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γ
δΦ-TYPE INCLUSION SET FOR EIGENVALUES OF A TENSOR∗

XIAO-QIANG LEI†

Abstract. In this paper, a new γ
δΦ-type eigenvalue inclusion set for tensors is given, and some inclusion relations

between this new inclusion set and other ones are presented. In addition, a new sufficient criterion for identifying
nonsingular tensors is also provided by using the new γ

δΦ-type eigenvalue inclusion set. Some numerical results are
reported to show the superiority of the results.
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1. Introduction. We first recall some definitions for tensors. A = (ai1···im)n is called a
tensor of order m and dimension n = n1 × · · · × nm over the field F if

A = (ai1···im)n = (ai1···im)n1×···×nm ∈ F[m,n] = Fn1×···×nm .

When F = C, A is called a complex tensor; when F = R, A is called a real tensor; when
n1 = · · · = nm = n, A is simply called a tensor of order m and dimension n over the field F,
and we denote F[m,n] by F[m,n] if there is no danger of confusion. If the entries ai1···im are
invariant under any permutation of their indices, then A is called a symmetric tensor.

In 2005, Qi [14] and Lim [12] independently introduced the notion of eigenvalues of ten-
sors. For A = (ai1···im)n×···×n ∈ C[m,n], x = (x1, . . . , xn)> ∈ Cn,Axm−1 is a dimension
n column vector with entries(

Axm−1
)
i

=
∑

(i2,...,im)∈Nm−1

aii2···imxi2 · · ·xim , i ∈ N = {1, . . . , n}.

If there exists a nonzero vector x = (x1, . . . , xn)> ∈ Cn and a number λ ∈ C such that

Axm−1 = λx[m−1],

then λ is called an eigenvalue of A and x is called an eigenvector of A corresponding to λ,
where

x[m−1] = (xm−1
1 , . . . , xm−1

n )>.

Let σ(A) denote the set of all eigenvalues of A, and ρ(A) = max{|λ| : λ ∈ σ(A)} be the
spectral radius of A. A complex tensor A is called nonsingular if 0 6∈ σ(A), otherwise it is
called singular.

In recent years, the spectral theory of tensors has attracted much attention [7]. Although
the eigenvalues of tensors have many applications in numerical multilinear algebra [13, 18, 19],
their computation is, like most tensor problems, NP-hard [4]. Hence efficient algorithms to
(approximately) locate all eigenvalues of a given tensor have become increasingly important.

In 2005, Qi [14] gave a Geršgorin-type eigenvalue inclusion set for a real symmetric
tensor A = (ai1···im) in the following form:

σ(A) ⊆ Γ(A) =
⋃
i∈N

Γi(A),
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where

Γi(A) = {z ∈ C : |z − ai···i| ≤ Ri(Di)}, Di = Nm−1\{(i, . . . , i)},

Ri(E) =
∑

(j2,...,jm)∈E

|aij2···jm |, ∀E ⊆ Nm−1.

This result also holds for A ∈ C[m,n] [10, 18]. In 2014, Li et al. [10] and in 2016, Li et al. [9]
gave two variations of Brauer-type eigenvalue inclusion sets for a tensor A = (ai1···im) as
follows:

σ(A) ⊆ Φ(A) ⊆ K(A) ⊆ Γ(A),

where

Φ(A) =
⋃

(i,j)∈N×Ni

Φij(A),

Φij(A) = {z ∈ C : (|z − ai···i| −Ri(Si))|z − aj···j | ≤ Ri(Nm−1
i )Rj(Dj)},

Si = {(j2, . . . , jm) ∈ Nm−1 : i ∈ {j2, . . . , jm} 6= {i}},

K(A) =
⋃

(i,j)∈N×Ni

Kij(A),

Kij(A) = {z ∈ C : (|z − ai···i| −Ri(Dij))|z − aj···j | ≤ |aij···j |Rj(Dj)},
Dij = Di\{(j, . . . , j)}, Ni = N\{i}.

