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ON THE CONSTRUCTION OF REAL NON-SELFADJOINT TRIDIAGONAL
MATRICES WITH PRESCRIBED THREE SPECTRA∗

WEI-RU XU†§, NATÁLIA BEBIANO‡, AND GUO-LIANG CHEN§

Abstract. Non-selfadjoint tridiagonal matrices play a role in the discretization and truncation of the Schrödinger
equation in some extensions of quantum mechanics, a research field particularly active in the last two decades.
In this article, we consider an inverse eigenvalue problem that consists of the reconstruction of such a real non-
selfadjoint matrix from its prescribed eigenvalues and those of two complementary principal submatrices. Necessary
and sufficient conditions under which the problem has a solution are presented, and uniqueness is discussed. The
reconstruction is performed by using a modified unsymmetric Lanczos algorithm, designed to solve the proposed
inverse eigenvalue problem. Some illustrative numerical examples are given to test the efficiency and feasibility of
our reconstruction algorithm.

Key words. inverse eigenvalue problem, non-selfadjoint tridiagonal matrix, modified unsymmetric Lanczos
algorithm, spectral data
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1. Introduction. The process of manifesting the dynamical behavior of a system from a
priori known physical magnitudes, such as mass, length, elasticity, inductance, and capacitance,
is referred to as a direct problem. The problem of determining the physical parameters of the
system in terms of its observed, or expected, dynamic behavior is an inverse problem. Both
problems are of great importance in applications. The goal of this paper is to study an inverse
eigenvalue problem for tridiagonal matrices of the form

(1.1) Jn =



α1 ε1β1

β1
. . .

. . .
. . .

. . . εr−1βr−1

βr−1 αr εrβr

βr αr+1 εr+1βr+1

βr+1 αr+2 εr+2βr+2

βr+2

. . .
. . .

. . .
. . . εn−1βn−1

βn−1 αn



,

where all the diagonal entries are real, the subdiagonal entries are positive and εi ∈ {1,−1},
for i = 1, 2, . . . , n − 1. These matrices, called pseudo-Jacobi matrices, are related to the
selfadjoint involutory matrix H = diag(δ1, δ2, . . . , δn), with δ1 = 1 and δi =

∏i−1
j=1 εj , for

i = 2, . . . , n, as follows: Consider Cn endowed with the indefinite inner product [·, ·] defined
as [x,y] := 〈Hx,y〉 for any x,y ∈ Cn, where 〈·, ·〉 is the standard Euclidean inner product.
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The H-adjoint of a real matrix A is the unique n× n matrix, written A#, which satisfies

[Ax,y] = [x, A#y]

for all x,y ∈ Cn. In particular, if A = A#, or equivalently, if A = HATH , A is referred to
as H-symmetric or pseudo-symmetric. Thus, the matrix Jn in (1.1) is pseudo-symmetric. If
A#A = In, A is called H-orthogonal or pseudo-orthogonal. Let β = (β1, . . . , βn−1), and
let ε = (ε1, . . . , εn−1) be the so called sign vector. We denote the set of matrices of the form
(1.1) by J (n, ε,β). If ε is a vector with all entries equal to one, then Jn reduces to a Jacobi
matrix.

Pseudo-symmetric matrices usually appear in non-Hermitian quantum mechanics [12],
where H is the sign operator (that is, H2 is the identity). A sign change in one of the
components in ε may lead to strong perturbations in the spectral properties of the matrices
in J (n, ε,β). The study of pseudo-Jacobi matrices extends the well-known theory of Jacobi
matrices, which arise in a variety of applications in different fields such as classical moment
problems [1], vibrating systems [15], etc. The discretization and truncation of the Schrödinger
equation in non-Hermitian quantum mechanics leads to pseudo-Jacobi matrices [4]. Research
on inverse eigenvalue problems for Jacobi matrices originated several fruitful results; see
[2, 7, 9, 10, 11, 13, 14, 15, 16, 17, 23, 24, 25, 26, 27, 28] and the references therein. In contrast,
the theory concerning the pseudo-Jacobi case constitutes a small part of the literature. The
problems in this area deserve attention in order to extend the classical theory of the Jacobi
case. At present, some developments focusing on pseudo-Jacobi inverse eigenvalue problem,
abbreviated by the acronym PJIEP, have been obtained; see [3, 4, 5, 6, 18, 21, 29, 30]. This
paper is in the continuation of this research field. Our work proceeds along the conceptual
lines of the standard Jacobi case, but some remarkable differences occur. First, as the matrix
H that fixes the inner product is indefinite, there may appear Lanczos vectors with zero norm.
Second, the mathematical manipulations are more involved.

In what follows, the principal submatrix of Jn in the lines (ω, . . . , υ), 1 ≤ ω < υ ≤ n,
will be denoted by

(1.2) Jω,υ =


αω εωβω
βω αω+1 εω+1βω+1

βω+1
. . . . . .
. . . . . . ευ−1βυ−1

βυ−1 αυ

 ,

and J1,υ simply by Jυ . We will consider the following inverse problem:
PJIEP. Let a sign vector ε and the sets λ = {λi}ni=1 ⊂ C, µ1 = {µi}ri=1 ⊂ R, and

µ2 = {µi}n−1i=r+1 ⊂ R, 1 ≤ r ≤ n− 2 be given, where λ is closed under complex conjugation
and the elements of both µ1 and µ2 are pairwise distinct. Construct a pseudo-Jacobi matrix
Jn ∈ J (n, ε,β) such that λ, µ1, and µ2 are, respectively, the spectra of the matrices Jn, Jr,
and Jr+2,n.

Before solving this computability problem, we determine a necessary and sufficient
condition under which this problem has a solution. In [18], Mirzaei investigated the particular
case of the PJIEP in which the elements of λ, µ1, and µ2 are real pairwise distinct numbers
and µ1 ∩ µ2 = ∅. The special case in which H = Ir ⊕ −I1 ⊕ In−r−1 was solved by Xu,
Bebiano, and Chen [29].

This article is organized as follows. In Section 2, we present a modified unsymmetric
Lanczos algorithm to construct a matrix Ĵn ∈ J (n, ε,β) whose eigenvalues are real and
pairwise distinct. In Section 3, a necessary and sufficient condition under which the PJIEP has
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a solution is stated in the cases when µ1 ∩µ2 = ∅ and µ1 ∩µ2 6= ∅. A numerical algorithm
to solve the PJIEP is proposed in Section 4. In Section 5, numerical examples illustrate our
approach to the PJIEP and test the efficiency and feasibility of the reconstruction algorithm. In
Section 6, some conclusions are drawn. The theoretical results stated in Sections 2 and 3 are
proved in the Appendices A and B.

2. Modified unsymmetric Lanczos algorithms. Throughout this paper, let
χω,υ(λ) = det(λIυ−ω+1 − Jω,υ) and σ(Jω,υ) be, respectively, the characteristic polynomial
and the spectrum of the pseudo-Jacobi matrix Jω,υ in (1.2). For simplicity, we denote χ1,n(λ)

as χn(λ). Let Ĵn ∈ J (n, ε,β) have real and distinct eigenvalues λ̂1, λ̂2, . . . , λ̂n associated
with the real eigenvectors v1, v2, . . . , vn, respectively, and let Λ = diag(λ̂1, λ̂2, . . . , λ̂n). It can
be easily shown that the eigenvectors vi, i = 1, 2, . . . , n, may be chosen so that they constitute
an H-orthonormal basis of Rn, i.e., [vi, vj ] = δijδi, where δij denotes the Kronecker delta.
Thus V = [v1, v2, . . . , vn] ∈ Rn×n is H-orthogonal, that is, V #V = In with V # = HV TH .

Before presenting our modified Lanczos formalism, we state an useful extension of the
Thompson-McEnteggert-Paige theorem [19].

THEOREM 2.1. The first and last entries of the H-orthonormal eigenvectors of a pseudo-
Jacobi matrix with distinct real eigenvalues are both nonzero.

