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ON THE COMPOSITE DISCONTINUOUS GALERKIN METHOD FOR
SIMULATIONS OF ELECTRIC PROPERTIES OF SEMICONDUCTOR DEVICES∗

KONRAD SAKOWSKI†‡§, LESZEK MARCINKOWSKI‡, PAWEL STRAK†, PAWEL KEMPISTY†, AND

STANISLAW KRUKOWSKI†

Abstract. In this paper, a variant of the discretization of the van Roosbroeck equations in the equilibrium
state with the composite discontinuous Galerkin method for the rectangular domain is discussed. It is based on
the symmetric interior penalty Galerkin (SIPG) method. The proposed method accounts for lower regularity of the
solution at the interfaces of the layers of the device. It is shown that the discrete problem is well defined and that the
discrete solution is unique. Error estimates are derived. Finally, numerical simulations are presented.
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1. Introduction. Numerical simulations are an important tool in the development of
semiconductor devices. Since our contemporary electronics rely on semiconductors, there
is a strong demand for progress in this domain. Examples of such devices are light emitting
diodes, lasers, transistors, detectors, and many others. There are various approaches for the
simulation of such devices depending on precision, efficiency, and the size of the simulated
fragment. On the one hand, there are so-called ab initio methods, which are used to investigate
properties of elements composed of hundreds of thousands of atoms. These methods use
fundamental laws of physics, and they need days or weeks to perform a single simulation
on a computational cluster. Then there is drift-diffusion theory. In this case, the model is
much simpler, and it allows for simulating whole semiconductor devices on a standard desktop
computer. This model describes two kinds of carriers (electrons and holes), which move in
the electric field present in semiconductor devices. From the mathematical point of view, it
consists of a system of three nonlinear elliptic differential equations, which are called the van
Roosbroeck equations [29].

Numerical modeling of semiconductor devices with the drift-diffusion model has been
performed since 1964, when Gummel [11] proposed a numerical algorithm based on a simple
iteration method. Various methods were used for the discretization of the van Roosbroeck
equations, for example, the finite difference method (FDM) [26], the box method [1], or
the finite element method (FEM) [4]. Special variants of discretizations optimized for the
so-called continuity equations were developed [19].

In this paper, we focus our analysis on the following nonlinear elliptic equation for u∗,

−∇ ·
(
ε∇u∗

)
+ eu

∗−v∗ − ew
∗−u∗ = k1,(1.1)

which is a special case of the van Roosbroeck problem: Find u∗, v∗, w∗ such that

−∇ · (ε∇u∗) + eu
∗−v∗ − ew

∗−u∗ = k1,

−∇ · (µneu
∗−v∗∇v∗)−Q(u∗, v∗, w∗)(ew

∗−v∗ − 1) = 0,

−∇ · (µpew
∗−u∗∇w∗) +Q(u∗, v∗, w∗)(ew

∗−v∗ − 1) = 0.

(1.2)
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The functions ε(x), µn(x), µp(x), k1(x) are material parameters, and Q(x, u, v, w) is an
operator depending on the semiconductor material. We do not want to discuss properties of
these equations; we refer to [18, 26] for the physical details and to [13] for the mathematical
background. In the equilibrium case, when there is no energy exchange between the simulated
device and the environment, the functions v∗, w∗, which correspond to the quasi-Fermi
levels [18, 21], are constant due to the physical nature of this problem and the system (1.2)
simplifies to (1.1).

We would like to emphasize the main problems with the numerical solution of (1.2).
The first issue is the nonlinearity. Depending on the device composition and design, the
coefficients of the latter two equations may vary by several orders of magnitude. There are
various approaches to the solution of this system. They may involve decoupling, Banach
iteration [11, 20], Newton’s method [14], etc. In this paper, we do not want to go into detail
about this problem. For the specific solution method used by us in the numerical simulations,
please refer to [23].

The problem we discuss here is the discretization of these equations. As mentioned, FDM
and FEM discretizations are successfully used for this system since the second half of the
20th century [21, 26]. However, the design of semiconductor devices has been substantially
changed over time. Initially, semiconductor transistors or diodes were made from a single
material (e.g., silicon) divided into layers with different doping levels. These conditions were
mathematically reflected by the k1 function, possibly discontinuous, while ε, µn, µp remained
constant. On the other hand, contemporary semiconductor devices, like blue laser diodes
(see Figure 2.1), consist of layers of different semiconductor materials deposited on top of
each other. Recent designs also involve a change of material within one layer. The material
parameters, like ε, µn, µp, are no longer constant. In general, they are discontinuous. However,
these discontinuities are localized at the interfaces of the layers, and inside a layer, these
parameters are constant or, in general, smooth functions.

Thus, to obtain a good precision, it would be advantageous to use a discretization which
takes into account such localized lack of regularity and the discontinuities of the coefficients
on the interfaces and which allows the exploitation of higher regularity inside the layers. A
natural discretization method for such a problem would be the discontinuous Galerkin method
(DGM) [5, 22]. However, this method by its nature imposes many more degrees of freedom
in the simulations, leading to slower and more memory-consuming computations. Since the
physical layers of semiconductor devices have regular shapes, it is feasible to use the composite
discontinuous Galerkin method (CDGM) [6], which is a hybrid between the continuous and
discontinuous Galerkin methods. It allows to divide the domain into subdomains on which
the standard continuous finite element method is used, whereas on the interfaces between
these subdomains, the interior penalty method is used, thus allowing for discontinuities. This
approach allows to greatly reduce the number of additional degrees of freedom as they are only
needed on the interfaces. Besides, CDGM does not require conforming grids on the interfaces,
thus allowing for independent grids for the subdomains.

The composite discontinuous Galerkin method is currently successfully developed and
used for various problems, for example, elliptic eigenvalue problems [8], parabolic prob-
lems [17], and Darcy flow in homogeneous porous media [16]. A FETI–DP-type method (dual
primal finite element tearing and interconnecting) for CDGM in two dimensions was proposed
in [7].

We aim to use the composite discontinuous Galerkin method for semiconductor device
simulations due to several reasons. First, by its nature, it accounts for separate meshes on
the layers of the device, so it is possible to use nonconforming grids in general and to tune
the mesh for one layer without affecting the rest of the domain. Moreover, in simulations of
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gallium nitride laser diodes, the coefficients of the elliptic equations vary by several orders
of magnitude at the interfaces between semiconductor material layers. This effect occurs in
particular in the active region of the semiconductor devices, on interfaces between quantum
wells and quantum barriers, on boundaries of the electron blocking layers, etc. Highly varying
coefficients are not present in equation (1.1), but they occur in the two latter equations of (1.2).
The discontinuous Galerkin method is more robust than the continuous FEM in case of
discontinuous, highly variable coefficients. While in this paper we deal with equation (1.1),
the goal of our study is to use the CDGM method for the van Roosbroeck system (1.2). In
practice, in physical simulations, we also have to introduce additional physical effects which
are not accounted for by the formulation (1.2). One important example here is polarization,
which leads to significant interface charges in the nitride-based devices. This effect may be
introduced into (1.1) by the addition of the distributional derivatives on the interfaces which
lead to discontinuities of fluxes or unknown functions. In case of discontinuous Galerkin
methods, these discontinuities may be introduced to the model in a very natural way. Another
reason for using CDGM from a physical background is the local mass conservation, which is
a known property of discontinuous Galerkin method [22]. This property, in our specific case,
corresponds to the Gauss law, while the locality is limited to the subdomains of the device.

In this paper, we would like to present the error analysis of the CDGM variant for
equilibrium state solutions of the van Roosbroeck equations in R2. We limit our analysis
to this case, as the proof framework used in this paper, which is borrowed from the DGM
analysis of the Navier-Stokes problem [10], imposes the uniqueness of the solution, which is
not guaranteed in the non-equilibrium state. For a one-dimensional domain, we have numerical
evidence of convergence of the presented method for both the equilibrium and non-equilibrium
state [25]. This discretization was also used by our research group in simulations of realistic
semiconductor devices [24].