In 2017, Sang et al. [15] gave another variation of Brauer-type eigenvalue inclusion sets for a
tensor A = (ai1···im):

σ(A) ⊆ Ω(A) ⊆ K(A) ⊆ Γ(A),

where

Ω(A) =
⋃

(i,j)∈N×Ni

Ωij(A),

Ωij(A) = {z ∈ C : (|z − ai···i| −Ri(Di\ωi))|z − aj···j | ≤ Ri(ωi)Rj(Dj)},
ωi = {(k, . . . , k) ∈ Nm−1 : k ∈ Ni}.

In addition, several other eigenvalue inclusion sets for tensors were derived in [2, 6, 7, 8, 10,
11, 15], and relations between some of them were given.

In this paper, we introduce a new eigenvalue inclusion set, γδΦ(A), for a tensor A. More-
over, the inclusion relation between γ

δΦ(A) and other eigenvalue inclusion sets is discussed.
As an application, a new criterion for identifying nonsingular tensors [14, 17] is provided. In
order to show the superiority of the new results, numerical examples are given in Section 3.

2. A new γ
δΦ-type eigenvalue inclusion set for tensors. In this section, we first establish

a new γ
δΦ-type eigenvalue inclusion set for tensors, then point out some relations between

several eigenvalue inclusion sets including the γδΦ-type one, followed up with a new sufficient
condition for a tensor to be nonsingular.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

264 X.-Q. LEI

The main theorem of this section reads as follows:
THEOREM 2.1. Let A = (ai1···im) ∈ C[m,n] with m,n ≥ 2. Then

σ(A) ⊆ γ
δΦ(A) =

⋃
(i,j)∈N×Ni

γ
δΦij(A),

where

γ
δΦij(A) = γ

δΦij(A) ∪ δΓji(A),

γ
δΦij(A) =

{
z ∈ C : (|z − ai···i| −Ri(Di\Γij))(|z − aj···j | −Rj(Dj\∆ij))

≤ Ri(Γij)Rj(∆ij)

}
,

δΓji(A) = {z ∈ C : |z − aj···j | ≤ Rj(Dj\∆ij)},
Γij = Ni × γij , ∆ij = (Li ∪ (Ni × δij))\{(j, . . . , j)},
γij ⊆ Nm−2

i , δij ⊆ Nm−2
i ,

Li = {(j2, . . . , jm) ∈ Nm−1 : i ∈ {j2, . . . , jm}}, Ni = N\{i},
γ
δΦ(A) = γ

δΦ(A) ∪ δΓ(A),

γ
δΦ(A) =

⋃
(i,j)∈N×Ni

γ
δΦij(A), δΓ(A) =

⋃
(i,j)∈N×Ni

δΓji(A).

Proof. Let λ ∈ σ(A) and x = (x1, . . . , xn)> ∈ Cn\{0} be an associated eigenvector,
namely,

(2.1) Axm−1 = λx[m−1].

Let |xµ1
| ≥ |xµ2

| ≥ · · · ≥ |xµn |. Then |xµ1
| 6= 0.

From (2.1), we have

(λ− aµ1···µ1)xm−1
µ1

=
∑

(i2,...,im)∈Γµ1µ2

aµ1i2···imxi2 · · ·xim

+
∑

(i2,...,im)∈Dµ1\Γµ1µ2

aµ1i2···imxi2 · · ·xim ,

hence,

|λ− aµ1···µ1 ||xµ1 |m−1 ≤
∑

(i2,...,im)∈Γµ1µ2

|aµ1i2···im ||xi2 | · · · |xim |

+
∑

(i2,...,im)∈Dµ1\Γµ1µ2

|aµ1i2···im ||xi2 | · · · |xim |

≤
∑

(i2,...,im)∈Γµ1µ2

|aµ1i2···im ||xµ2
|m−1

+
∑

(i2,...,im)∈Dµ1\Γµ1µ2

|aµ1i2···im ||xµ1
|m−1

= Rµ1
(Γµ1µ2

)|xµ2
|m−1 +Rµ1

(Dµ1
\Γµ1µ2

)|xµ1
|m−1,
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which is equivalent to

(2.2) (|λ− aµ1···µ1
| −Rµ1

(Dµ1
\Γµ1µ2

))|xµ1
|m−1 ≤ Rµ1

(Γµ1µ2
)|xµ2

|m−1.