The unsymmetric Lanczos algorithm in [8] can be used to reconstruct a pseudo-Jacobi
matrix Ĵn from its distinct real eigenvalues λ̂1, λ̂2, . . . , λ̂n, the first, or the last, entries of
the corresponding H-orthonormal eigenvectors v1, v2, . . . , vn, and from its pseudo-norms
δ1, δ2, . . . , δn, where δj := [vj , vj ]. It should be noticed thatH is indefinite and so the induced
inner product lacks positivity. Therefore, it must be analyzed whether the H-norms of the
computed Lanczos vectors do not vanish. By using the unsymmetric Lanczos algorithm for the
matrices diag(µ1) and diag(µ2) with the appropriate starting vectors of order r and n− r−1,
respectively, the pseudo-Jacobi matrices Jr and Jr+2,n are obtained. The diagonal entry
αr+1 of Jn results from the trace condition and the neighboring off-diagonals come from the
Lanczos procedures.

Firstly, we present the backward modified unsymmetric Lanczos algorithm to recover the
matrix Ĵn ∈ J (n, ε,β) initialized from the last entries of its H-orthonormal eigenvectors
v1, v2, . . . , vn.

THEOREM 2.2. Let λ̂1, λ̂2, . . . , λ̂n be the real pairwise distinct eigenvalues of
Ĵn ∈ J (n, ε,β). Given the last entries vn,1, vn,2, . . . , vn,n of the corresponding H-ortho-
normal eigenvectors v1, v2, . . . , vn, then Ĵn can be constructed by the backward modified
unsymmetric Lanczos algorithm in Algorithm 1.

Next, we give a forward modified unsymmetric Lanczos algorithm, initialized with the
entries in the first row of the H-orthogonal matrix V . The proof of this result is similar to that
of Theorem 2.2, and so it is omitted.

THEOREM 2.3. Let Ĵn ∈ J (n, ε,β) have distinct real eigenvalues λ̂1, λ̂2, . . . , λ̂n, and
let v11, v12, . . . , v1,n be the first entries of the corresponding H-orthonormal eigenvectors
v1, v2, . . . , vn. Then, Ĵn can be constructed by the forward modified unsymmetric Lanczos
algorithm in Algorithm 2

REMARK 2.4. By executing Algorithm 2 from Theorem 2.3, we find the matrices
Y = [Y1,Y2, . . . , Yn] = V T and Z = [Z1,Z2, . . . ,Zn] = V # from the initial vector
Y1 = (v11, v12, . . . , v1,n)T.

3. The construction of the pseudo-Jacobi matrix Jn in the PJIEP. Let be given a sign
vector ε and the sets λ, µ1, and µ2 as in the PJIEP. We construct a solution Jn ∈ J (n, ε,β)
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Algorithm 1 Backward modified unsymmetric Lanczos algorithm.

1: Initialize two n-dimensional column vectors Yn+1 = 0 and
ŝn+1 = (vn,1, vn,2, . . . , vn,n)T.

2: Set δn+1 = 1, r̂n+1 = H ŝn+1δn+1, k = n+ 1.
3: while ([̂sk, ŝk]δk−1 > 0) do
4: βk−1 =

√
[̂sk, ŝk]δk−1

5: γk−1 =
ŝTk r̂k
βk−1

6: Yk−1 =
ŝk
βk−1

7: Zk−1 = HYk−1δk−1
8: k = k − 1
9: αk = ZT

kΛYk
10: ŝk = (Λ− αkIn)Yk − γkYk+1

11: r̂k = H ŝkδk
12: end while

Algorithm 2 Forward modified unsymmetric Lanczos algorithm.

1: Initialize two n-dimensional column vectors Z0 = 0 and r0 = H(v11, v12, . . . , v1,n)Tδ1.
2: Set δ0 = 1, s0 = Hr0δ0, k = 0.
3: while ([rk, rk]δk+1 > 0) do
4: βk =

√
[rk, rk]δk+1

5: γk =
sTk rk
βk

6: Zk+1 =
rk
βk

7: Yk+1 = HZk+1δk+1

8: k = k + 1
9: αk = YT

kΛZk
10: rk = (Λ− αkIn)Zk − γk−1Zk−1
11: sk = Hrkδk
12: end while

for the PJIEP of the form

(3.1) Jn =

 Jr εrβrer 0
βreTr αr+1 εr+1βr+1ω

T
1

0 βr+1ω1 Jr+2,n

 ,
where er = (0, . . . , 0, 1)T ∈ Rr, ω1 = (1, 0, . . . , 0)T ∈ Rn−r−1, σ(Jn) = λ, σ(Jr) = µ1,
and σ(Jr+2,n) = µ2. Hence, the pseudo-Jacobi matrices Jr and Jr+2,n are, respectively,
H1-symmetric and H2-symmetric for

H1 = diag(1, ε1, ε1ε2, . . . , ε1 · · · εr−1) = diag(δ1, δ2, . . . , δr) and

H2 = diag(1, εr+2, εr+2εr+3, . . . , εr+2 · · · εn−1) = diag
(
δr+2

δr+2
,
δr+3

δr+2
, . . . ,

δn
δr+2

)
.
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Let u(1)
i = (u

(1)
1,i , u

(1)
2,i , . . . , u

(1)
r,i )T be the H1-orthonormal eigenvector of Jr associ-

ated with its eigenvalue µi, for i = 1, 2, . . . , r, and let u(2)
i = (u

(2)
1,i , u

(2)
2,i , . . . , u

(2)
n−r−1,i)

T

be the H2-orthonormal eigenvector of Jr+2,n corresponding to its eigenvalue µr+i, for
i = 1, 2, . . . , n− r − 1. The matrices

U1 = [u(1)
1 ,u(1)

2 , . . . ,u(1)
r ] and

U2 = [u(2)
1 ,u(2)

2 , . . . ,u(2)
n−r−1]

are, respectively, H1-orthogonal and H2-orthogonal and satisfy

(3.2) U#
1 JrU1 = Λ1 = diag(µ1) and U#

2 Jr+2,nU2 = Λ2 = diag(µ2).

In Theorems 3.1 and 3.2 below, we construct the pseudo-Jacobi matrix Jn of the form
(3.1) in the following two cases:

(1) µ1 ∩ µ2 = ∅ and (2) µ1 ∩ µ2 6= ∅.

Although the notation is inevitably heavy, our approach is conceptually simple and
consists of the following three main steps.

(i) We recover Jr using Algorithm 1 with

H = H1, Λ = Λ1,

and the initializing vector

ŝr+1 = (u
(1)
r,1 , u

(1)
r,2 , . . . , u

(1)
r,r)T.

Algorithm 1 is used, replacing in steps 1, 2 and 10 all the subscripts n by r.
(ii) We recover Jr+2,n using Algorithm 2 with

H = H2, Λ = Λ2,

and the initializing vector

rr+1 = H2(u
(2)
11 , u

(2)
12 , . . . , u

(2)
1,n−r−1)T · δr+2/δr+2.

In this forward modified unsymmetric Lanczos algorithm, we replace all the subscripts n
and k by n − r − 1 and r + k + 1, respectively. Thus, all the δr+k+1 have a multiplicative
factor 1/δr+2. In step 1, we replace r0 = H(v11, v12, . . . , v1,n)Tδ1 by rr+1. In step 2, we
also replace all the subscripts 0 by r + 1.

(iii) In the backward modified unsymmetric Lanczos process, Y = [Y1,Y2, . . . ,Yr] =

UT
1 . Similarly, Z = [Z1,Z2, . . . ,Zn−r−1] = U#

2 in the forward modified unsymmetric
Lanczos process. In both modified unsymmetric Lanczos processes we have γi = εiβi.

THEOREM 3.1. Let be given a sign vector ε and the sets λ, µ1, and µ2 as in the PJIEP.
Set xj = −

∏n
i=1(λi−µj)

∏n−1
i=1,i6=j(µi−µj)−1, j = 1, 2, . . . , n− 1. If µ1 ∩µ2 = ∅, then

the PJIEP has a solution if and only if the following conditions are satisfied, and in this case
the solution is unique:

(1)

{
δr+1δjxj > 0 if j = 1, 2, . . . , r, and
δr+1δj+1xj > 0 if j = r + 1, r + 2, . . . , n− 1,

(2) εr
∑r
j=1 xj > 0 and εr+1

∑n−1
j=r+1 xj > 0,
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(3) [̂sk, ŝk]δk−1 > 0 for k = r, r − 1, . . . , 2, where
ŝk = (Λ1 − αkIr)Yk − γkYk+1, Yk = (u

(1)
k,1, u

(1)
k,2, . . . , u

(1)
k,r)

T, and γk = εkβk,

(4) [rr+k+1, rr+k+1] δr+k+2

δr+2
> 0 for k = 1, 2, . . . , n− r − 2, where

rr+k+1 = (Λ2 − αr+k+1In−r−1)Zk − γr+kZk−1,
Zk = H2(u

(2)
k,1, u

(2)
k,2, . . . , u

(2)
k,n−r−1)T · δr+k+1

δr+2
, and

γr+k = εr+kβr+k.