In our analysis, we focus on the standard continuous polynomial Pk element. Simulations,
however, are limited to the P1 case only. While there are many computer libraries and
frameworks for FEM and DGM discretizations, none that we are aware of supports CDGM
out of the box. In particular, it is not possible to define separate meshes across subdomains.
Therefore we develop our framework currently supporting only the standard continuous linear
P1 element. While a mathematical analysis is presented for equation (1.1), in simulations we
also cover the full drift-diffusion system (1.2).

The remainder of this paper is organized as follows. We start with the introduction of
the differential problem in Section 2. We propose a variant of the CDGM discretization of
this problem in Section 3. The main result of this paper is stated in Section 4. Then we show
existence and uniqueness of the introduced discrete problem in Sections 5, 6. In Section 7 we
discuss interpolation properties of the discrete space. Then we pass to the error estimate in
Section 8. Finally we present results of numerical simulations in Section 9, and we conclude
in Section 10.

2. Differential problem. The drift-diffusion model describes the relationship between
the electrostatic potential and the charge carrier concentrations: electrons and holes [27, 30].
The physical derivation of this model is beyond the scope of this work. Therefore we will
focus on the mathematical aspects.

We start with the domain Ω of our problem. Luminescent semiconductor devices are
made of planar layers deposited on top of each other, which vary in composition of the
semiconductor material or the number of impurities (see Figure 2.1). At opposite ends, metal
contacts are attached where the current can be applied. If this is the case, then it flows
through the device perpendicular to the deposited layers. We assume that Ω is a rectangle with
boundary ∂Ω = ∂ΩD ∪ ∂ΩN .
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FIG. 2.1. Example of a gallium nitride semiconductor laser structure.

In this paper, we deal with the equilibrium state. It corresponds to the following differential
problem: Find u∗ ∈ H1(Ω) such that

−∇ ·
(
ε(x)∇u∗

)
+ eu

∗−v̂ − eŵ−u
∗

= k1,

u∗ = û on ∂ΩD,

∇u∗ · ν = 0 on ∂ΩN ,

(2.1)

where v̂ = ŵ ≡ const. Since some results of this paper may be also applied to the non-
equilibrium case, we consider the more general assumption that v̂, ŵ ∈ L∞(Ω). Also we
assume that ε, û ∈ H1(Ω) ∩ L∞(Ω) and 0 < εm ≤ ε(x) ≤ εM , εm, εM ∈ R.

The following theorem is essential for the results presented in this paper. Its proof may be
found in [12].

THEOREM 2.1. The solution u∗ of problem (2.1) is bounded.
The weak formulation of the differential problem (2.1) is as follows: Find u∗ ∈ û+H1

0 (Ω)
such that

a(u∗, ϕ) + b(u∗, ϕ) = f(ϕ) ∀ϕ ∈ H1
0,∂ΩD

(Ω),(2.2)

where

a(u, ϕ) :=

∫
Ω

ε(x)∇u(x) · ∇ϕ(x) dx,

b(u, ϕ) :=

∫
Ω

(
eu(x)−v̂(x) − eŵ(x)−u(x)

)
ϕ(x) dx,

f(ϕ) :=

∫
Ω

k1(x)ϕ(x) dx.

(2.3)

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

DISCONTINUOUS GALERKIN METHOD FOR SEMICONDUCTORS 79

1

7

2

8

3

9

4

10

5

11

6

12

FIG. 3.1. An example of a two-dimensional coarse grid of Ω.

We use the following notation:

C∞0,∂ΩD
(Ω) := {f ∈ C∞(Ω) : f |∂ΩD

≡ 0},
H1

0,∂ΩD
(Ω) := closure of C∞0,∂ΩD

(Ω) in H1(Ω).

3. Discretization.

3.1. Discrete space. Let Ω ⊂ R2 be a rectangle divided into disjoint subrectangles
{Ωi}Ni=1 =: E in such a manner that E is a conforming mesh [28] of Ω (Figure 3.1). We will
call this division a coarse grid, and we assume that if e ⊂ ∂Ω is an edge of some Ωi, then
either e ⊂ ∂ΩD or e ⊂ ∂ΩN .

Let us define triangulations Thi
:= Ti,hi(Ωi), where hi := max{diam(τ) : τ ∈ Thi}. By

Nhi
we denote the nodes of the triangulation Thi

. We assume that {Ti,hi
(Ω)}hi

is a regular
uniform family of triangulations [3]. We will define Th :=

⋃N
i=1 Thi

. For s > 0, we define the
broken Sobolev spaces Hs(E) and Hs(Th) as

Hs(E) := {v ∈ L2(Ω) : ∀i ∈ {1, . . . , N} vi := v|Ωi
∈ Hs(Ωi)} ⊂ L2(Ω),

Hs(Th) := {v ∈ L2(Ω) : ∀τ ∈ Th v|τ ∈ Hs(τ)} ⊂ L2(Ω).

Then on every Ωi, we define a discrete space Xhi(Ωi) of piecewise polynomial functions on
the triangulation Thi :

Xhi
:= Xhi

(Ωi) :=
{
uh,i ∈ C(Ωi) : ∀τ ∈ Thi

uh,i
∣∣
τ
∈ Pk(τ)

}
,

where k ≥ 1 is some integer. Finally we define Xh(Ω) as

Xh(Ω) = Xh1
(Ω1)× · · · ×XhN

(ΩN ).

Note that we may treat any element of Xh(Ω) as a piecewise-continuous function whose
values are determined up to the interfaces ∂Ωi ∩ ∂Ωj . Thus we identify Xh(Ω) with a suitable
subset of the L2(Ω) space. Then note that Xh(Ω) 6⊂ H1(Ω) and Xh(Ω) 6⊂ H2(E), but
Xh(Ω) ⊂ H1(E), H1(Ω) ⊂ H1(E), and Xh(Ω) ⊂ H2(Th).

By Γ we denote a set of all internal and boundary edges of E . Then Γ is a sum of disjoint
sets ΓD, ΓN , and ΓI , where

ΓD := {e ∈ Γ : e ⊂ ∂ΩD}, ΓN := {e ∈ Γ : e ⊂ ∂ΩN}, ΓI := {e ∈ Γ : e ⊂ int(Ω)}.
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Therefore ΓD (resp. ΓN ) contains edges lying on the boundary where Dirichlet (resp. Neu-
mann) boundary conditions are imposed, and in ΓI there are all internal edges, which we
call interfaces as they frequently correspond to the physical interfaces between different
semiconductor materials. We also define

ΓDI := ΓD ∪ ΓI , Γi := {e ∈ Γ : e ⊂ ∂Ωi}.

Let e ∈ Γ. Then two cases are possible. Either e ∈ ΓD ∪ ΓN , hence there is a unique Ωi such
that e is an edge of Ωi, or e ∈ ΓI and there are exactly two sets Ωi,Ωj ∈ E such that e is their
common edge. Also we define nb(Ωi) := {Ωl ∈ E : Γi∩Γl 6= ∅}. Moreover, for e ∈ ΓD∪ΓN ,
by ν we denote the normal vector to Ω. On the other hand, for e ∈ ΓI , e = ∂Ωi ∩ ∂Ωj , i < j,
we define ν to be a vector normal to Ωi. Thus also −ν is normal to Ωj . The opposite direction
of these vectors may also be used, but they must be used consequently.

For s > 1/2 we define operators

[·] := [·]e : Hs(E)→ L2(e), {·} := {·}e : Hs(E)→ L2(e)

as

[u] :=

{
ui − uj if e ⊂ ΓI , e = ∂Ωi ∩ ∂Ωj , i < j,

ui if e ⊂ ΓD ∪ ΓN , e = ∂Ωi ∩ ∂Ω,

{u} :=

{
1
2

(
ui + uj

)
if e ⊂ ΓI , e = ∂Ωi ∩ ∂Ωj ,

ui if e ⊂ ΓD ∪ ΓN , e = ∂Ωi ∩ ∂Ω.