If |xµ2 | = 0, then |λ− aµ1···µ1 | −Rµ1(Dµ1\Γµ1µ2) ≤ 0 as |xµ1 | > 0, and it is obvious that

λ ∈ γ
δΦµ1µ2

(A) = γ
δΦµ1µ2

(A) ∪ δΓµ2µ1
(A) ⊆ γ

δΦ(A) = γ
δΦ(A) ∪ δΓ(A).

If |xµ2
| > 0, then from (2.1), we obtain

(2.3) (|λ− aµ2···µ2 | −Rµ2(Dµ2\∆µ1µ2))|xµ2 |m−1 ≤ Rµ2(∆µ1µ2)|xµ1 |m−1.

If |λ − aµ2···µ2 | − Rµ2(Dµ2\∆µ1µ2) ≤ 0, then λ ∈ δΓµ2µ1(A) ⊆ γ
δΦ(A). If, on the other

hand, |λ− aµ2···µ2 | −Rµ2(Dµ2\∆µ1µ2) > 0, by multiplying (2.2) with (2.3), we get

(|λ− aµ1···µ1
| −Rµ1

(Dµ1
\Γµ1µ2

))×
(|λ− aµ2···µ2 | −Rµ2(Dµ2\∆µ1µ2)) |xµ1 |m−1|xµ2 |m−1

≤ Rµ1
(Γµ1µ2

)Rµ2
(∆µ1µ2

)|xµ2
|m−1|xµ1

|m−1.

Note that |xµ1 |m−1|xµ2 |m−1 > 0. Then

(|λ− aµ1···µ1 | −Rµ1(Dµ1\Γµ1µ2)) (|λ− aµ2···µ2 | −Rµ2(Dµ2\∆µ1µ2))

≤ Rµ1(Γµ1µ2)Rµ2(∆µ1µ2).

This implies λ ∈ γ
δΦµ1µ2

(A) ⊆ γ
δΦ(A). Therefore, σ(A) ⊆ γ

δΦ(A).
REMARK 2.2. (i) The set γδΦ(A) in Theorem 2.1 is called a γδΦ-region of A or a (γ, δ)-

doubly diagonally inclusion set ((γ, δ)-DDIS) of A.
(ii) If δij = Nm−2

i for all (i, j) ∈ N ×Ni, then γ
δΦij(A) = γ

δΦij(A) due to the fact that

∆ij = (Li ∪ (Ni × δij))\{(j, . . . , j)} = Dj ,

which implies

Rj(Dj\∆ij) = 0.

This means

δΓji(A) = {aj···j} ⊆ γ
δΦij(A).

In this case, we denote γδΦ(A), γδΦij(A) by γΦ(A), γΦij(A), respectively.
(iii) If γij = Nm−2

i for all (i, j) ∈ N ×Ni, we denote γδΦ(A), γδΦij(A) by δΦ(A), δΦij(A),
respectively.
(iv) If γij = Nm−2

i ,δij = Nm−2
i for all (i, j) ∈ N × Ni, we denote γ

δΦ(A), γδΦij(A) by
Φ(A), Φij(A), respectively.
(v) If m = 2, noting that

Γij = Ni × γij = Ni = Di, ∆ij = (Li ∪ (Ni × δij))\{(j, . . . , j)} = Nj = Dj ,

then the set γδΦ(A) reduces to the Brauer set of matrices; see [1].
From Theorem 2.1, several corollaries follow. As shown below, the inclusion sets Φ(A)

in [9, Theorem 2.1], Γ(A) in [7, 10, 14, 18], Θ(A) in Corollary 2.5 below, and Ω(A) in
[15, Theorem 2.1] can be viewed as results of the application of Theorem 2.1 for special cases.
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COROLLARY 2.3 ([9, Theorem 2.1]). Let A = (ai1···im) ∈ C[m,n] with m,n ≥ 2. Then

σ(A) ⊆ Φ(A) =
⋃

(i,j)∈N×Ni

Φij(A),

where

Φij(A) = {z ∈ C : (|z − ai···i| −Ri(Si))|z − aj···j | ≤ Ri(Nm−1
i )Rj(Dj)},

Si = {(j2, . . . , jm) ∈ Nm−1 : i ∈ {j2, . . . , jm} 6= {i}}.