THEOREM 3.2. Let be given a sign vector ε and the sets λ, µ1, and µ2 as in the PJIEP.
Let µ1 ∩ µ2 = {µi}ki=1 and µr+i = µi for any i = 1, 2, . . . , k with k ≤ min{r, n− r − 1}.
Assume λi = µi, i = 1, 2, . . . , k, and set

xj = −
n∏

i=k+1

(λi − µj)
n−1∏

i=k+1,i6=j

(µi − µj)−1, j = k + 1, . . . , n− 1.

Then, the PJIEP has a solution if and only if
(1) there exist real numbers θj /∈ {0, 1} such that

δr+1δjθjxr+j > 0 and δr+1δr+j+1(1−θj)xr+j > 0, for j = 1, 2, . . . , k,

(2)

{
δr+1δjxj > 0 for j = k + 1, . . . , r, and
δr+1δj+1xj > 0, for j = r + k + 1, . . . , n− 1,

(3) εr(
∑k
j=1 θjxr+j +

∑r
j=k+1 xj) > 0 and

εr+1(
∑k
j=1(1− θj)xr+j +

∑n−1
j=r+k+1 xj) > 0,

(4) Conditions (3) and (4) in Theorem 3.1 hold.
Furthermore, there are infinite many solutions.

4. Algorithm. Based on Theorems 3.1 and 3.2, we present the following algorithm to
construct a pseudo-Jacobi matrix Jn inJ (n, ε,β) that solves the PJIEP. The θi, i = 1, 2, . . . , k,
in Theorem 3.2 are randomly selected in R− {0, 1} most of the times.

Algorithm 3 A solution of the PJIEP.
Input: ε, λ, µ1, and µ2 as in the PJIEP

Output: Jn

1: if µ1 ∩ µ2 = ∅, then
2: Form

xj = −
∏n

i=1(λi − µj)∏n−1
i=1,i6=j(µi − µj)

, j = 1, 2, . . . , n− 1.

3: if the conditions (1)–(2) in Theorem 3.1 hold, then
4: Calculate

βr :=

(
εr

r∑
j=1

xj

) 1
2

, βr+1 :=

(
εr+1

n−1∑
j=r+1

xj

) 1
2

.

5: Compute 
u
(1)
r,j :=

√
δr+1δjxj

βr
, j = 1, 2, . . . , r,

u
(2)
1,j−r :=

√
δr+1δj+1xj

βr+1
, j = r + 1, r + 2, . . . , n− 1.

6: else
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7: stop
8: end if
9: else

10: Rearrange the elements in λ, µ1, and µ2 such that µ1∩µ2 = {µi}ki=1, µr+i = µi, and λi = µi

for i = 1, 2, . . . , k.
11: Form

xj = −
∏n

i=k+1(λi − µj)∏n−1
i=k+1,i 6=j(µi − µj)

, j = k + 1, . . . , n− 1,

12: Select θi in R− {0, 1} for all i = 1, 2, . . . , k.
13: if conditions (1)–(3) in Theorem 3.2 hold, then
14: Calculate

βr :=

εr( k∑
j=1

θjxr+j +

r∑
j=k+1

xj)

 1
2

,

βr+1 :=

εr+1(

k∑
j=1

(1− θj)xr+j +

n−1∑
j=r+k+1

xj)

 1
2

.

15: Compute

u
(1)
r,j :=


1

βr

√
δr+1δjθjxr+j , j = 1, 2, . . . , k,

1

βr

√
δr+1δjxj , j = k + 1, . . . , r,

and

u
(2)
1,j :=


1

βr+1

√
δr+1δr+j+1(1− θj)xr+j , j = 1, 2, . . . , k,

1

βr+1

√
δr+1δr+j+1xr+j , j = k + 1, . . . , n− r − 1.

16: else
17: Go to step 12.
18: end if
19: end if
20: if the conditions (3)–(4) in Theorem 3.1 hold, then
21: Construct the pseudo-Jacobi matrix Jr from H1, µ1, and g1 = (u

(1)
r,1, u

(1)
r,2, . . . , u

(1)
r,r)

T by
Algorithm 1.

22: Compute the pseudo-Jacobi matrix Jr+2,n from H2, µ2, and g2 = (u
(2)
11 , u

(2)
12 , . . . , u

(2)
1,n−r−1)

T

by Algorithm 2.
23: else
24: stop
25: end if
26: Compute αr+1 =

∑n
i=1 λi −

∑n−1
i=1 µi.

27: return Jn

Next, we discuss the computational complexity of the above algorithm considering just
the case when µ1 ∩ µ2 = ∅.

Step 1 requires O(r(n − r − 1)) operations and step 2 O((n − 1)(4n − 5)). Step 3
requires O(2n) operations, step 4 does not require operations, and the cost of step 5 is
O(n−1). As the computational complexities of Algorithms 1 and 2 are both at mostO(15n2),
the cost of steps 20–22 is at most O(15(r2 + (n − r − 1)2)). Finally, step 26 requires
O(2n− 2) operations. Therefore, the total complexity of the algorithm when µ1 ∩µ2 = ∅ is
approximately O(19n2 + 29r2 − 29nr − 34n+ 29r + 17).
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5. Numerical experiments. In this section, we present some numerical examples illus-
trating that Algorithm 3 is theoretically effective to solve the PJIEP. All the tests are performed
by using MATLAB R2016a. Because all the pseudo-Jacobi matrices Jn in J (n, ε,β) rely
on the sign vector ε, the main diagonal entries α = (α1, α2, . . . , αn), and the subdiagonal
entries β = (β1, β2, . . . , βn−1), they can be generated by the following MATLAB code:

diag(alpha)+diag(beta,-1)+diag(beta.*epsilon,1).

Let i =
√
−1 be the imaginary unit.

EXAMPLE 5.1. Consider an extended harmonic oscillator [12]

Hβ =
β

2
(p2 + x2) + i

√
2p, β > 0,

which acts on L2 (the Hilbert space of square integrable differentiable functions of the
real variable x). The operator p : L2 → L2 is the differential operator f(x) → −i df

dx and
x : L2 → L2 is the multiplicative operator f(x)→ xf(x). With respect to the orthonormal ba-
sis constituted by the eigenvectors of the harmonic oscillator, φn(x) = Kn(x− d

dx )n exp(−x
2

2 )
(Kn is the normalization constant), the non-Hermitian operator Hβ is represented by the non-
selfadjoint infinite tridiagonal matrix

Mβ =



1
2β −

√
1√

1 3
2β −

√
2√

2 5
2β −

√
3

√
3 7

2β
. . .

. . . . . .


with real spectrum. The matrix Mβ is pseudo-Hermitian for H = diag(1,−1, 1,−1, · · · ).
Then, we consider the finite r × r tridiagonal matrix

Mβ,r =



1
2β −

√
1√

1 3
2β −

√
2√

2 5
2β −

√
3

√
3

. . . . . .

. . . . . . −
√
r − 1√

r − 1 2r−1
2 β


.

Let a pseudo-Jacobi matrix Jn of the form (3.1) be given as follows:

Jr = Mβ,r, Jr+2,n = M β
2 ,r
,

βr =
√
r, βr+1 =

√
r + 1,

αr+1 = r, εr = εr+1 = 1.

Assume λ = σ(Jn), µ1 = σ(Jr), and µ2 = σ(Jr+2,n). We choose the values of r and β
such that the elements in µ1 and µ2 are all real and pairwise distinct and µ1 ∩ µ2 = ∅.