For convenience, we will also use this notion for the triangulation parameters, i.e.,

{h−s} :=
{ 1

hs

}
:=

 1
2

(
1
hs
i

+ 1
hs
j

)
if e = ∂Ωi ∩ ∂Ωj ,

1
hs
i

if e = ∂Ωi ∩ ∂Ω.

For further analysis, we introduce the so-called broken norm ‖ · ‖h in Xh(Ω) as

(3.1) ‖uh‖2h :=

N∑
i=1

∫
Ωi

ε
(
∇uh,i

)2

dx+
∑
e∈ΓDI

ηe

∫
e

[uh]2 ds,

where

ηe := 2σe{h−1} =

{
2σeh

−1
i e ∈ ΓD, e ⊂ Ωi,

σe

(
h−1
i + h−1

j

)
e ∈ ΓI , e ⊂ Ωi ∩ Ωj .

Here σe > 0 is a penalty parameter.
To simplify the analysis, we assume that 0 < σ0 ≤ σe for all e ∈ ΓDI . Also we assume

that 0 < hi < h0 ≤ 1 for all i ∈ {1, . . . , N}. The choice of σ0 and h0 will be discussed later
in Lemmas 5.2 and 8.2.

We also need the following standard result for FEM spaces:
LEMMA 3.1. For any uh ∈ Xh(Ω), Ωi ∈ E , and e ∈ Γi, the following estimates hold:

‖uh,i‖L2(e) ≤ Ch
−1/2
i ‖uh,i‖L2(Ωi)

,

‖∇uh,i · ν‖L2(e) ≤ Ch
−1/2
i |uh,i|H1(Ωi)

.

The constants C do not depend on hi.
These estimates are a consequence of the trace theorem applied to each edge of fine

elements in Ωi coincident with e followed by a scaling argument.
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3.2. Discrete problem. We discuss a variant of the composite discontinuous Galerkin
discretization derived from the symmetric interior penalty Galerkin (SIPG) method (cf. [22]
or [5]). We use the composite formulation (cf. [6]), i.e., inside every Ωi we use the finite
element method on the triangulation Thi , while on the boundaries e ∈ ΓDI we use the
discontinuous Galerkin method.

This problem is defined as follows: Find u∗h ∈ Xh(Ω) such that

(3.2) ah(u∗h, ϕh) + b(u∗h, ϕh) = fh(u∗h, ϕh), ∀ϕh ∈ Xh(Ω),

where

ah(uh, ϕh) =

N∑
i=1

∫
Ωi

ε∇uh,i · ∇ϕh,i dx−
∑
e∈ΓDI

∫
e

{ε∇uh · ν}[ϕh] ds

−
∑
e∈ΓDI

∫
e

{ε∇ϕh · ν}[uh] ds+
∑
e∈ΓDI

ηe

∫
e

[uh] · [ϕh] ds,

fh(ϕh) =

∫
Ω

k1ϕh dx−
∑
e∈ΓD

∫
e

{ε∇ϕh · ν}[û] ds

+
∑
e∈ΓD

ηe

∫
e

[û][ϕh] ds,

and b(u, ϕ) is defined as in (2.3).

4. Main result. Most of this paper is dedicated to justifying the following result:
THEOREM 4.1.
(a) The solution u∗h ∈ Xh(Ω) of the discrete problem (3.2) exists, and it is unique.
(b) Assume that u∗ ∈ H1(Ω) ∩ Hk+1(E), k ≥ 1, is a solution of the differential

problem (2.2) and ε ∈ L∞(Ω), ε|Ωi ∈ C1(Ωi) for all i ∈ {1, . . . , n}. Then the
following error estimate holds:

‖u∗ − u∗h‖h ≤ ‖u∗ − u∗I‖h + ‖u∗I − u∗h‖h

≤ C

(∑N
i=1

(
h2k
i +

∑
Ωl∈nb(Ωi)

h2k+1
i

hl

)
|u∗i |2Hk+1(Ωi)

)1/2

.
(4.1)

REMARK 4.2. If additionally we assume that hi := cih for every Ωi ∈ E , then the
estimate (4.1) reduces to

‖u∗ − u∗h‖h ≤ Chk
(∑N

i=1 |u∗i |2Hk+1(Ωi)

)1/2

.

Existence and uniqueness of the discrete problem are shown in Sections 5 and 6, respectively.
Then the error estimate is derived in Section 8.

5. Existence. We define P : Xh(Ω)→ X∗h(Ω) as

P (uh)ϕh := ah
(
uh, ϕh

)
+ b
(
uh, ϕh

)
− fh

(
ϕh
)
.

We would like to use the following consequence of the Brouwer theorem [9, 15]:
THEOREM 5.1. Let P : X → X∗ be a continuous function on a finite-dimensional

normed real vector space X such that for suitable ρ > 0 we have

P (x)x ≥ 0 ∀‖x‖ ≥ ρ.
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Then there exists x ∈ X such that

P (x) = 0.

We need the following lemma, which is a simple consequence of the Schwarz inequality
and Cauchy’s ε-inequality (see also [6]):

LEMMA 5.2. There exist σ0 > 0 and c > 0 such that for every σe ≥ σ0 and uh ∈ Xh(Ω)

c‖uh‖2h ≤ ah(uh, uh).

The constant σ0 depends on εm, εM , and the maximal number of edges of elements in the
coarse grid E .

Let C := max{‖v̂‖L∞(Ω), ‖ŵ‖L∞(Ω)}. Then we may decompose b(uh, uh) as

b
(
uh, uh

)
=

∫
Ω

(
euh−v̂ − eŵ−uh

)
uh dx

=

∫
Ω

(
euh−v̂ − eŵ−uh

)
uhχ{x∈Ω:|uh(x)|>C} dx

+

∫
Ω

(
euh−v̂ − eŵ−uh

)
uhχ{x∈Ω:|uh(x)|≤C} dx.

The first integral is non-negative, and the latter we can estimate from below by

(5.1)
∫

Ω

(
euh(x)−v̂(x) − eŵ(x)−uh(x)

)
uh(x)χ{x∈Ω:|uh(x)|≤C}(x) dx ≥ −|Ω|2e2CC.

To estimate fh(uh) we first use Lemma 3.1 and the trace inequality∣∣∣ ∑
e∈ΓD

∫
e

{ε∇uh · ν}[û] ds
∣∣∣ ≤ εM ∑

e∈ΓD

‖∇uh‖L2(e)‖û‖L2(e)

≤ cεM
N∑
i=1

h
−1/2
i ‖∇uh‖L2(Ωi)

‖û‖L2(Ωi)

≤ C‖uh‖h‖û‖H1(Ω),

where C depends on εM and h. Then, using the Schwarz inequality, we obtain

(5.2) −fh
(
uh
)
≥ −c(û, k1, h)‖uh‖h.

Therefore by Lemma 5.2 and by (5.1), (5.2), we get

P (uh)uh ≥ c1‖uh‖2h − c2‖uh‖h − c3,

where c1, c2, c3 ∈ R are some positive constants independent of uh. It is therefore clear that
for ‖uh‖h large enough, we have that P (uh)uh ≥ 0. Then by Theorem 5.1 there exists some
u∗h, such that P (u∗h) = 0.

6. Uniqueness. Assume that there exist two solutions u∗h, v
∗
h ∈ Xh(Ω) of equation (3.2).

Then taking ϕh := u∗h − v∗h and subtracting (3.2) for u∗h and v∗h we obtain

ah(u∗h − v∗h, u∗h − v∗h) =

N∑
i=1

∫
Ωi

e−v̂
(
ev
∗
h − eu

∗
h

)(
u∗h − v∗h

)
dx

+

N∑
i=1

∫
Ωi

eŵ
(
e−u

∗
h − e−v

∗
h

)(
u∗h − v∗h

)
dx.
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By the monotonicity of the exponential function, the right-hand side is nonpositive. On the
other hand by Lemma 5.2 we have

0 < c‖u∗h − v∗h‖2h ≤ ah(u∗h − v∗h, u∗h − v∗h).