Proof. Let γij = Nm−2
i , δij = Nm−2

i for all (i, j) ∈ N ×Ni. From Theorem 2.1, the
conclusion follows easily.

COROLLARY 2.4 ([7, 10, 14, 18]). Let A = (ai1···im) ∈ C[m,n] with m ≥ 2, n ≥ 1.
Then

σ(A) ⊆ Γ(A) =
⋃
i∈N

Γi(A),

where

Γi(A) = {z ∈ C : |z − ai···i| ≤ Ri(Di)}.

Proof. If n = 1, the conclusion is obviously correct. Now, assume n > 1. Let γij = ∅ for
all (i, j) ∈ N ×Ni. From Theorem 2.1, we have

(|z − ai···i| −Ri(Di))(|z − aj···j | −Rj(Dj\∆ij)) ≤ 0, i.e.,
|z − aj···j | ≤ Rj(Dj\∆ij).

Then

γ
δΦij(A) = Γi(A) ∪ {z ∈ C : |z − aj···j | ≤ Rj(Dj\∆ij)},

that is,

γ
δΦ(A) = Γ(A).

COROLLARY 2.5. Let A = (ai1···im) ∈ C[m,n] with m,n ≥ 2. Then

σ(A) ⊆ Θ(A) =
⋃

(i,j)∈N×Ni

Θij(A),

where

Θij(A) = {z ∈ C : (|z − ai···i| −Ri(Di\θi))|z − aj···j | ≤ Ri(θi)Rj(Dj)},
θi = Ni × {(k, . . . , k) ∈ Nm−2 : k ∈ Ni}.

Proof. Let γij = {(k, . . . , k) ∈ Nm−2 : k ∈ Ni}, δij = Nm−2
i for all (i, j) ∈ N ×Ni.

From Theorem 2.1, we have

(|z − ai···i| −Ri(Di\θi)) |z − aj···j | ≤ Ri(θi)Rj(Dj), or,
|z − aj···j | ≤ 0, or equivalently, z = aj···j .

Then

γ
δΦij(A) = Θij(A) ∪ {aj···j} = Θij(A),
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that is,

γ
δΦ(A) = Θ(A).

COROLLARY 2.6 ([15, Theorem 2.1]). LetA = (ai1···im) ∈ C[m,n] with m,n ≥ 2. Then

σ(A) ⊆ Ω(A) =
⋃

(i,j)∈N×Ni

Ωij(A),

where

Ωij(A) = {z ∈ C : (|z − ai···i| −Ri(Di\ωi))|z − aj···j | ≤ Ri(ωi)Rj(Dj)},
ωi = {(k, . . . , k) ∈ Nm−1 : k ∈ Ni}.

Proof. Let Γij = ωi, δij = Nm−2
i for all (i, j) ∈ N ×Ni. From Theorem 2.1, we have

(|z − ai···i| −Ri(Di\ωi)) |z − aj···j | ≤ Ri(ωi)Rj(Dj), or,
|z − aj···j | ≤ 0, or equivalently, z = aj···j .

Then

γ
δΦij(A) = Ωij(A) ∪ {aj···j} = Ωij(A),

that is,

γ
δΦ(A) = Ω(A).

The next proposition shows that the eigenvalue inclusion sets γδΦ(A) in Theorem 2.1 and
Γ(A) [10, 14, 18] in Corollary 2.4 have an inclusion relationship.

PROPOSITION 2.7. Let A = (ai1···im) ∈ C[m,n] with m,n ≥ 2. Then

γ
δΦij(A) ⊆ Γi(A) ∪ Γj(A).

Hence,

γ
δΦ(A) ⊆ Γ(A).

