almost constant so that Rn behaves like 1/

√
n.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

236 N. BEBIANO ET AL.

3.2. Estimates for rings. Next we state results for rings analogous to those previously
presented for paths. We omit the proofs since they are similar.

LEMMA 3.7. Let α > 1 and f : R→ R be defined by f(x) := (2− 2 cos(2πx))
α. Then

lim
n→∞

n

(
n∑
k=1

f(
k

n
)− n4αΓ(1/2 + α)√

πΓ(1 + α)

)
= 0.

Proof. The proof is similar to the one of Lemma 3.3.
Notice that

(3.8) Hα(Cn) =
1

1− α

(
log

(
n

4αΓ(1/2 + α)√
πΓ(1 + α)

+Rn

)
− α log(2n)

)
.

We use the notation

(3.9) H̃α(Cn) =
1

1− α

(
log

(
n

4αΓ(1/2 + α)√
πΓ(1 + α)

)
− α log(2n)

)
.

THEOREM 3.8. For α > 1,

lim
n→∞

n(Hα(Cn)− H̃α(Cn)) = 0,

with Hα(Cn) and H̃α(Cn) in (3.8) and (3.9), respectively. Moreover, the approximation for
integer values of α becomes exact, and

lim
n→∞

Hα (Cn)

log(n− 1)
= 1.

Proof. The proof is similar to those of Theorems 3.5 and 3.6.
In Table 3.5 we compare, H3/2(Cn), H̃3/2(Cn), and H3/2(K1,n−1) using (3.8), (3.9),

and (1.5). The last column suggests that nRn behaves like 1/n2 so that Rn behaves like 1/n3.

TABLE 3.5
Comparing H3/2(Cn), H̃3/2(Cn), H3/2(K1,n−1), and nRn.

n H3/2(Cn) H̃3/2(Cn) H3/2(K1,n−1) nRn

5 1.239 797 86 1.244 092 00 0.934 611 644 0.182 445
10 1.936 989 82 1.937 239 18 1.312 307 03 0.042 335 5
20 2.630 371 05 2.630 386 36 1.558 842 76 0.010 396 5
40 3.323 532 59 3.323 533 54 1.723 602 20 0.002 587 66
80 4.016 680 66 4.016 680 72 1.834 772 78 0.000 646 201

160 4.709 827 90 4.709 827 90 1.910 290 25 0.000 161 506

4. Estimating the von Neumann entropy of paths and rings. In this section we apply
the E-M formula to the evaluation of the von Neumann entropy of the path Pn for arbitrary n.

Let f : R→ R,

f(x) := (2 + 2 cos(πx)) log(2 + 2 cos(πx)).

Then (3.1) and (3.2) hold. Since f(x) is not of class C2 in [0, 1], the upper bound for Rn
in (1.2) is not useful. However, it holds that

lim
n→∞

Rn = 0.
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Indeed, we clearly have

|Rn| ≤
1

12n

∫ 1

0

|f ′′(x)|dx =
2.41988

n

since, numerically, we find ∫ 1

0

|f ′′(x)|dx = 29.0386.

We estimate Rn. For this purpose, we consider the integral in (3.2)

1

n

∫ 1

0

B2({nx})f ′′(tx) dx =

∫ n

0

B2({t})d2f(t/n)

dt2
dt.

As f(x) is not of class C2 in [0, 1], we consider the form (1.1) of the E-M formula. In order to
deal with a divergence which arises in the integral, we split the integral over t into two parts:∫ n

0

B2({t})d2f(t/n)

dt2
dt =

∫ n−1

0

B2({t})d2f(t/n)

dt2
dt+

∫ n

n−1
B2({t})d

2f(t/n)

dt2
dt.

By the version (1.3) of the E-M formula, the sum
∑n−1
k=0 i(k) can be estimated by the integral∫ n

0
i(t) dt. To evaluate this integral, we consider∫ n−1

0

B2({t})d2f(t/n)

dt2
dt.

The fourth derivative of f(t/n) is given by

d4f

dt4
=
π4

n4

(
−2 + 2 cos(

πt

n
)

(
4 + log 2 + log

(
1 + cos(

πt

n
)

))
− sec2(

πt

2n
)

)
=: g(t).

Thus,

i(k) :=

∫ k+1

k

B2({t})d
2f(t/n)

dt2
dt =

1

360
g(k) + . . .

=
π4

360n4
(
− 2 + 2 cos(πk/n) (4 + log 2 + log (1 + cos(πk/n)))

− sec2(πk/(2n))
)

+O(1/n),

where O(1/n) approaches 0 as n→∞.
By changing variables x = k/n in the integral we find that∫ n−1

0

i(k) dk = n

∫ (n−1)/n

0

i(nx) dx

=
1

360

1

n3

∫ 1−1/n

0

π3
(
−2 + 2 cos(πx)(4 + log 2 + log(1 + cos(πx)))− sec2(πx/2)

)
dx

= − 4π2

360n2
,

if n is sufficiently large.
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Next we evaluate ∫ n

n−1
B2({t})d2f(t/n)

dt2
dt

using

d2f

dk2
= 6π2n−2 + 2π2n−2 log

((
π − kπ

n

)2
)

+ n−2O(1/n),

which is valid for n large and k close to n. Hence, for n large∫ n

n−1
B2({t})d2f(t/n)

dt2
dt = − π2

9n2
+ n−2O(1/n)

and

Rn =
2π2

360n2
+

π2

18n2
+O(1/n3) =

11π2

180n2
+O(1/n3).

Thus limn→∞ nRn = 0, and so

lim
n→∞

n

(
n∑
k=1

f

(
k

n

)
− 2n+ 2 log 4

)
= 0.