By Algorithm 3 we can obtain a unique pseudo-Jacobi matrix J̃n. Then, we compute the
spectra λ̃, µ̃1, and µ̃2 of J̃n and of its principal submatrices J̃r and J̃r+2,n. In Table 5.1, we
present the comparison between λ̃, µ̃1, µ̃2, J̃n, and the initial counterparts. If the value of r
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is larger, then the errors ‖λ− λ̃‖2, ‖µ1 − µ̃1‖2, ‖µ2 − µ̃2‖2, and ‖Jn − J̃n‖F will also be
larger. Assume that there exist an H1-orthogonal matrix Ũ1 and an H2-orthogonal matrix Ũ2

such that Ũ#
1 J̃rŨ1 = diag(µ̃1) and Ũ#

2 J̃r+2,nŨ2 = diag(µ̃2). From the Hoffman-Wielandt
theorem for diagonalizable matrices [20], we have that

‖µ1 − µ̃1‖2 ≤ κ(U1)κ(Ũ1)‖Jr − J̃r‖F and

‖µ2 − µ̃2‖2 ≤ κ(U2)κ(Ũ2)‖Jr+2,n − J̃r+2,n‖F

by (3.2), where κ(X) denotes the condition number of the matrix X . Similarly, there exist
pseudo-orthogonal matrices P and P̃ such that P#JnP = diag(λ) and P̃#J̃nP̃ = diag(λ̃).
We also have that

‖λ− λ̃‖2 ≤ κ(P )κ(P̃ )‖Jn − J̃n‖F .

So the large variations in the errors for Jn may yield such small variations in the errors for the
eigenvalues λ, µ1, and µ2 in Table 5.1. Thus, the results agree with our theoretical results
established in this paper and demonstrate the feasibility and effectiveness of Algorithm 3.

EXAMPLE 5.2. Let the vector ε = (1,−1,−1,−1, 1,−1,−1, 1) and the matrix

J9 =



2 2 0 0 0 0 0 0 0
2 −1 −1 0 0 0 0 0 0
0 1 3 −2 0 0 0 0 0
0 0 2 −2 −2 0 0 0 0
0 0 0 2 2 3 0 0 0
0 0 0 0 3 −4 −2 0 0

0 0 0 0 0 2 1 −
√

2 0

0 0 0 0 0 0
√

2 3
√

2

0 0 0 0 0 0 0
√

2 −3


be given. Consider r = 4 and let the spectra λ, µ1, µ2 of J9 and of its principal subma-
trices J4 and J6,9 be as in Table 5.2. Then, µ1 ∩ µ2 = ∅, H1 = diag(1, 1,−1, 1), and
H2 = diag(1,−1, 1, 1). By Algorithm 3, we get

x1 = −0.35726558990817, x2 = −0.66666666666666, x3 = 1.99999999999999,

x4 = −4.97606774342519, x5 = 0.71665054819938, x6 = −3.00000000000001,

x7 = 9.00000000000002, x8 = 2.28334945180063.

It is obvious that the conditions (1) and (2) in Theorem 3.1 hold. Thus,

g1 = (0.29885849072269, 0.40824829046386, 0.70710678118654, 1.11535507165041)T,

g2 = (0.28218405108868, 0.57735026918963, 1.00000000000000, 0.50369186477897)T.

Continuing using Algorithm 3, the pseudo-Jacobi matrix J̃9 ∈ J (9, ε, β̃) in Table 5.3 can be
obtained.

This matrix is the unique solution of the PJIEP because we have

‖J9 − J̃9‖F = 1.80047652073822e-13.

Furthermore, we compute the spectra λ̃, µ̃1, µ̃2 of J̃9 and of its principal submatrices J̃4 and
J̃6,9. In Figure 5.1 we compare the computed spectra with the original spectra λ, µ1, and µ2.
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T
A

B
L

E
5.1

N
um

ericalresults
ofE

xam
ple

5.1.

‖λ
−
λ̃‖

2
‖µ

1 −
µ̃

1 ‖
2

‖µ
2 −

µ̃
2 ‖

2
‖
J
n
−
J̃
n ‖
F

β
=

7.5
1.21654087139106e-13

7.53906016829511e-14
1.07874211489352e-14

5.55406538452228e-07
r

=
5

β
=

7.05
8.91280407333371e-14

3.31166706280011e-14
4.36203221376583e-14

6.75339350432302e-07
β

=
7.00

5
5.74883418456454e-14

1.76968296418523e-14
5.23911753690996e-14

8.69512140667790e-09

β
=

1
0.5

1.03928498584809e-13
1.87991937470471e-14

2.45497399495158e-14
1.14483347887364e-06

r
=

10
β

=
1
0.0

5
1.42836826118259e-13

6.37511677045892e-14
1.48885833566228e-14

8.23170442289946e-06
β

=
1
0.0

05
1.01618101503372e-13

2.31608595598326e-14
2.04281036531029e-14

2.00292443464089e-06

β
=

1
2.2

1.63429971714009e-10
1.63136090375117e-10

6.45688930806847e-12
2.63164795080718e-06

r
=

15
β

=
1
2.2

7
3.56072544922297e-10

3.10049934403217e-10
1.66967112863334e-10

8.95113200525828e-06
β

=
1
2.2

27
7.66680284994086e-11

7.28806581445643e-11
2.29559276828696e-11

3.96950713189288e-06

β
=

1
5.6

1.58489386292105e-06
1.58492490913971e-06

3.17397792186766e-09
3.05364567938157e-05

r
=

20
β

=
1
5.6

2
2.70117225939402e-07

2.70116033248486e-07
2.97767699245570e-11

2.82192471207050e-05
β

=
1
5.6

27
8.29477849157585e-07

8.29470091227044e-07
3.67038177702291e-09

9.30526242363253e-06

β
=

3
8.5

2.67730161759526e-05
2.67730145907598e-05

1.43873524019575e-08
5.16235943827669e-05

r
=

25
β

=
3
8.5

4
3.47348272517093e-05

3.47347596882915e-05
3.66138295955242e-08

6.20954702973390e-05
β

=
3
8.5

42
4.68726739372201e-05

4.68725644670191e-05
2.17506827107243e-08

1.80684325832389e-04
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TABLE 5.2
The spectra λ = {λj}9j=1, µ1 = {µj}4j=1 and µ2 = {µj}8j=5.

j λj µj
1 2.97935111716971–0.16836804694051i 2.73205080756888
2 2.97935111716971+0.16836804694051i –2.00000000000000
3 2.25663440991630 2.00000000000000
4 1.26336198716348–1.32257216682703i –0.73205080756888
5 1.26336198716348+1.32257216682703i 2.37228132326901
6 –0.03727254885815 1.00000000000000
7 –1.96441245351364 –3.00000000000000
8 –4.46198378686847 –3.37228132326901
9 –3.27839182934239

TABLE 5.3
Main diagonal α̃ = (α̃1, α̃2, . . . , α̃9) and subdiagonal β̃ = (β̃1, β̃2, . . . , β̃8) of J̃9 ∈ J (9, ε, β̃).

j α̃j β̃j
1 1.99999999999997 2.00000000000004
2 –0.99999999999996 1.00000000000001
3 2.99999999999997 1.99999999999997
4 –1.99999999999997 2.00000000000001
5 2.00000000000001 3.00000000000001
6 –3.99999999999999 1.99999999999998
7 0.99999999999994 1.41421356237315
8 3.00000000000007 1.41421356237305
9 –3.00000000000002

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

Re

-1.5

-1

-0.5

0

0.5

1

1.5

Im

original spectrum λ

computed spectrum λ̃

original spectrum µ1

computed spectrum µ̃1

original spectrum µ2

computed spectrum µ̃2

FIG. 5.1. Comparison between the original spectra λ, µ1, µ2 and the computed spectra λ̃, µ̃1, µ̃2.
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TABLE 5.4
Absolute errors between the original spectra λ, µ1, µ2 and the computed spectra λ̃, µ̃1, µ̃2.

‖λ− λ̃‖2 ‖µ1 − µ̃1‖2 ‖µ2 − µ̃2‖2
6.27822826864024e-15 5.61843057806044e-15 7.93168690704416e-15

TABLE 5.5
The spectra λ = {λj}9j=1, µ1 = {µj}4j=1 and µ2 = {µj}8j=5.

j λj µj
1 2.00000000000000 2.00000000000000
2 –2.00000000000000 –2.00000000000000
3 6.58533601596052 2.73205080756888
4 3.40647425562398 –0.73205080756888
5 1.79809235457054 2.00000000000000
6 –1.96971063765212+2.86959352986032i –2.00000000000000
7 –1.96971063765212–2.86959352986032i 3.37228132326901
8 –0.57578829818534 –2.37228132326901
9 –2.27469305266548

In Table 5.4 we also present their respective absolute errors. The computed spectra are in total
accordance with the original spectra within the machine precision.