Thus 0 < ‖u∗h − v∗h‖2h ≤ 0 since u∗h 6= v∗h, and we have a contradiction.

7. Interpolation operator. For any Ωi ∈ E let Πhi
: Hk+1(Ωi) → Xhi

⊂ C0(Ωi)
be a standard piecewise-polynomial continuous interpolation operator. Then we define
Πh : Hk+1(E)→ Xh by

∀Ωi ∈ E :
(

Πhu
)
i

:= Πhi
ui.

On any Ωi, we can use the standard interpolation estimate for FEM [3]:

‖ui −Πhi
ui‖L2(Ωi)

+ hi‖ui −Πhi
ui‖H1(Ωi)

≤ Chk+1
i |ui|Hk+1(Ωi)

.(7.1)

Let further uI := Πhu.
LEMMA 7.1. Let u ∈ Hk+1(E), uI := Πhu. For any Ωi ∈ E and for any e ∈ Γi,∥∥ui − uI,i∥∥L2(e)

≤ Chk+1/2
i |ui|Hk+1(Ωi)

,∣∣ui − uI,i∣∣H1(e)
≤ Chk−1/2

i |ui|Hk+1(Ωi)
.

Proof. For fixed e and Ωi, we have ‖ui − uI,i‖2L2(e) =
∑
τ∈Thi,e

‖ui − uI,i‖2L2(e∩τ).
Note that on a single triangulation element τ we have ui − uI,i ∈ H2(τ), so using the trace
inequality (see [22]) for H2(τ) functions we have

‖ui − uI,i‖L2(e∩τ) = C
(
h
−1/2
i ‖ui − uI,i‖L2(τ) + h

1/2
i |ui − uI,i|H1(τ)

)
.

Then by (7.1) it follows that

‖ui − uI,i‖L2(e) ≤ Ch
−1/2
i

(
‖ui − uI,i‖L2(Ωi)

+ hi‖ui − uI,i‖H1(Ωi)

)
≤ Chk+1/2

i |ui|Hk+1(Ωi)
.

(7.2)

The proof of the latter estimate is analogous.
Let us take any e ∈ ΓDI . For e ∈ ΓI we assume that e = Ωj ∩ Ωl for some Ωj ,Ωl ∈ E ,

and by the triangle inequality we have∫
e

[u− uI ]2 ds = ‖[u− uI ]‖2L2(e) ≤ 2
∑
i∈{j,l}

‖ui − uI,i‖2L2(e),

while for e ∈ ΓD we have e ∈ Γi for some Ωi ∈ E and simply∫
e

[u− uI ]2 ds =

∫
e

(ui − uI,i)2
ds = ‖ui − uI,i‖2L2(e).

Therefore it is sufficient to estimate ‖ui − uI,i‖2L2(e) for any e ∈ ΓDI , e ⊂ ∂Ωi using
Lemma 7.1. Let e ∈ ΓD. By (7.2) we have

ηe

∫
e

(
ui − uI,i

)2

ds = σeh
−1
i ‖ui − uI,i‖

2
L2(e)

≤ Cσeh−1
i h2k+1

i |ui|2Hk+1(Ωi)
= Cσeh

2k
i |ui|2Hk+1(Ωi)

.
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On the other hand, if e ∈ ΓI , then

ηe

∫
e

(
uj − uI,j

)2

ds =
1

2
σe(h

−1
j + h−1

l )‖uj − uI,j‖2L2(e)

≤ Cσe
(
h2k
j +

h2k+1
j

hl

)
|uj |2Hk+1(Ωj).

Then if we sum up over e ∈ ΓDI ,

∑
e∈ΓDI

ηe

∫
e

(
[u− uI ]

)2

ds ≤
N∑
i=1

C

(
h2k
i +

∑
Ωl∈nb(Ωi)

h2k+1
i

hl

)
|ui|2Hk+1(Ωi)

,

thus taking into account this estimate and (7.1), we obtain

‖u− uI‖2h ≤ C
N∑
i=1

(
h2k
i +

∑
Ωl∈nb(Ωi)

h2k+1
i

hl

)
|ui|2Hk+1(Ωi)

.(7.3)

If we increase the density proportionally, i.e., hi := cih, then the result can be improved to

‖u− uI‖2h ≤ Ch2k
N∑
i=1

|ui|2Hk+1(Ωi)
.

8. Error estimates. We start with the following auxiliary lemma.
LEMMA 8.1. Let u ∈ Hs(E), s ≥ 1. Then

‖u‖2L2(Ω) ≤ C
[ N∑
i=1

∫
Ωi

(
∇u
)2
dx+

∑
e∈ΓI

|e|−1

∫
e

[u]2 ds+
∑
e∈ΓD

∫
e

u2 ds
]
.

A proof of Lemma 8.1 may be found in [2]. Next we would like to have an analog of the
Poincaré inequality for the Hs(E) spaces.

LEMMA 8.2. Let u ∈ Hs(E), s ≥ 1. Then there exists some h0 > 0 such that
‖u‖L2(Ω) ≤ c‖u‖h for 0 < h ≤ h0, where c is independent of h.

Proof. By definition of the broken norm (3.1), we have

‖u‖2h :=

N∑
i=1

∫
Ωi

εi

(
∇u
)2

dx+
∑
e∈ΓDI

ηe

∫
e

[u]2 ds.

Note that |e| does not depend on h and ηe →∞ as h→ 0. Thus we can find h0 > 0 such that
ηe ≥ |e|−1 and ηe ≥ 1 for any 0 < h < h0, and then by Lemma 8.1

‖u‖2L2(Ω) ≤ C
[ N∑
i=1

∫
Ωi

(
∇u
)2
dx+

∑
e∈ΓI

|e|−1‖[u]‖2L2(e) +
∑
e∈ΓD

‖[u]‖2L2(e)

]

≤ C
[
ε−1
m

N∑
i=1

∫
Ωi

εi
(
∇u
)2
dx+

∑
e∈ΓDI

ηe

∫
e

[u]2 ds
]

≤ C1‖u‖2h.

To prove error estimates of the proposed discretization, we would like to introduce the
following assumptions:

u∗ ∈ H1(Ω) ∩Hk+1(E), ε ∈
{
v ∈ L∞(Ω) : ∀i ∈ {1, . . . , n} v|Ωi

∈ C1(Ω)
}
.
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8.1. Consistency. We start with an abstract result. Let f ∈ L2(Ω). We pose two
problems. The first is the following: Find u∗ ∈ H1(Ω) such that∫

Ω

ε∇u∗ · ∇ϕdx =

∫
Ω

fϕ dx ∀ϕ ∈ H1
0,∂ΩD

(Ω),

u∗ = û on ∂ΩD.

(8.1)

The second problem is posed in a broken Sobolev space: Find u∗ ∈ H1(E) such that
∀ϕ ∈ H1(E) ∩H2(Th)

N∑
i=1

∫
Ωi

ε∇u∗ · ∇ϕdx−
∑
e∈ΓDI

∫
e

{
ε∇u∗ · ν

}
[ϕ] ds

−
∑
e∈ΓDI

∫
e

{
ε∇ϕ · ν

}
[u∗] ds+

∑
e∈ΓDI

ηe

∫
e

[u∗][ϕ] ds

=

N∑
i=1

∫
Ωi

fϕ dx−
∑
e∈ΓD

∫
e

{
ε∇ϕ · ν

}
[û] ds+

∑
e∈ΓD

ηe

∫
e

[û][ϕ] ds.