Proof. Let z ∈ γ
δΦij(A) = γ

δΦij(A) ∪ δΓji(A). Then z satisfies

(|z − ai···i| −Ri(Di\Γij))(|z − aj···j | −Rj(Dj\∆ij)) ≤ Ri(Γij)Rj(∆ij), or
|z − aj···j | ≤ Rj(Dj\∆ij).

• If |z − aj···j | ≤ Rj(Dj\∆ij), then z ∈ Γj(A).
• If |z − aj···j | > Rj(Dj\∆ij), then z ∈ γ

δΦij(A).
• If Ri(Γij)Rj(∆ij) = 0, then |z − ai···i| −Ri(Di\Γij) ≤ 0, consequently, z ∈ Γi(A).

Now, assume that Ri(Γij)Rj(∆ij) > 0.
• If |z − ai···i| ≤ Ri(Di\Γij), then z ∈ Γi(A).
• If |z − ai···i| > Ri(Di\Γij), then, from z ∈ γ

δΦij(A), we have

(2.4)
|z − ai···i| −Ri(Di\Γij)

Ri(Γij)

|z − aj···j | −Rj(Dj\∆ij)

Rj(∆ij)
≤ 1.
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Hence, from (2.4), we obtain

|z − ai···i| −Ri(Di\Γij)
Ri(Γij)

≤ 1 or
|z − aj···j | −Rj(Dj\∆ij)

Rj(∆ij)
≤ 1,

namely, z ∈ Γi(A)∪Γj(A). Thus, γδΦij(A) ⊆ Γi(A)∪Γj(A). Hence, γδΦ(A) ⊆ Γ(A). The
proof is completed.

To compare the sets Φ(A) [9, Theorem 2.1] in Corollary 2.3, γδΦ(A), γδΦ(A), γδΦij(A)
in Theorem 2.1, Θ(A) in Corollary 2.5, Ω(A) [15, Theorem 2.1] in Corollary 2.6, K(A) in
[10, Theorem 2.1], and Γ(A) [10, 14, 18] in Corollary 2.4, we need the following lemma
provided in [9].

LEMMA 2.8 ([9, Lemmas 2.2 and 2.3]). Let a, b, c ≥ 0, and d > 0.
(I) If a

b+c+d ≤ 1, then

a− (b+ c)

d
≤ a− b
c+ d

≤ a

b+ c+ d
·

(II) If a
b+c+d ≥ 1, then

a− (b+ c)

d
≥ a− b
c+ d

≥ a

b+ c+ d
·

Now, a comparison of γ
1

δ1Φ(A) and γ2

δ1Φ(A) is established as follows.
PROPOSITION 2.9. Let A = (ai1···im) ∈ C[m,n] with m,n ≥ 2,

Γ1
ij = Ni × γ1

ij , ∆1
ij = (Li ∪ (Ni × δ1

ij))\{(j, . . . , j)}, γ1
ij ⊆ Nm−2

i , δ1
ij ⊆ Nm−2

i ,

Γ2
ij = Ni × γ2

ij , ∆2
ij = (Li ∪ (Ni × δ2

ij))\{(j, . . . , j)}, γ2
ij ⊆ Nm−2

i , δ2
ij ⊆ Nm−2

i ,

Γ1
ij ⊇ Γ2

ij , ∆1
ji ⊇ Γ1

ij , and ∆1
ij ⊇ Γ2

ji,

for all (i, j) ∈ N ×Ni. Then for all (i, j) ∈ N ×Ni,

γ1

δ1Φij(A) ⊆ γ2

δ1Φij(A) ∪ γ
2

δ1Φji(A).

Hence,

γ1

δ1Φ(A) ⊆ γ2

δ1Φ(A).

Thus,

γ1

Φ(A) ⊆ γ2

Φ(A), Φ(A) ⊆ Θ(A) ⊆ Ω(A) ⊆ K(A) ⊆ Γ(A).

Proof. Let z ∈ γ1

δ1Φij(A). Then either

(2.5) (|z − ai···i| −Ri(Di\Γ1
ij))(|z − aj···j | −Rj(Dj\∆1

ij)) ≤ Ri(Γ1
ij)Rj(∆

1
ij)

or

|z − aj···j | ≤ Rj(Dj\∆1
ij),

is fulfilled.
• If z ∈ δ1Γji(A), then z ∈ γ2

δ1Φij(A).