EXAMPLE 5.3. Let ε = (−1,−1, 1, 1,−1,−1,−1, 1), r = 4, and

J9 =



−2 −2 0 0 0 0 0 0 0
2 3 −1 0 0 0 0 0 0
0 1 −1 2 0 0 0 0 0
0 0 2 2 5 0 0 0 0
0 0 0 5 2 −4 0 0 0
0 0 0 0 4 −3 −2 0 0

0 0 0 0 0 2 2 −
√

2 0

0 0 0 0 0 0
√

2 4
√

2

0 0 0 0 0 0 0
√

2 −2


.

Then, H1 = H2 = diag(1,−1, 1, 1), and the spectra λ, µ1, and µ2 of J9 and of its principal
submatrices J4 and J6,9 are given in Table 5.5.

Obviously, µ1 ∩ µ2 = {2.00000000000000,−2.00000000000000} and k = 2. In
Algorithm 3, we consider three of the solutions. Firstly, by selecting θ1 = 2 and θ2 = −7,

a pseudo-Jacobi matrix J̃ (1)
9 ∈ J (9, ε, β̃

(1)
) is obtained in Table 5.6 . Then, by choosing

θ1 = 3 and θ2 = −8, we get another pseudo-Jacobi matrix J̃ (2)
9 ∈ J (9, ε, β̃

(2)
) whose

entries are displayed in Table 5.7. Next, taking θ1 = 5 and θ2 = −8, a pseudo-Jacobi matrix

J̃
(3)
9 ∈ J (9, ε, β̃

(3)
) is obtained and given in Table 5.8.

Finally, we compute the spectra λ̃
(i)

, µ̃(i)
1 , and µ̃(i)

2 of the pseudo-Jacobi matrices J̃ (i)
9

and of their principal submatrices J̃ (i)
4 and J̃ (i)

6,9, for i = 1, 2, 3. Comparing these spectra
with the original spectra λ, µ1, and µ2, Figures 5.2, 5.3, 5.4, and Table 5.9 illustrate that
the computed spectra agree with the original spectra up to the machine precision. All the
numerical results are in accordance with the theory developed in this paper.

6. Conclusions. In this paper, an inverse eigenvalue problem for Jacobi matrices that
was investigated in [17] has been considered in the non-selfadjoint setting. This problem,
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TABLE 5.6
Main diagonal α̃(1) = (α̃

(1)
1 , α̃

(1)
2 , . . . , α̃

(1)
9 ) and subdiagonal β̃

(1)
= (β̃

(1)
1 , β̃

(1)
2 , . . . , β̃

(1)
8 ) of J̃(1)

9 ∈
J (9, ε, β̃

(1)
).

j α̃
(1)
j β̃

(1)
j

1 –1.71754190328978 1.83482089091865
2 2.65888882292985 0.58272751993471
3 2.14866944697204 1.94778362432672
4 –1.09001636661211 10.09125033548037
5 1.99999999999999 9.63500562186306
6 –2.25134649910235 0.94668324899178
7 1.62607316500176 1.14864353913391
8 3.52046222224392 1.69309068435266
9 –1.89518888814334

TABLE 5.7
Main diagonal α̃(2) = (α̃

(2)
1 , α̃

(2)
2 , . . . , α̃

(2)
9 ) and subdiagonal β̃

(2)
= (β̃

(2)
1 , β̃

(2)
2 , . . . , β̃

(2)
8 ) of J̃(2)

9 ∈
J (9, ε, β̃

(2)
).

j α̃
(2)
j β̃

(2)
j

1 –1.20263604281617 1.12069676849459
2 1.81727913229512 0.97735873260376
3 2.78441794338492 1.72672967266801
4 –1.39906103286386 10.31988372027510
5 1.99999999999999 9.87420882906570
6 –2.53333333333336 1.50122457136676
7 2.27605177993530 0.64677836372989
8 3.00807778349232 1.82098682825439
9 –1.75079623009426

TABLE 5.8
Main diagonal α̃(3) = (α̃

(3)
1 , α̃

(3)
2 , . . . , α̃

(3)
9 ) and subdiagonal β̃

(3)
= (β̃

(3)
1 , β̃

(3)
2 , . . . , β̃

(3)
8 ) of J̃(3)

9 ∈
J (9, ε, β̃

(3)
).

j α̃
(3)
j β̃

(3)
j

1 –0.88332250873279 0.45831627309447
2 –1.02180790112723 3.59721086479957
3 5.83279767929948 1.17008113254617
4 –1.92766726943946 9.60034721594304
5 1.99999999999999 9.11957601353623
6 –3.31462925851710 2.60660360466998
7 3.19245936689820 0.38865718165124
8 2.80498308965325 1.87250089319368
9 –1.68281319803435

TABLE 5.9
Absolute errors between the original spectra λ, µ1, µ2 and the computed spectra λ̃

(i)
, µ̃(i)

1 , µ̃(i)
2 .

i ‖λ− λ̃
(i)
‖2 ‖µ1 − µ̃

(i)
1 ‖2 ‖µ2 − µ̃

(i)
2 ‖2

1 2.76195696656855e-14 1.39393795312866e-14 7.02517689335219e-15
2 7.85613248788838e-14 2.44249065417534e-15 2.97904098389673e-15
3 9.20595358801062e-13 2.13859186672314e-13 5.82417538579527e-15
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FIG. 5.2. Comparison between the original spectra λ, µ1, µ2 and the computed spectra λ̃
(1)

, µ̃(1)
1 , µ̃(1)

2 .

abbreviated as PJIEP, has been solved from the knowledge of a given sign vector ε and from
the prescribed spectra λ, µ1, and µ2 of Jn and of two complementary principal submatrices,
where λ is closed under complex conjugation and all the elements in µ1 and µ2 are real
pairwise distinct. Necessary and sufficient conditions for the existence of the solution have
been found according to the two cases µ1 ∩ µ2 = ∅ and µ1 ∩ µ2 6= ∅. Then, the desired
pseudo-Jacobi matrices have been constructed with the aid of a modified unsymmetric Lanczos
algorithm. Furthermore, numerical experiments illustrate the efficiency and feasibility of the
proposed construction algorithm (Algorithm 3). Our results extend the previous results
obtained in [18] for the unique case when µ1 ∩µ2 = ∅ as well as in [6] and [29] for the cases
H = Ir ⊕ −In−r and H = Ir ⊕ −I1 ⊕ In−r−1, respectively. If the sets µ1 and µ2 in the
PJIEP have complex elements and are closed under conjugation, then the present approach
does not apply. This is an open problem that deserves future attention.
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Appendix A. Proofs of Theorems 2.1 and 2.2. The proofs of the theorems in Section 2
require the following lemmas.

LEMMA A.1. Let Ĵn ∈ J (n, ε,β) have distinct real eigenvalues λ̂1, λ̂2, . . . , λ̂n. Then,
the adjugate of λ̂jIn − Ĵn is

(A.1) adj(λ̂jIn − Ĵn) = χ′n(λ̂j)vjvT
jHδj ,
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FIG. 5.3. Comparison between the original spectra λ, µ1, µ2 and the computed spectra λ̃
(2)

, µ̃(2)
1 , µ̃(2)

2 .

where vj is the jth column of an H-orthogonal diagonalizing matrix of Ĵn and where
χ′n(λ̂j) =

∏n
1=i 6=j(λ̂j − λ̂i).

Proof. Under the hypothesis on Ĵn, there exists an H-orthogonal matrix V such that

ĴnV = V Λ, Λ = diag(λ̂1, λ̂2, . . . , λ̂n).

Thus,

adj(λIn − Ĵn) = det(λIn − Ĵn) · (λIn − Ĵn)−1 = det(λIn − Ĵn) · V (λIn − Λ)−1V #

=

n∑
i=1

det(λIn − Ĵn)

λ− λ̂i
vivT

iHδi.

From the last equality, we easily obtain (A.1).
REMARK A.2. Matrices in J (n, ε,β) may exist with multiple eigenvalues (see Ex-

amples 4.1 and 4.2 in [29]). It has been shown in Lemma A.1 that, if Ĵn ∈ J (n, ε,β) is
diagonalizable and has a multiple eigenvalue λ̂j , then the equality (A.1) also holds.