(8.2)

We would like to prove the following result.
THEOREM 8.3. Assume that the solution u∗ of problem (8.1) belongs to H1(Ω) ∩H2(E)

and ε∇u∗ ∈ H1(E). Then u∗ satisfies (8.2). Conversely, if u∗ ∈ H2(E)∩H1(Ω) is a solution
of (8.2) and ε∇u∗ ∈ H1(E), then it is also a solution of (8.1).

The proof presented in this paper is based on the standard approach in the discontinuous
Galerkin method; cf., e.g., [22].

LEMMA 8.4. Let u ∈ H1(Ω) ∩ H2(E), ε∇u ∈
(
H1(E)

)2
, 0 < εm ≤ ε ≤ εM , and

f ∈ L2(Ω). The following statements are equivalent:
• u satisfies ∫

Ω

ε∇u · ∇ϕ =

∫
Ω

fϕ, ∀ϕ ∈ H1
0,∂ΩD

(Ω),(8.3)

• u satisfies

−
N∑
i=1

∫
Ωi

∇ ·
(
εi∇ui

)
ϕi =

∫
Ω

fϕ, ∀ϕ ∈ L2(Ω)[
ε∇u · ν

]∣∣
e

= 0 ∀e ∈ ΓI ,

∇u · ν = 0 on ∂ΩN .

(8.4)

Proof. (8.4)⇒ (8.3) follows simply from Green’s theorem. To prove (8.3)⇒ (8.4), take
any ϕ ∈ C∞0 (Ω). Since C∞0 (Ω) ⊂ H1

0,∂ΩD
(Ω), then by (8.3) we have∫

Ω

ε∇u · ∇ϕ =

∫
Ω

fϕ.

By Green’s theorem,∫
Ω

fϕ dx =

N∑
i=1

∫
Ωi

ε∇u · ∇ϕdx

= −
N∑
i=1

∫
Ωi

∇ ·
(
ε∇u

)
ϕdx+

∑
e∈Γ

∫
e

[ε∇u · ν]ϕds.
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Since ϕ is zero on ∂Ω, we may rewrite the last sum as

∫
Ω

fϕ dx+

N∑
i=1

∫
Ωi

∇ ·
(
ε∇u

)
ϕdx =

∑
e∈ΓI

∫
e

[ε∇u · ν]ϕds.

Note that we may treat this relationship as an equality of distributions. Since f,∇ ·
(
ε∇u

)
∈

L2(Ω) =
(
L2(Ω)

)∗
, the left-hand side clearly defines a linear continuous functional over

L2(Ω), while the right-hand side does not unless it is identically zero, since for example it
does not converge to zero provided that ‖ϕ‖L2(Ω) → 0. Since the sum of any two elements
of a conjugated space must give an element included in this space, both sides of the above
equality must be zero. Thus in particular

−
N∑
i=1

∫
Ωi

∇ ·
(
ε∇u

)
ϕdx =

∫
Ω

fϕ.

This statement is true for ϕ ∈ C∞0 (Ω). It is also true for any ϕ ∈ L2(Ω) as C∞0 (Ω) is dense
in L2(Ω), and thus the first statement of (8.4) is shown.

Proof of Theorem 8.3. First we prove (8.1)⇒ (8.2). Assume that u∗ is a solution of (8.1)
and that it belongs to H1(Ω) ∩H2(E). We have by definition∫

Ω

ε∇u∗ · ∇φdx =

∫
Ω

fφ dx ∀φ ∈ H1
0,∂ΩD

(Ω).

We use Lemma 8.4, and we obtain that for any φ ∈ L2(Ω)

−
∫

Ω

∇ ·
(
ε∇u∗

)
φdx =

∫
Ω

fφ dx.

Let us take any ϕ ∈ H1(E) ∩H2(Th) and substitute φ := ϕ. We may split the integrals into

−
N∑
i=1

∫
Ωi

∇ ·
(
ε∇u∗

)
ϕdx =

N∑
i=1

∫
Ωi

fϕ dx.

By Green’s theorem, we have

−
∫

Ωi

∇ ·
(
ε∇u∗

)
ϕdx =

∫
Ωi

ε∇u∗ · ∇ϕdx−
∫
∂Ωi

ε∇u∗ · νϕ dx.

Summing up these results in Ωi, we get

N∑
i=1

∫
Ωi

ε∇u∗ · ∇ϕdx−
N∑
i=1

∫
∂Ωi

ε∇u∗ · νϕ dx =

N∑
i=1

∫
Ωi

fϕ dx.

By Lemma 8.4, we have that [ε∇u∗] = 0 on every e ∈ ΓI , thus {ε∇u∗ · ν} = ε∇u∗ · ν on
any ∂Ωi, and we have

N∑
i=1

∫
Ωi

ε∇u∗ · ∇ϕdx−
∑
e∈Γ

∫
e

{
ε∇u∗ · ν

}
[ϕ] dx =

N∑
i=1

∫
Ωi

fϕ dx.
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By the homogeneous Neumann boundary condition (Lemma 8.4) on e ∈ ΓN we have
{ε∇u∗ · ν} = 0 and

(8.5)
N∑
i=1

∫
Ωi

ε∇u∗ · ∇ϕdx−
∑
e∈ΓDI

∫
e

{
ε∇u∗ · ν

}
[ϕ] dx =

N∑
i=1

∫
Ωi

fϕ dx.

Since u∗ ∈ H1(Ω), then [u∗] = 0 for any e ∈ ΓI , and by the assumption on e ∈ ΓD we have
u∗ = û, thus we have for any ϕ ∈ H1(E)∑

e∈ΓDI

ηe

∫
e

[u∗][ϕ] ds−
∑
e∈ΓDI

∫
e

{
ε∇ϕ · ν

}
[u∗] ds

=
∑
e∈ΓD

ηe

∫
e

[û][ϕ] ds−
∑
e∈ΓD

∫
e

{
ε∇ϕ · ν

}
[û] ds.

By adding this result side-by-side to (8.5) we obtain (8.2).
We proceed to (8.2)⇒ (8.1). Assume that (8.2) is true. First, we recover the Dirichlet

boundary conditions. Take any e ∈ ΓD such that e ∈ ∂Ωi and ϕ̄ ∈ C∞0 (e). Then let {ϕε}ε be
a sequence of functions, such that

ϕε ∈ C∞(Ω), ϕε|e = ϕ̄, supp(ϕε) ⊂ Ωi ∪ e,
ϕε|∂Ωi\e ≡ 0, ∇ϕε · ν|∂Ωi

= 0, ‖ϕε‖L2(Ω) −−−→
ε→0

0.

Then ϕ ∈ H1(E) ∩H2(Th) and (8.2) becomes∫
Ωi

ε∇u∗ · ∇ϕε dx−
∫
e

ε∇u∗ · νϕ̄ ds+ ηe

∫
e

u∗ϕ̄ ds =

∫
Ωi

fϕε dx+ ηe

∫
e

ûϕ̄ ds.

By Green’s theorem,∫
Ωi

∇ ·
(
ε∇u∗

)
ϕε dx+ ηe

∫
e

u∗ϕ̄ ds =

∫
Ωi

fϕε dx+ ηe

∫
e

ûϕ̄ ds.

Passing to the limit ε→ 0,

ηe

∫
e

u∗ϕ̄ ds = ηe

∫
e

ûϕ̄ ds.

Since ϕ̄ ∈ C∞0 (e) and e ∈ ΓD are arbitrary, we get

u∗|∂ΩD
= û|∂ΩD

,

and the Dirichlet boundary conditions are satisfied.
Take any ϕ ∈ C∞0,∂ΩD

(Ω). Thus,∑
e∈ΓDI

ηe

∫
e

[u∗][ϕ] ds =
∑
e∈ΓD

ηe

∫
e

[û][ϕ] ds = 0

as [ϕ] = 0 for any e ∈ ΓI since ϕ ∈ C∞0,∂ΩD
(Ω), and on e ∈ ΓD we have [ϕ] = ϕ ≡ 0.