The entropy of the path Pn is given by

(4.1) S(Pn) = log(2n− 2)− 1

2n− 2

n∑
i=1

βi log βi,

where β1, . . . , βn are the eigenvalues of L(Pn) in (2.1). By the formula of Euler-Maclaurin,
we may write as in the Lemma 3.1

(4.2) S(Pn) = log(2n− 2)− 1

2n− 2
(2n− 4 log 2 +Rn) .

We have

S(Pn)− S̃(Pn) = − 1

2n− 2
Rn,

where

S̃(Pn) = log(2n− 2)− 1

2n− 2
(2n− 4 log 2) .

Now,

lim
n→∞

n
(
S(Pn)− S̃(Pn)

)
= 0,

and further, since

S(Pn)

log(n− 1)
= 1 +

1

log(n− 1)

(
log(2)− 1

2n− 2
(2n− 4 log 2 +Rn)

)
,
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TABLE 4.1
Comparing S(Pn), S̃(Pn), S(K1,n−1), and nRn.

n S(Pn) S̃(Pn) S(K1,n−1) nRn

5 1.172 983 81 1.176 015 13 1.073 542 85 0.121 253
10 1.932 958 73 1.933 293 35 1.611 157 82 0.060 232 8
20 2.657 877 88 2.657 917 44 2.060 884 96 0.030 067 6
40 3.366 608 99 3.366 613 81 2.464 975 77 0.015 027 7
80 4.067 484 24 4.067 484 84 2.843 847 37 0.007 513 11

160 4.764 480 83 4.764 480 91 3.208 504 81 0.003 756 46

it follows that

lim
n→∞

S (Pn)

log(n− 1)
= 1.

In Table 4.1 we compare the von Neumann entropy of the path Pn with the approxi-
mate result denoted by S̃(Pn) and with the von Neumann entropy of K1,n−1 using equa-
tions (4.1), (4.2), and (1.4). The values of nRn are also presented, indicating that nRn behaves
like 1/n so that Rn behaves like 1/n2. We notice that S̃(Pn) approaches S(Pn) from above.

We next obtain similar results for the ring Cn with n vertices. Consider the function
f : R→ R, f(x) := (2− 2 cos(2πx)) log(2− 2 cos(2πx)), observe that f(1) − f(0) = 0,
f ′(1)− f ′(0) = 0, and that ∫ 1

0

f(x) log f(x) dx = 2,

as given by Mathematica. By Lemma 3.1, we obtain

(4.3) S(Cn) = log(2n)− 1

2n
(2n+Rn).

As limn→∞ nRn = 0, we have

lim
n→∞

(S(Cn)− S̃(Cn)) = 0,

where

(4.4) S̃(Cn) = log(2n)− 1.

Moreover,

lim
n→∞

S(Cn)

log(n− 1)
= 1.

In Table 4.2 we compare the von Neumann entropy of the ring Cn with the approximation
S̃(Cn) and with the von Neumann entropy of K1,n−1 using (4.3), (4.4), and (1.4). The last
column suggests that nRn behaves like 1/n so that Rn behaves like 1/n2.

5. Final remarks. In this note we have illustrated applications of the Euler-Maclaurin
formula to the estimation of graph entropies of paths and rings. More generally, E-M formulas
are available and potentially can be used in the same way as it was done for entropies of other
graphs. From the previous Theorems 3.6 and 3.8 we conclude that, asymptotically, Hα(Pn)
and Hα(Cn) behave as log(n− 1).
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TABLE 4.2
Comparing S(Cn), S̃(Cn), S(K1,n−1), and nRn.

n S(Cn) S̃(Cn) S(K1,n−1) nRn

5 1.282 661 67 1.302 585 09 1.073 542 85 0.996 171
10 1.993 307 22 1.995 732 27 1.611 157 82 0.485 011
20 2.688 578 29 2.688 879 45 2.060 884 96 0.240 931
40 3.381 989 05 3.382 026 63 2.464 975 77 0.120 271
80 4.075 169 12 4.075 173 82 2.843 847 37 0.060 110 9

160 4.768 320 41 4.768 321 00 3.208 504 81 0.030 052 4

In Figure 5.1 we present Hα(Pn)− H̃α(Pn) on the left-hand side and Rn on the right-
hand side for 2 ≤ n ≤ 160 and for α = 1/2, 3/2, 5/2 and 7/2. It may be seen that Rn and
Hα(Pn)− H̃α(Pn) decrease extremely fast in absolute value as n increases. Indeed, these
quantities are practically equal to 0 for n > 30.

2 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

n

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
×10

-4

H1/2(Pn)− H̃1/2(Pn)

S(Pn)− S̃(Pn)

H3/2(Pn)− H̃3/2(Pn)

H5/2(Pn)− H̃5/2(Pn)

H7/2(Pn)− H̃7/2(Pn)

2 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

n

-6

-4

-2

0

2

4

6

8

10
×10

-3

Rn(1/2)
Rn

Rn(3/2)
Rn(5/2)
Rn(7/2)

FIG. 5.1. The behavior of Hα(Pn) − H̃α(Pn) on the left-hand side and of the corresponding Rn on the
right-hand side as n increases. The curve labeled Rn in the figure refers to the error in the sum

∑n
k=1 βk log βk ,

where βk are the eigenvalues of (2.1).

In Figure 5.3, we present the von Neumann entropy S̃(Pn) for the path Pn and the
Rényi-α entropies H̃α(Pn) for α = 1

4 ,
1
2 ,

3
2 , 2. We can see from this figure that

H̃1/4(Pn) > H̃1/2(Pn) > S̃(Pn) > H̃3/2(Pn) > H̃2(Pn)

as expected. These entropies increase with n for n ≥ 2.
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