LEMMA A.3. Under the assumptions in Lemma A.1, both of the following statements
hold:

(1) If ω ≤ υ, then χ1,ω−1(λ̂j)βω · · ·βυ−1χυ+1,n(λ̂j) = χ′n(λ̂j)vωjvυjδωδj;
(2) If ω ≥ υ, then χ1,υ−1(λ̂j)βυ · · ·βω−1χω+1,n(λ̂j) = χ′n(λ̂j)vωjvυjδυδj ,

where vij is the ith component of vj .
Proof. If ω ≤ υ, we consider the (ω, υ)th entry on both sides of the equality (A.1), and

we get

χ1,ω−1(λ̂j)βω · · ·βυ−1εω · · · ευ−1χυ+1,n(λ̂j) = χ′n(λ̂j)vωjvυjδυδj .

Then, (1) holds because εω · · · ευ−1 = δυ
δω

.
If ω ≥ υ, we take the (ω, υ)th entry on both sides of the equality (A.1). Then,

χ1,υ−1(λ̂j)βυ · · ·βω−1χω+1,n(λ̂j) = χ′n(λ̂j)vωjvυjδυδj ,
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and (2) follows.
When (ω, υ) is, respectively, taken to be (1, n), (n, 1), (1, 1), and (n, n), the following

immediate consequence of Lemma A.3 holds.
LEMMA A.4. Under the assumptions in Lemma A.1, we have
(1) χ′n(λ̂j)v1jvnj = δ1δjβ1β2 · · ·βn−1;
(2) χ′n(λ̂j)v21j = δ1δjχ2,n(λ̂j);
(3) χ′n(λ̂j)v2nj = δnδjχ1,n−1(λ̂j).

Proof of Theorem 2.1. The first item in the above lemma was obtained in [5, Lemma 2.2].
Because 0 6= χ′n(λ̂j) ∈ R, from (1) it follows that 0 6= v1jvnj ∈ R.

Proof of Theorem 2.2. From Lemma A.4 (1) it follows that β1β2 · · ·βn−1 6= 0 and
0 6= vn,i ∈ R, for i = 1, 2, . . . , n. Since (vn,1, vn,2, . . . , vn,n) is the last row of the H-
orthogonal matrix V , it follows that

(A.2) δ1v2n,1 + δ2v2n,2 + · · ·+ δnv2n,n = δn.

Assume that [̂sk, ŝk]δk−1 > 0, for k = n, n − 1, . . . , 2, and also [̂sn+1, ŝn+1]δn > 0.
We first show that Yn,Yn−1, . . . ,Y1, computed by this algorithm, are the columns of the
H-orthogonal matrix Y = [Y1,Y2, . . . ,Yn], and we demonstrate that the following pseudo-
orthogonality relations hold:

(A.3) [Yi,Yj ] = δijδi, for j = n, n− 1, . . . , i and i = n, n− 1, . . . , 1.

From (A.2) and steps 4 and 6, (A.3) follows for i = n. If (A.3) holds for i = n, n− 1, . . . , l,
we then prove that it also holds for i = l − 1.

If j = l − 1, steps 4 and 6 imply that (A.3) holds because

[Yl−1,Yl−1] =
1

β2
l−1

[̂sl, ŝl] = δl−1.
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For j ≥ l, from steps 6 and 10 we have

[Yl−1,Yj ] =
1

βl−1
[̂sl,Yj ] =

1

βl−1
[(Λ− αlIn)Yl − γlYl+1,Yj ]

=
1

βl−1
([ΛYl,Yj ]− αlδljδl − γlδl+1,jδl+1).

Clearly steps 7 and 9 imply that the right-hand side of the above equality is zero for j = l. If
j > l, we get

[ΛYl,Yj ] = [Yl,ΛYj ] = [Yl, ŝj + αjYj + γjYj+1]

= βj−1δl,j−1δl + αjδl,jδl + γjδl,j+1δl = βj−1δl,j−1δl

from steps 6 and 10. Then

[Yl−1,Yj ] =
1

βl−1
(βj−1δl,j−1δl − γlδl+1,jδl+1) = 0,

because γk−1 = 1
βk−1

[̂sk, ŝk]δk = εk−1βk−1, for k = n, n − 1, . . . , 2, from steps 4, 5, and
11.

Next, we show that the matrix Z = [Z1,Z2, . . . ,Zn] computed by this algorithm is an
H-orthogonal matrix. As

[Zi,Zj ] = [Yi,Yj ]δiδj = δijδj

for j = n, n − 1, . . . , i, and i = n, n − 1, . . . , 1, from step 7 and (A.3), we can also get
Z = HYH as well as the biorthogonality condition Y TZ = In.

Now, we show that ŝ1 = 0. It is sufficient to prove that [̂s1,Yi] = 0, for i = 1, 2, . . . , n,
because Y1,Y2, . . . ,Yn constitute an H-orthonormal basis of Rn. If i = 1, we obtain

[̂s1,Y1] = [ΛY1 − α1Y1 − γ1Y2,Y1] = [ΛY1,Y1]− α1δ1 = 0

from steps 7, 9, and 10. If i = 2, we have

[̂s1,Y2] = [ΛY1 − α1Y1 − γ1Y2,Y2] = [Y1,ΛY2]− γ1δ2
= [Y1, ŝ2 + α2Y2 + γ2Y3]− γ1δ2 = β1δ1 − γ1δ2 = 0

from steps 6 and 10, and γ1 = ε1β1. If i ≥ 3, we obtain

[̂s1,Yi] = [ΛY1 − α1Y1 − γ1Y2,Yi] = [Y1,ΛYi]
= [Y1, ŝi + αiYi + γiYi+1] = [Y1, βi−1Yi−1] = 0

from steps 6 and 10. Then, ŝ1 = r̂1 = 0 holds from step 11. Thus, the algorithm will
prematurely terminate in this case and it follows that

ΛY = Y ĴT and ΛZ = ZĴ,

and so (Y −1)TĴY T = Λ.
Finally, we demonstrate that the constructed pseudo-Jacobi matrix Ĵ is unique. Let J̃ be a

pseudo-Jacobi matrix characterized by the distinct real eigenvalues λ̂1, λ̂2, . . . , λ̂n, the nonzero
H-orthonormal vector (vn,1, vn,2, . . . , vn,n)T, and the pseudo-norms δ1, δ2, . . . , δn. The
column vectors Ỹn, Ỹn−1, . . . , Ỹ1, obtained by the algorithm, are pseudo-orthogonal with the
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respective norms δn, δn−1, . . . , δ1. The computed column vectors Z̃n, Z̃n−1, . . . , Z̃1 are also

pseudo-orthogonal and satisfy the biorthogonality condition Ỹ
T

i Z̃j = δij , for i, j = 1, 2, . . . , n.
Thus,

(A.4) ΛỸ = Ỹ J̃T and ΛZ̃ = Z̃J̃

for Ỹ = [Ỹ1, Ỹ2, . . . , Ỹn] and Z̃ = [Z̃1, Z̃2, . . . , Z̃n]. Because all the subdiagonal entries β̃i
and the superdiagonal entries γ̃i of J̃ satisfy γ̃i = εiβ̃i, we only need to prove that all the main
diagonal entries α̃i and subdiagonal entries β̃i of J̃ are equal to the corresponding entries αi
and βi of the matrix Ĵ computed by the algorithm.

From the identities in (A.4), the columns Ỹk and Z̃k of the H-orthogonal matrices Y and
Z, respectively, satisfy the following recurrence relations:

β̃k−1Ỹk−1 = s̃k = (Λ− α̃kIn)Ỹk − γ̃kỸk+1,

γ̃k−1Z̃k−1 = r̃k = (Λ− α̃kIn)Z̃k − β̃kZ̃k+1

for k = n, n − 1, . . . , 1, with Ỹn+1 = Z̃n+1 = 0 and s̃1 = r̃1 = 0. As Z̃k = HỸkδk and

r̃k = H s̃kδk, we only consider the first recurrence relation pre-multiplied by Z̃
T

k . It follows
that

α̃k = Z̃
T

kΛỸk, k = n, n− 1, . . . , 1.

Observing that

1 = Ỹ
T

k−1Z̃k−1 =
1

β̃k−1γ̃k−1
s̃Tk r̃k,

we find that

Ỹk−1 =
1

β̃k−1
s̃k, γ̃k−1 =

1

β̃k−1
s̃Tk r̃k,

and so

[β̃k−1Ỹk−1, β̃k−1Ỹk−1] = [̃sk, s̃k].

Thus,

β̃k−1 =
√

[̃sk, s̃k]δk−1, k = n, n− 1, . . . , 2.