Analogously, we see that

−
∑
e∈ΓDI

∫
e

{
ε∇u∗ · ν

}
[ϕ] ds = 0.
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By the assumptions of the theorem u∗ ∈ H1(Ω), so [u∗] = 0 for any e ∈ ΓI . Also, we have
already shown that u∗ = û for e ∈ ΓD, so

−
∑
e∈ΓDI

∫
e

{
ε∇ϕ · ν

}
[u∗] ds = −

∑
e∈ΓD

∫
e

{
ε∇ϕ · ν

}
[û] ds.

Thus, we obtain
N∑
i=1

∫
Ωi

ε∇u∗ · ∇ϕdx =

∫
Ω

fϕ dx.

Since this statement is true for any ϕ ∈ C∞0,∂ΩD
(Ω), it is valid for any ϕ ∈ H1

0,∂ΩD
(Ω) as

well, so we regain the first statement of (8.1).

8.2. Auxiliary estimates. For better readability, we will divide the differential operators
into several components. We define the following operators

A(u, ϕ) :=

N∑
i=1

∫
Ωi

ε∇u · ∇ϕdx,

B(u, ϕ) :=

N∑
i=1

∫
Ωi

(
eu−v̂ − eŵ−u

)
ϕdx,

C(ϕ) :=

N∑
i=1

∫
Ωi

k1ϕdx,

D(u, ϕ) := −
∑
e∈ΓDI

∫
e

{
ε
∂u

∂ν

}
[ϕ] ds,

E(u, ϕ) := −
∑
e∈ΓDI

∫
e

{
ε
∂ϕ

∂ν

}
[u] ds,

F (ϕ) := −
∑
e∈ΓD

∫
e

{ε∇ϕ · n}[û] ds,

I(ϕ) :=
∑
e∈ΓD

ηe

∫
e

[û] · [ϕ] ds,

J(u, ϕ) :=
∑
e∈ΓDI

ηe

∫
e

[u] · [ϕ] ds.

In this section, we will prove several estimates for these operators. These estimates will be
used in the derivation of the main result in Section 8.3.

LEMMA 8.5. Let uh ∈ Xh(Ω). Then

A(uh, uh) + J(uh, uh) +D(uh, uh) + E(uh, uh) ≥ c‖uh‖2h.

Proof. It is a simple consequence of Lemma 5.2.
LEMMA 8.6. Let u, v ∈ L2(Ω). Then B(u, u− v)−B(v, u− v) ≥ 0.
Proof. Since the exponential function is monotone, we have

B(u, u− v)−B(v, u− v) =

∫
Ω

e−v̂
(
eu − ev

)
(u− v) dx

+

∫
Ω

eŵ
(
e−v − e−u

)
(u− v) dx ≥ 0.
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LEMMA 8.7. Let u, ϕ ∈ H1(E). Then

|A(u, ϕ) + J(u, ϕ)| ≤ C‖u‖h‖ϕ‖h.

Proof. It is a simple consequence of the Schwarz inequality.
LEMMA 8.8. Let u, v, ϕ ∈ H1(E) and α ≤ u, v ≤ β for some α, β ∈ R. Then

|B(u, ϕ)−B(v, ϕ)| ≤ C‖u− v‖h‖ϕ‖h,

where C is a constant dependent on α, β, ‖v̂‖L∞(Ω), and ‖ŵ‖L∞(Ω).
Proof. Note that the exponential function is locally Lipschitz-continuous, so since u, v

are bounded,

‖eu − ev‖L2(Ω) ≤ C‖u− v‖L2(Ω).

The same is true for e−v−e−u. Thus using the Schwarz inequality and the Poincaré inequality
for the broken norm (Lemma 8.2), we obtain∣∣∣B(u, ϕ)−B(v, ϕ)

∣∣∣ =
∣∣∣ ∫

Ω

e−v̂
(
eu − ev

)
ϕdx+

∫
Ω

eŵ
(
e−v − e−u

)
ϕdx

∣∣∣
≤ C‖u− v‖L2(Ω)‖ϕ‖L2(Ω) ≤ C‖u− v‖h‖ϕ‖h.

LEMMA 8.9. Let u ∈ Hk+1(E), uI := Πhu (see Section 7) and ϕh ∈ Xh(Ω). Then

|D(u− uI , ϕh)| ≤ Chk
(∑N

i=1 |ui|2Hk+1(Ωi)

)1/2

‖ϕh‖h.

The constant C depends on εM and σ0.
Proof. We have

D(u− uI , ϕh) = −
∑
e∈ΓDI

∫
e

{
ε∇(u− uI) · ν

}
[ϕh] ds.

Let us take any e ∈ ΓI , e ∈ ∂Ωj ∩ ∂Ωl. Then the Schwarz inequality yields that∫
e

{
ε∇(u− uI) · ν

}
[ϕh] ds ≤ εM‖{∇(u− uI) · ν}‖L2(e)‖[ϕh]‖L2(e).

Then by Lemma 7.1 we get

‖{∇(u− uI) · ν}‖L2(e) ≤
(
h
k−1/2
j |uj |Hk+1(Ωj) + h

k−1/2
l |ul|Hk+1(Ωl)

)
≤ (hj + hl)

k−1/2 (|uj |Hk+1(Ωj) + |ul|Hk+1(Ωl)

)
.

Therefore,

η−1
e ‖{∇(u− uI) · ν}‖2L2(e) ≤ Cσ

−1
e hjhl(hj + hl)

2k−2
(|uj |Hk+1(Ωj) + |ul|Hk+1(Ωl))

2

≤ Ch2k(|uj |Hk+1(Ωj) + |ul|Hk+1(Ωl))
2
.

If e ∈ ΓD, e ∈ ∂Ωi, then analogously we have

η−1
e ‖{∇(u− uI) · ν}‖2L2(e) ≤ Cσ

−1
e h2k

i |ui|2Hk+1(Ωi)
≤ Ch2k|ui|2Hk+1(Ωi)

.
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Therefore by the Schwarz inequality and the inequalities derived above, we conclude that∑
e∈ΓDI

∫
e

{
ε∇(u− uI) · ν

}
[ϕh] ds

≤ C
(∑

e∈ΓDI
η−1
e ‖{∇(u− uI) · ν}‖2L2(e)

)1/2(∑
e∈ΓDI

ηe‖[ϕh]‖2L2(e)

)1/2

≤ Chk
(∑N

i=1 |ui|2Hk+1(Ωi)

)1/2

‖ϕh‖h.

The constant C is independent of h. It depends on σ0, εM , and on the number of elements of
ΓDI .

LEMMA 8.10. Let u ∈ H2(E), uI := Πhu (see Section 7), and ϕh ∈ Xh(Ω). Then

|E(u− uI , ϕh)| ≤ C‖ϕh‖h

[
N∑
i=1

(
h2k
i +

∑
Ωl∈nb(Ωi)

h2k+1
i

hl

)
|ui|2Hk+1(Ωi)

]1/2

.

Proof. By the Schwarz inequality,

|E(u− uI , ϕh)| ≤
∑
e∈ΓDI

∫
e

∣∣∣{ε∇ϕh · ν}∣∣∣∣∣∣[u− uI ]∣∣∣ ds
≤ εM

∑
e∈ΓDI

‖{∇ϕh · ν}‖L2(e)‖[u− uI ]‖L2(e).

Splitting this sum up we get

‖{∇ϕh · ν}‖L2(e) ≤
∥∥∇ϕh · ν∣∣Ωi

∥∥
L2(e)

+
∥∥∇ϕh · ν∣∣Ωl

∥∥
L2(e)

.

Then using Lemma 3.1 we have∥∥∇ϕh · ν∣∣Ωi

∥∥2

L2(e)
≤ Ch−1

i ‖∇ϕh‖
2
L2(Ωi)

≤ Ch−1
i ‖ϕh‖

2
h.