• If z 6∈ δ1Γji(A), then z ∈ γ1

δ1Φij(A).
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• If Ri(Γ1
ij)Rj(∆

1
ij) = 0, then by z 6∈ δ1Γji(A), Γ1

ij ⊇ Γ2
ij , and (2.5), we obtain

(|z − ai···i| −Ri(Di\Γ2
ij))(|z − aj···j | −Rj(Dj\∆1

ij)) ≤ 0 ≤ Ri(Γ2
ij)Rj(∆

1
ij),

which implies that z ∈ γ2

δ1Φij(A).
• If Ri(Γ1

ij)Rj(∆
1
ij) > 0, then from (2.5), we obtain

(2.6)
|z − ai···i| −Ri(Di\Γ1

ij)

Ri(Γ1
ij)

|z − aj···j | −Rj(Dj\∆1
ij)

Rj(∆1
ij)

≤ 1,

which implies

(2.7)
|z − ai···i| −Ri(Di\Γ1

ij)

Ri(Γ1
ij)

≤ 1,

or

(2.8)
|z − aj···j | −Rj(Dj\∆1

ij)

Rj(∆1
ij)

≤ 1.

Let a = |z − ai···i|, b = Ri(Di\Γ1
ij), c = Ri(Γ

1
ij\Γ2

ij) and d = Ri(Γ
2
ij). If (2.7) holds, then

when d > 0, we obtain from (2.6), z 6∈ δ1Γji(A), Γ1
ij ⊇ Γ2

ij , and Lemma 2.8.(I) that

|z − ai···i| −Ri(Di\Γ2
ij)

Ri(Γ2
ij)

|z − aj···j | −Rj(Dj\∆1
ij)

Rj(∆1
ij)

≤ 1,

which implies that z ∈ γ2

δ1Φij(A). When d = 0, from (2.7), we easily obtain that

|z − ai···i| −Ri(Di\Γ2
ij) ≤ Ri(Γ2

ij) = 0.

Thus,

(|z − ai···i| −Ri(Di\Γ2
ij))(|z − aj···j | −Rj(Dj\∆1

ij)) ≤ 0 ≤ Ri(Γ2
ij)Rj(∆

1
ij),

which also implies z ∈ γ2

δ1Φij(A). If (2.7) does not hold, namely,

|z − ai···i| −Ri(Di\Γ1
ij)

Ri(Γ1
ij)

> 1,

then (2.8) holds. When Rj(Γ2
ji) > 0, we obtain from (2.6), ∆1

ji ⊇ Γ1
ij ,∆

1
ij ⊇ Γ2

ji, and
Lemma 2.8 (I), (II) that

|z − ai···i| −Ri(Di\∆1
ji)

Ri(∆1
ji)

|z − aj···j | −Rj(Dj\Γ2
ji)

Rj(Γ2
ji)

≤ 1.

This means that z ∈ γ2

δ1Φji(A). When Rj(Γ2
ji) = 0, from (2.8), we easily obtain

|z − aj···j | −Rj(Dj\Γ2
ji) ≤ Rj(Γ2

ji) = 0.

• If z ∈ δ1Γij(A), then z ∈ γ2

δ1Φji(A).
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• If z 6∈ δ1Γij(A), then

(|z − aj···j | −Rj(Dj\Γ2
ji))(|z − ai···i| −Ri(Di\∆1

ji)) ≤ 0 ≤ Rj(Γ2
ji)Ri(∆

1
ji),

which also implies z ∈ γ2

δ1Φji(A).
Therefore,

γ1

δ1Φij(A) ⊆ γ2

δ1Φij(A) ∪ γ
2

δ1Φji(A).

Hence,

γ1

δ1Φ(A) ⊆ γ2

δ1Φ(A).

Thus,

γ1

Φ(A) ⊆ γ2

Φ(A).