By the sequence of computations in the backward modified unsymmetric Lanczos algorithm
and considering Ỹn = (vn,1, vn,2, . . . , vn,n)T, we can easily show that the entries α̃n, β̃n−1,
α̃n−1, β̃n−2, . . . , β̃1, α̃1 of J̃ coincide, respectively, with the entries αn, βn−1, αn−1, βn−2,
. . . , β1, α1 of Ĵ .

REMARK A.5. By executing the algorithm in Theorem 2.3, we can also get Y = V T and
Z = V # from the initial vector Yn = (vn,1, vn,2, . . . , vn,n)T.

Appendix B. Proofs of Theorems 3.1 and 3.2. The proofs of the theorems in Section 3
use the following four lemmas. The first one gives a necessary and sufficient condition for
Jr and Jr+2,n in (3.1) to share a common eigenvalue. As noticed by one of the referees, the
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rational function F1(λ) there appearing is the (r + 1, r + 1)-entry of the twisted factorization
of the tridiagonal matrix λIn − Jn (see [22]).

LEMMA B.1. Let µ1 and µ2 be the spectra of Jr and Jr+2,n in (3.1), respectively. Then,
an element of µ1 is an eigenvalue of Jn in (3.1) if and only if it is an element of µ2 and
vice-versa.

Proof. From (3.2), it follows that U = U1 ⊕ I1 ⊕ U2 is a pseudo-orthogonal matrix with
respect to H̃ = H1 ⊕ I1 ⊕H2, and so U# = H̃UTH̃ . Thus, we get

U#JnU =

 Λ1 εrβrU
#
1 er 0

βreTr U1 αr+1 εr+1βr+1ω
T
1 U2

0 βr+1U
#
2 ω1 Λ2

 .
By using the Laplace expansion for the determinant, it follows that

det(λIn − Jn) = det(λIn − U#JnU)

=

n−1∏
j=1

(λ− µj)

(
λ− αr+1 −

r∑
i=1

δr+1(βru
(1)
r,i )2δi

λ− µi
−

n−1∑
i=r+1

δr+1(βr+1u
(2)
1,i−r)

2δi+1

λ− µi

)
.

(B.1)

Because βru
(1)
r,i 6= 0, i = 1, 2, . . . , r, and βr+1u

(2)
1,i−r 6= 0, i = r + 1, r + 2, . . . , n− 1, from

Lemma A.4 (1) we find that

det(µjIn − Jn)

= −
n−1∏

i=1,i6=j

(µj − µi) ·

{
δr+1(βru

(1)
r,j )2δj , j = 1, 2, . . . , r,

δr+1(βr+1u
(2)
1,j−r)

2δj+1, j = r + 1, r + 2, . . . , n− 1.

Due to the fact that all the elements in µ1 and µ2 are pairwise distinct, µj is an eigenvalue
of Jn if and only if

∏n−1
i=1,i6=j(µj − µi) = 0, that is, µj is a common eigenvalue of Jr and

Jr+2,n.
If Jr and Jr+2,n have no common eigenvalues, then the following holds.
LEMMA B.2. Let σ(Jr) = µ1 and σ(Jr+2,n) = µ2. If σ(Jr)∩ σ(Jr+2,n) = ∅, then the

eigenvalues of Jn are the n zeros of the following rational function

(B.2) F1(λ) = λ− αr+1 −
r∑
i=1

δr+1(βru
(1)
r,i )2δi

λ− µi
−

n−1∑
i=r+1

δr+1(βr+1u
(2)
1,i−r)

2δi+1

λ− µi
.

Proof. By Lemma B.1, µj /∈ σ(Jn), for any j = 1, 2, . . . , n−1, if σ(Jr)∩σ(Jr+2,n) = ∅.
Then, det(λIn − Jn) = 0 is equivalent to

F1(λ) = λ− αr+1 −
r∑
i=1

δr+1(βru
(1)
r,i )2δi

λ− µi
−

n−1∑
i=r+1

δr+1(βr+1u
(2)
1,i−r)

2δi+1

λ− µi
= 0

from equation (B.1), and the result holds.
If Jr and Jr+2,n have common eigenvalues, then the following holds.
LEMMA B.3. Let σ(Jr) = µ1 and σ(Jr+2,n) = µ2. Assume µ1 ∩ µ2 = {µi}ki=1 and

µr+i = µi, for any i = 1, 2, . . . , k, with k ≤ min{r, n − r − 1}. Then, µ1, µ2, . . . , µk are
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eigenvalues of Jn, and the remaining eigenvalues of Jn are the n − k zeros of the rational
function

F2(λ) = λ− αr+1 −
k∑
i=1

δr+1(βru
(1)
r,i )2δi + δr+1(βr+1u

(2)
1,i )

2δr+i+1

λ− µi

−
r∑

i=k+1

δr+1(βru
(1)
r,i )2δi

λ− µi
−

n−1∑
i=r+k+1

δr+1(βr+1u
(2)
1,i−r)

2δi+1

λ− µi
.

(B.3)

Proof. Because µi ∈ σ(Jr) ∩ σ(Jr+2,n), for any i = 1, 2, . . . , k, then µ1, µ2, . . . , µk are
also eigenvalues of Jn by Lemma B.1. Hence the remaining eigenvalues of Jn are the zeros of
the polynomial

G(λ) =
det(λIn − Jn)∏k
i=1(λ− µi)

=

n−1∏
j=k+1

(λ− µj)F1(λ)

from equation (B.1). Since µi /∈ σ(Jr) ∩ σ(Jr+2,n) for any i /∈ {1, 2, . . . , k} ∪ {r + 1, r +

2, . . . , r + k}, from Lemma B.1
∏n−1
j=k+1(λ− µj) 6= 0 for any λ /∈ {µ1, µ2, . . . , µk}. Hence,

G(λ) = 0 if and only if

F2(λ) = F1(λ) =λ− αr+1 −
k∑
i=1

δr+1(βru
(1)
r,i )2δi + δr+1(βr+1u

(2)
1,i )

2δr+i+1

λ− µi

−
r∑

i=k+1

δr+1(βru
(1)
r,i )2δi

λ− µi
−

n−1∑
i=r+k+1

δr+1(βr+1u
(2)
1,i−r)

2δi+1

λ− µi
= 0.

By construction, G(λ) has degree n− k and so G(λ) has n− k zeros. Thus, F2(λ) also has
n− k zeros.

In order to prove the main theorems in Section 3, we recall the following crucial result
presented in [5, 17].

LEMMA B.4. Let {ξ1, ξ2, . . . , ξm} be a set of complex numbers closed under conjugation,
and let {η1, η2, . . . , ηm−1} be a set of distinct real numbers with ηj /∈ {ξ1, ξ2 . . . ξm}. Then,
the following system of linear algebraic equations

x1
ξi − η1

+
x2

ξi − η2
+ · · ·+ xm−1

ξi − ηm−1
= ξi − a, i = 1, 2, . . . ,m,

has a unique solution x = (x1, x2, . . . , xm−1) if and only if

xj = −
∏m
i=1(ξi − ηj)∏m−1

i=1,i6=j(ηi − ηj)
, j = 1, 2, . . . ,m− 1,

and a =
∑m
i=1 ξi −

∑m−1
i=1 ηi.

Proof of Theorem 3.1. Necessity: Assume that there exists a pseudo-Jacobi matrix
Jn ∈ J (n, ε,β) as in (3.1) such that σ(Jn) = λ, σ(Jr) = µ1, and σ(Jr+2,n) = µ2.
Because µ1 ∩ µ2 = ∅, then it follows from Lemma B.2 that the eigenvalues of Jn are the
zeros of F1(λ) = 0 in (B.2). By Lemma B.4, we get

(B.4)

{
δr+1(βru

(1)
r,j )2δj = xj , j = 1, 2, . . . , r,

δr+1(βr+1u
(2)
1,j−r)

2δj+1 = xj , j = r + 1, r + 2, . . . , n− 1,
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where xj = −
∏n
i=1(λi − µj)

∏n−1
i=1,i6=j(µi − µj)−1. Since βr, βr+1, u(1)r,j , j = 1, 2, . . . , r,

and u(2)1,j−r, j = r + 1, r + 2, . . . , n− 1, are real, then condition (1) holds.

By (3.2) we know that
∑r
j=1(u

(1)
r,j )2δj = δr and

∑n−1
j=r+1(u

(2)
1,j−r)

2δj+1 = δr+2. Thus,
condition (2) follows from (B.4). Finally, conditions (3) and (4) are satisfied because

β2
k−1 = [̂sk, ŝk]δk−1 > 0, for k = r, r − 1, . . . , 2, and

β2
r+k+1 = [rr+k+1, rr+k+1]δr+k+2/δr+2 > 0, for k = 1, 2, . . . , n− r − 2.