On the other hand we see that

‖[u− uI ]‖L2(e) ≤
∥∥u− uI ∣∣Ωi

∥∥
L2(e)

+
∥∥u− uI ∣∣Ωl

∥∥
L2(e)

.

By Lemma 7.1 we have ‖u− uI |Ωi
‖2
L2(e)

≤ Ch2k+1
i |u|2Hk+1(Ωi)

, so

|E(u− uI , ϕh)| ≤ C‖ϕh‖h

[
N∑
i=1

(
h2k
i +

∑
Ωl∈nb(Ωi)

h2k+1
i

hl

)
|ui|2Hk+1(Ωi)

]1/2

.

8.3. Main estimate. The differential problem (8.2) satisfies:

A(u∗, ϕ) +B(u∗, ϕ) +D(u∗, ϕ) + E(u∗, ϕ) + J(u∗, ϕ)

= C(ϕ) + F (ϕ) + I(ϕ) ∀ϕ ∈ H1(E) ∩H2(Th).

On the other hand, the family of discrete problems depending on the parameter h is defined as

A(u∗h, ϕh) +B(u∗h, ϕh) +D(u∗h, ϕh) + E(u∗h, ϕh) + J(u∗h, ϕh)

= C(ϕh) + F (ϕh) + I(ϕh) ∀ϕh ∈ Xh.
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We subtract these equations from each other with ϕ := ϕh, and we obtain

A(u∗ − u∗h, ϕh) +B(u∗, ϕh)−B(u∗h, ϕh) +D(u∗ − u∗h, ϕh)

+ E(u∗ − u∗h, ϕh) + J(u∗ − u∗h, ϕh) = 0.

This is equivalent to LHS = RHS, where

LHS := A(u∗I − u∗h, ϕh) +B(u∗I , ϕh)−B(u∗h, ϕh) +D(u∗I − u∗h, ϕh)

+ E(u∗I − u∗h, ϕh) + J(u∗I − u∗h, ϕh),

and

RHS := A(u∗I − u∗, ϕh) +B(u∗I , ϕh)−B(u∗, ϕh) +D(u∗I − u∗, ϕh)

+ E(u∗I − u∗, ϕh) + J(u∗I − u∗, ϕh).

Let us take ϕh := u∗I − u∗h. Then Lemma 8.5 and Lemma 8.6 imply the lower estimate
LHS ≥ c‖u∗I − u∗h‖2h. Also we may estimate RHS with Lemmas 8.7, 8.8, 8.9, and 8.10 as

RHS ≤ C‖u∗I − u∗h‖h

(
‖u∗I − u∗‖h +

[
N∑
i=1

(
h2k
i +

∑
Ωl∈nb(Ωi)

h2k+1
i

hl

)
|u∗i |2Hk+1(Ωi)

]1/2)
.

Thus estimating LHS = RHS from below and above and dividing by ‖u∗I − u∗‖h > 0, we
obtain

‖u∗I − u∗h‖h ≤ C

(
‖u∗I − u∗‖h +

[
N∑
i=1

(
h2k
i +

∑
Ωl∈nb(Ωi)

h2k+1
i

hl

)
|u∗i |2Hk+1(Ωi)

]1/2)
.

Thus by the triangle inequality and the interpolation error estimate (7.3) we have

‖u∗ − u∗h‖h ≤ ‖u∗ − u∗I‖h + ‖u∗I − u∗h‖h

≤ C

(∑N
i=1

(
h2k
i +

∑
Ωl∈nb(Ωi)

h2k+1
i

hl

)
|u∗i |2Hk+1(Ωi)

)1/2

.

Theorem 4.1 is therefore proven. For Remark 4.2, we assume that hi := cih for every Ωi ∈ E ,
and this estimate simplifies to

‖u∗ − u∗h‖h ≤ Chk
(∑N

i=1 |u∗i |2Hk+1(Ωi)

)1/2

.

9. Numerical experiments. We would like to test whether the error estimate derived
in Section 8 can be observed in numerical simulations. Therefore we present two examples.
These examples are not directly related to any specific semiconductor material. Simulations
of realistic semiconductor devices require accounting for material parameters and physical
phenomena. These modifications do not substantially change the van Roosbroeck equations,
but they go beyond the simplified model considered in this study.

Thus we will present simulations of abstract devices mimicking semiconductor p-n diodes.
Our first example is a device which consists of two layers Ω1,Ω2, corresponding to an n-type
layer and a p-type layer of the p-n diode (Figure 9.1). It has two contacts with metal electrodes,
left and right, denoted by ∂ΩD,1 and ∂ΩD,2. Horizontal boundaries correspond to the contact
with an insulator (e.g., air). Parameters of the device are presented in Table 9.1. We control
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∂ΩD,1 ∂ΩD,2

∂ΩN

∂ΩN

Ω1 Ω2

FIG. 9.1. Schema of the first device used in the simulations. It has two layers, corresponding to an n-type layer
Ω1 and a p-type layer Ω2. The grid for K = 1 is presented.

TABLE 9.1
Parameters of the first device used in the simulations. Nx and Ny denote the number of nodes in horizontal and

vertical direction depending on the parameter K.

Param. Ω1 Ω2

Length 1× 10−2 1× 10−2

Width 1× 10−2 1× 10−2

Nx 2K + 1 2K + 1
Ny 2K + 1 4K + 1
ε 3× 10−3 1× 10−3

µn 1× 103 3× 103

µp 1× 102 3× 102

k1 3× 102 −3× 102

Crad 1× 10−3 2× 10−3

the thickness of the grid with the parameter K. For K = 1, we divide both layers into two
pieces in the horizontal direction, while in the vertical direction, Ω1 is divided into two and
Ω2 into four pieces (see Figure 9.1). The grid nodes are distributed uniformly in horizontal
and vertical direction within a given Ωi, and their number depends on the parameter K as
indicated by the parameters Nx, Ny in Table 9.1.

In these simulations we assume that the operator Q of equation (1.2) is some given
piecewise-constant function,

Q(x, u, v, w) := Crad(x).

This form corresponds to the radiative recombination [26]. This physical process is responsible
for emitting the light by a device.

We start with the equilibrium state. Then the boundary conditions are as follows:
û|∂ΩD,1

= 0 and û|∂ΩD,2
= ubuilt, where ubuilt is called a built-in potential. It is chosen

such that the charge defined as

(9.1) ρ(x) := k1(x)− n(x) + p(x)

is zero on ∂ΩD,2 if u ≡ ubuilt. Here n, p are the concentration of electrons and the concentra-
tion of holes, defined as

(9.2) n(x) := eu(x)−v(x), p(x) := ew(x)−u(x).
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TABLE 9.2
L2(Ω)- and H1(Ω)-error of u as a function of the grid density parameter K for the first device in an equilibrium

state. Numbers in brackets denote the error norm reduction factor.

K L2(Ω) H1(Ω)

1 4.6× 10−2 3.0× 10−1

2 1.1× 10−2 (4.0) 1.5× 10−1 (2.0)
4 2.9× 10−3 (4.0) 7.6× 10−2 (2.0)
8 6.9× 10−4 (4.1) 3.7× 10−2 (2.0)

16 1.5× 10−4 (4.7) 1.7× 10−2 (2.2)

Length

0.000
0.005

0.010
0.015

0.020

Wid
th

0.000
0.002

0.004
0.006

0.008
0.010

u

−12

−10

−8

−6

−4

−2

0

2

FIG. 9.2. The function u for the first example in the equilibrium state for K = 8. Note the one-dimensional
character of the solution.

This is a standard choice of the boundary conditions for the equilibrium state, and it is
motivated by physical arguments [26]. The functions v, w are constant such that ρ|∂ΩD,1

= 0.
Simulations were performed for K ∈ {1, 2, 4, 8, 16, 32}, where K = 32 is treated as a

reference “exact” solution, i.e.,

errorK,L2(Ω) := ‖uK − u32‖L2(Ω), errorK,H1(Ω) := ‖uK − u32‖H1(Ω),

where uK := uh for the grid parameter K.
The nonlinear discrete problem was solved by Newton’s method with step scaling relying

on the Picard method. More details on the nonlinear solver used in our simulations may be
found in [23].