From the above result, and the selection of γij , δij in the proofs of Corollaries 2.3, 2.5, 2.6,
and 2.4, we obtain

Φ(A) ⊆ Θ(A) ⊆ Ω(A) ⊆ Γ(A).

From [15, Theorem 2.2], we have

Ω(A) ⊆ K(A).

From [10, Theorem 2.3], we get

K(A) ⊆ Γ(A).

REMARK 2.10. From Proposition 2.9, we have

Φ(A) ⊆ γΦ(A), ∀γij ⊆ Nm−2
i , ∀(i, j) ∈ N ×Ni.

Based on Theorem 2.1, we can easily establish the following criterion to discern nonsin-
gular tensors.

COROLLARY 2.11. LetA = (ai1···im) ∈ C[m,n] withm,n ≥ 2. If for all (i, j) ∈ N×Ni,

(|ai···i| −Ri(Di\Γij))(|aj···j | −Rj(Dj\∆ij)) > Ri(Γij)Rj(∆ij)

and

|aj···j | > Rj(Dj\∆ij)

are fulfilled, then A is nonsingular, i.e., 0 6∈ σ(A).
Proof. Let A be singular. Then 0 ∈ σ(A). From Theorem 2.1, we have

0 ∈ γ
δΦ(A) = γ

δΦ(A) ∪ δΓ(A).

Then there exists (µ1, µ2) ∈ N ×Nµ1
such that

(|aµ1···µ1
| −Rµ1

(Dµ1
\Γµ1µ2

)) (|aµ2···µ2
| −Rµ2

(Dµ2
\∆µ1µ2

))

≤ Rµ1
(Γµ1µ2

)Rµ2
(∆µ1µ2

)
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or

|aµ2···µ2 | ≤ Rµ2(Dµ2\∆µ1µ2),

which is a contradiction. So, A is nonsingular. The proof is completed.
REMARK 2.12. The tensor in Corollary 2.11 is called a γ

δΦ-tensor or a (γ, δ)-doubly
strictly diagonally dominant ((γ, δ)-DSDD) tensor, and the conditions are called γδΦ-conditions
or (γ, δ)-doubly strictly diagonally dominant ((γ, δ)-DSDD) conditions. The nonstrict condi-
tions are called γδΦ0-conditions or (γ, δ)-doubly diagonally dominant ((γ, δ)-DDD) conditions,
and the tensor which satisfy the nonstrict conditions is called a γδΦ0-tensor or a (γ, δ)-doubly
diagonally dominant ((γ, δ)-DDD) tensor.

3. Numerical examples. In this section, in order to demonstrate the superiority of Theo-
rem 2.1 and Proposition 2.9, in particular Θ(A) in Corollary 2.5 and Φ(A) in Corollary 2.3,
we present two numerical examples.

EXAMPLE 3.1. Consider the tensor A1 = (ai1i2i3i4) ∈ C[4,4] with

a1444 = 8, a2333 = i, a3222 = 2, a3333 = 4i, a4111 = 1, a1233 = 3, a1234 = 4,

and all other entries ai1i2i3i4 = 0. By using Mathematica, the set Θ(A1) and the set Ω(A1) are
displayed in Figure 3.1. By noting that (±5,−5) ∈ Ω(A1)\Θ(A1), we know that Θ(A1) is a
proper subset of Ω(A1). Thus, Θ(A1) provides more precise information about the location
of the eigenvalues of A1 than Ω(A1) does.

EXAMPLE 3.2. Consider the tensor A2 = (ai1i2i3i4) ∈ C[4,4] with

a1111 = i, a1222 = 1, a1444 = 8, a2333 = i, a3333 = 2i, a4333 = 1, a4444 = 4,

a1233 = 2, a1234 = 3,

and ai1i2i3i4 = 0 otherwise. By using Mathematica, the set Φ(A2) and the set Θ(A2) are
displayed in Figure 3.2. By noting that (0, 5) ∈ Θ(A2)\Φ(A2), we know that Φ(A2) is a
proper subset of Θ(A2). Thus, Φ(A2) provides a tighter bound for the eigenvalues of A2 than
Θ(A2) does.
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