Sufficiency: Assume that conditions (1)–(4) hold. Consider the sign vector ε and the
nonzero real numbers

(B.5) xj = −
∏n
i=1(λi − µj)∏n−1

i=1,i6=j(µi − µj)
, j = 1, 2, . . . , n− 1.

Let us define

(B.6) βr :=

εr r∑
j=1

xj

 1
2

, βr+1 :=

εr+1

n−1∑
j=r+1

xj

 1
2

,

and

(B.7)


u
(1)
r,j :=

√
δr+1δjxj

βr
, j = 1, 2, . . . , r,

u
(2)
1,j−r :=

√
δr+1δj+1xj

βr+1
, j = r + 1, r + 2, . . . , n− 1.

Then, g1 = (u
(1)
r,1 , u

(1)
r,2 , . . . , u

(1)
r,r)T and g2 = (u

(2)
11 , u

(2)
12 , . . . , u

(2)
1,n−r−1)T are, respectively, an

H1-orthonormal and an H2-orthonormal vector. Furthermore, condition (3) ensures that a
unique pseudo-Jacobi matrix Jr can be constructed from (H1,µ1, g1) by using the algorithm in
Theorem 2.2. Similarly, condition (4) guarantees that the algorithm in Theorem 2.3 generates a
unique pseudo-Jacobi matrix Jr+2,n given (H2,µ2, g2). Since αr+1 =

∑n
i=1 λi −

∑n−1
i=1 µi,

a unique pseudo-Jacobi matrix Jn is so constructed.
From equations (B.5) and (B.7), we find

xj =

{
δr+1(βru

(1)
r,j )2δj , j = 1, 2, . . . , r,

δr+1(βr+1u
(2)
1,j−r)

2δj+1, j = r + 1, r + 2, . . . , n− 1,

By Lemma B.4, F1(λi) = 0 holds for i = 1, 2, . . . , n, in Lemma B.2. Thus, it follows that
det(λiIn − Jn) = 0, i = 1, 2, . . . , n. Therefore, λ = σ(Jn) and the constructed matrix Jn is
the unique solution of the PJIEP.

Proof of Theorem 3.2. Necessity: For the given sign vector ε and the sets λ, µ1,
and µ2, suppose that there exists a pseudo-Jacobi matrix Jn ∈ J (n, ε,β) as in (3.1). If
µ1 ∩ µ2 = {µi}ki=1 and µr+i = µi, for i = 1, 2, . . . , k, then λi = µi, i = 1, 2, . . . , k, are
also the eigenvalues of Jn by Lemma B.1. The remaining eigenvalues λk+1, λk+2, . . . , λn of
Jn are the zeros of F2(λ) = 0 in (B.3) by Lemma B.3. Thus, from Lemma B.4 we obtain

δr+1(βru
(1)
r,j )2δj + δr+1(βr+1u

(2)
1,j)

2δr+j+1 = xr+j , j = 1, 2, . . . , k,

δr+1(βru
(1)
r,j )2δj = xj , j = k + 1, k + 2, . . . , r,

δr+1(βr+1u
(2)
1,j−r)

2δj+1 = xj , j = r + k + 1, . . . , n− 1,

(B.8)
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where xj = −
∏n
i=k+1(λi − µj)

∏n−1
i=k+1,i6=j(µi − µj)−1, j = k+ 1, . . . , n− 1. Then there

exist real numbers θj /∈ {0, 1} such that

(B.9) δr+1(βru
(1)
r,j )2δj = θjxr+j , δr+1(βr+1u

(2)
1,j)

2δr+j+1 = (1− θj)xr+j ,

for j = 1, 2, . . . , k. Having in mind that βru
(1)
r,j 6= 0, j = 1, 2, . . . , r, and βr+1u

(2)
1,j 6= 0,

j = 1, 2, . . . , n− r − 1, from Lemma A.4, conditions (1) and (2) are satisfied.
Because

∑r
j=1(u

(1)
r,j )2δj = δr and

∑n−1
j=r+1(u

(2)
1,j−r)

2δj+1 = δr+2 from (3.2), condi-
tion (3) holds by (B.8) and (B.9). Since β2

k−1 = [̂sk, ŝk]δk−1 > 0 for k = r, r − 1, . . . , 2, and
β2
r+k+1 = [rr+k+1, rr+k+1]δr+k+2/δr+2 > 0 for k = 1, 2, . . . , n− r− 2, conditions (3) and

(4) in Theorem 3.1 follow.
Sufficiency: Because µ1∩µ2 = {µi}ki=1, then λi = µi, i ∈ {1, 2, . . . , k} are eigenvalues

of a pseudo-Jacobi matrix Jn which will be constructed in the sequel. If the conditions in this
theorem are satisfied, let

(B.10) xj = −
∏n
i=k+1(λi − µj)∏n−1

i=k+1,i6=j(µi − µj)
, j = k + 1, . . . , n− 1,

where xj are all nonzero real numbers. For the selected θj ∈ R− {0, 1}, j = 1, 2, . . . , k, let
us define

βr :=

εr( k∑
j=1

θjxr+j +

r∑
j=k+1

xj)

 1
2

,

βr+1 :=

εr+1(

k∑
j=1

(1− θj)xr+j +

n−1∑
j=r+k+1

xj)

 1
2

,

(B.11)

(B.12) u
(1)
r,j :=


1

βr

√
δr+1δjθjxr+j , j = 1, 2, . . . , k,

1

βr

√
δr+1δjxj , j = k + 1, . . . , r,

and

(B.13) u
(2)
1,j :=


1

βr+1

√
δr+1δr+j+1(1− θj)xr+j , j = 1, 2, . . . , k,

1

βr+1

√
δr+1δr+j+1xr+j , j = k + 1, . . . , n− r − 1.

Hence, we can construct a unique Jacobi matrix Jr from H1, µ1 and also the H1-orthonormal
vector g1 = (u

(1)
r,1 , u

(1)
r,2 , . . . , u

(1)
r,r)T by using the algorithm in Theorem 2.2 with the help

of condition (3) in Theorem 3.1. In addition, condition (4) in Theorem 3.1 ensures that a
unique pseudo-Jacobi matrix Jr+2,n can be constructed from H2, µ2 and the H2-orthonormal
vector g2 = (u

(2)
11 , u

(2)
12 , . . . , u

(2)
1,n−r−1)T by using the algorithm in Theorem 2.3. Then,

αr+1 =
∑n
i=1 λi −

∑n−1
i=1 µi from (3.1), and a pseudo-Jacobi matrix Jn is so reconstructed.

As βr, βr+1, u(1)r,j , and u(2)1,j depend on θj ∈ R−{0, 1} and the θj can be taken arbitrarily
for j = 1, 2, . . . , k, there are infinite pseudo-Jacobi matrices Jr and Jr+2,n obtained from
the algorithms in Theorems 2.2 and 2.3, and so infinite pseudo-Jacobi matrices Jn can be
achieved.
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Finally, we show that a reconstructed pseudo-Jacobi matrix Jn solves the PJIEP. By
equations (B.10), (B.12), and (B.13), we have

xj =


δr+1(βru

(1)
r,j−r)

2δj−r + δr+1(βr+1u
(2)
1,j−r)

2δj+1, j = r + 1, r + 2, . . . , r + k,

δr+1(βru
(1)
r,j )2δj , j = k + 1, k + 2, . . . , r,

δr+1(βr+1u
(2)
1,j−r)

2δj+1, j = r + k + 1, . . . , n− 1,

where δr+1(βru
(1)
r,j )2δj = θjxr+j and δr+1(βr+1u

(2)
1,j)

2δr+j+1 = (1 − θj)xr+j , θj ∈ R −
{0, 1} for j = 1, 2, . . . , k. By Lemma B.4, F2(λi) = λi −αr+1 −

∑n−1
j=k+1

xj
λi−µj = 0 holds

for i = k+ 1, k+ 2, . . . , n in Lemma B.3. Then det(λiIn−Jn) = 0, i = k+ 1, k+ 2, . . . , n,
and λi, i = k + 1, k + 2, . . . , n are the remaining eigenvalues of Jn. Thus, λ = σ(Jn), and
Jn is a solution of the PJIEP.
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