Results of these simulations are presented in Table 9.2. We observe a linear reduction of
the H1-error, which is consistent with our theoretical result, as the H1-norm is bounded by
the broken norm up to a constant factor. We also note the quadratic L2-norm convergence rate.
These results were obtained for the penalty parameter σe = 3× 106.

As can be observed in Figure 9.2, in this case, the solution has a one-dimensional nature.
To study a more sophisticated behavior, we introduce a second device with a more complex
structure (Figure 9.3, see Table 9.3 for “material” parameters and grid description). As we see
in Table 9.4, the convergence rate is similar as in the previous example.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

94 K. SAKOWSKI ET AL.

TABLE 9.3
Parameters of the second device used in the simulations.

Param. Ω1,Ω2,Ω3,Ω4,Ω7 Ω5,Ω6,Ω8,Ω9 Grid Nx Ny

Length 1× 10−2 1× 10−2 Ω1 2K + 1 2K + 1
Width 1× 10−2 1× 10−2 Ω2 2K + 1 2K + 1
ε 3× 10−3 1× 10−3 Ω3 2K + 1 2K + 1
µn 1× 103 3× 103 Ω4 2K + 1 2K + 1
µp 1× 102 3× 102 Ω5 4K + 1 4K + 1
k1 3× 102 −3× 102 Ω6 2K + 1 4K + 1
Crad 1× 10−3 2× 10−3 Ω7 2K + 1 2K + 1

Ω8 4K + 1 2K + 1
Ω9 2K + 1 2K + 1

∂ΩN

∂ΩN

∂ΩN

∂ΩD,2

∂ΩD,1

Ω7 Ω8 Ω9

Ω4 Ω5 Ω6

Ω1 Ω2 Ω3

FIG. 9.3. Schema of the second device used in the simulations. The layers Ω1,Ω2,Ω3,Ω4,Ω7 correspond to
the n-type region, while the remainder corresponds to the p-type region. The left contact is attached to the whole left
edge, while the right contact is attached to the boundary of Ω9. The grid for K = 1 is presented with the diagonal
lines removed to improve readability.

The theory presented in this paper covers only the equilibrium state described in Section 2.
We also performed simulations for the non-equilibrium state. Thus, we use the presented
discretization for every equation of the system (1.2). The boundary conditions for the function
u are similar as before, i.e., û|∂ΩD,1

= 0 and û|∂ΩD,2
= ubuilt +ubias, where ubias is a nonzero

difference potential between the electrodes, called the bias. For the functions v, w, we impose
two implicit conditions on ∂ΩD: v|∂ΩD

= w|∂ΩD
and ρ|∂ΩD

= 0; cf. (9.1). On ΩN we
impose a homogeneous Neumann boundary condition.

Results of this simulation are presented in Table 9.5. For the function u, the results are
similar to the equilibrium state. For the functions v, w, the convergence is much worse. We
may roughly estimate that the L2-error reduces linearly, while the H1-error convergence
rate is sublinear, but the latter is hard to estimate precisely without the exact solution. In
the comparison, we also included the functions n, p. The van Roosbroeck equations may be
formulated in terms of functions u, v, w, but from the physical point of view, there are other
logical choices possible [21]. Another choice is u, n, p (see (9.2) for the definition of n, p), as
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TABLE 9.4
L2(Ω)- and H1(Ω)-error of u as a function of the grid density parameter K for the second device in equilibrium

state. Numbers in brackets denote the error norm reduction factor.

K L2(Ω) H1(Ω)

1 2.0× 10−2 1.9× 10−1

2 5.2× 10−3 (3.8) 9.5× 10−2 (2.0)
4 1.3× 10−3 (3.9) 4.8× 10−2 (2.0)
8 3.5× 10−4 (3.8) 2.4× 10−2 (2.0)

16 9.4× 10−5 (3.7) 1.2× 10−2 (2.0)
32 2.3× 10−5 (4.0) 5.4× 10−3 (2.2)

Length

−0.005
0.000

0.005
0.010

0.015
0.020

0.025
0.030

0.035

Width

−0.005
0.000

0.005
0.010

0.015
0.020

0.025
0.030

0.035

u

−12

−10

−8

−6

−4

−2

0

2

FIG. 9.4. The function u for the second example in the equilibrium state for K = 4.

the charge ρ and many recombination models (radiative, Shockley-Read-Hall, Auger) can be
easily expressed in terms of these functions.

We observe that the error convergence for n, p is faster than for v, w, similar to that of the
function u. Thus, the determination of the physical parameters like the recombination rate,
current, or optical power may rely on the better precision of functions n, p despite the slow
convergence of functions v, w.

10. Conclusions. We have presented a composite discontinuous Galerkin discretiza-
tion of the drift-diffusion equations, derived from the symmetric interior penalty Galerkin
method [22]. The discrete problem is shown to be well-defined, and the error is estimated.
In case of a uniform increase of the grid density, the H1-norm of the error of the composite
symmetric interior penalty Galerkin (CSIPG) method is estimated as O(h). The results of the
numerical simulations presented in this paper agree with the theoretical estimates.
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National Agency for Academic Exchange.
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TABLE 9.5
L2(Ω)- and H1(Ω)-error of u, v, w, n, p as a function of the grid density parameter K for the second device

for ubias = 8. The numbers in brackets denote the error norm reduction factor. The functions n, p are defined
in (9.2).

K L2(Ω) H1(Ω)

Function u
1 3.1× 10−2 3.1× 10−1

2 8.6× 10−3 (3.6) 1.6× 10−1 (1.9)
4 2.6× 10−3 (3.3) 8.0× 10−2 (2.0)
8 9.8× 10−4 (2.7) 4.0× 10−2 (2.0)

16 4.0× 10−4 (2.5) 2.0× 10−2 (2.0)
32 1.3× 10−4 (3.1) 8.8× 10−3 (2.2)

Function v
1 1.7× 10−1 9.8× 10−1

2 9.7× 10−2 (1.7) 9.6× 10−1 (1.0)
4 5.7× 10−2 (1.7) 9.1× 10−1 (1.0)
8 3.2× 10−2 (1.8) 8.5× 10−1 (1.1)

16 1.7× 10−2 (1.9) 7.5× 10−1 (1.1)
32 6.9× 10−3 (2.4) 5.7× 10−1 (1.3)

Function w
1 5.8× 10−1 9.7× 10−1

2 3.5× 10−1 (1.6) 9.5× 10−1 (1.0)
4 2.1× 10−1 (1.6) 9.1× 10−1 (1.0)
8 1.3× 10−1 (1.7) 8.5× 10−1 (1.1)

16 6.8× 10−2 (1.9) 7.6× 10−1 (1.1)
32 2.8× 10−2 (2.4) 5.9× 10−1 (1.3)

Function n
1 4.7× 10−2 4.5× 10−1

2 1.5× 10−2 (3.1) 2.7× 10−1 (1.7)
4 5.0× 10−3 (3.0) 1.5× 10−1 (1.8)
8 1.7× 10−3 (2.9) 7.6× 10−2 (2.0)

16 6.0× 10−4 (2.9) 3.8× 10−2 (2.0)
32 1.7× 10−4 (3.5) 1.7× 10−2 (2.2)

Function p
1 3.3× 10−2 2.5× 10−1

2 1.1× 10−2 (3.0) 1.2× 10−1 (2.1)
4 4.6× 10−3 (2.4) 5.9× 10−2 (2.0)
8 1.9× 10−3 (2.4) 3.0× 10−2 (2.0)

16 7.1× 10−4 (2.7) 1.5× 10−2 (2.0)
32 2.0× 10−4 (3.5) 6.5× 10−3 (2.3)
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