A BLOCK J-LANCZOS METHOD FOR HAMILTONIAN MATRICES*

ATIKA ARCHID ${ }^{\dagger}$, ABDESLEM HAFID BENTBIB ${ }^{\ddagger}$, AND SAID AGOUJIL ${ }^{\S}$

Abstract

This work aims to present a structure-preserving block Lanczos-like method. The Lanczos-like algorithm is an effective way to solve large sparse Hamiltonian eigenvalue problems. It can also be used to approximate $\exp (A) V$ for a given large square matrix A and a tall-and-skinny matrix V such that the geometric property of V is preserved, which interests us in this paper. This approximation is important for solving systems of ordinary differential equations (ODEs) or time-dependent partial differential equations (PDEs). Our approach is based on a block J-tridiagonalization procedure of a Hamiltonian and skew-symmetric matrix using symplectic similarity transformations.

Key words. block J-Lanczos method, Hamiltonian matrix, skew-Hamiltonian matrix, symplectic matrix, symplectic reflector, block J-tridiagonal form, block J-Hessenberg form

AMS subject classifications. 65F15, 65F30, 65F50

1. Introduction. The Lanczos method is an efficient tool for computing a few eigenvalues and associated eigenvectors of a large and sparse matrix. In this paper, we introduce a structure-preserving block Lanczos method called block J-Lanczos algorithm. This algorithm is applied to reduce a large sparse $2 n \times 2 n$ Hamiltonian matrix to a small Hamiltonian block J-tridiagonal matrix in the form

$$
\left[\begin{array}{cccc|cccc}
* & * & & & * & * & & \\
* & \ddots & \ddots & & * & \ddots & \ddots & \\
& \ddots & \ddots & * & & \ddots & \ddots & * \\
& & * & * & & & * & * \\
\hline * & * & & & * & * & & \\
* & \ddots & \ddots & & * & \ddots & \ddots & \\
& \ddots & \ddots & * & & \ddots & \ddots & * \\
& & * & * & & & * & *
\end{array}\right]
$$

where * are matrices of size $s \times s$. With this structure, we can derive a set of four-six-term recurrence relation of block J-Lanczos, and find four components of this matrix at the same iteration.

Gerstner and Mehrmann proposed in [8] the reduction of Hamiltonian matrices to Hamiltonian J-Hessenberg form to solve the real algebraic Riccati equation via the symplectic $Q R$-like algorithm. This form is also used by Benner and Fassbender in [4] to create a family of implicitly restarted Lanczos methods for Hamiltonian and symplectic matrices; see also [5],[8]. It is similar to the basic means used by Ferng, Lin, and Wang ([15],[16]) to construct a J-Lanczos algorithm for solving large sparse Hamiltonian eigenvalue problems. We refer to [1] for more details on the symplectic Lanczos algorithm for Hamiltonian matrices. The main purpose of

[^0]this paper is to introduce new methods for computing the Hamiltonian block J-tridiagonal form. Our approach is based on using $\mathbb{R}^{2 n \times 2 s}$ as free module on $\left(\mathbb{R}^{2 s \times 2 s},+, \times\right)$.

We organize this paper as follows. We first introduce some definitions that are related to the J-structure matrices. Some notation and terminology are reviewed in Section 2. In Section 3, we propose two different block J-Lanczos methods using two types of normalization. An issue related to the J-reorthogonalization in the J-Lanczos algorithm is also discussed. In Section 4, we give an approximation of $\exp (A) V$ using the block Krylov subspace $K_{m}(A, V)=$ blockspan $\left\{V, A V, \ldots, A^{m-1} V\right\}$ (see [14]) generated by the proposed block J-Lanczos algorithm. Numerical examples are presented in Section 5 to demonstrate the efficiency of our methods.
2. Terminology, notation, and some basic facts. A ubiquitous matrix in this work is the skew-symmetric matrix $J_{2 n}=\left[\begin{array}{cc}0_{n} & I_{n} \\ -I_{n} & 0_{n}\end{array}\right]$, where I_{n} and 0_{n} denote the $n \times n$ identity and zero matrices, respectively. Note that $J_{2 n}^{-1}=J_{2 n}^{T}=-J_{2 n}$. In the following, we will drop the subscripts n and $2 n$ whenever the dimension is clear from its context. The J-transpose of any $2 n$-by- $2 p$ matrix M is defined by $M^{J}=J_{2 p}^{T} M^{T} J_{2 n} \in \mathbb{R}^{2 p \times 2 n}$. A Hamiltonian matrix $M \in \mathbb{R}^{2 n \times 2 n}$ has the explicit block structure $M=\left[\begin{array}{cc}A & R \\ G & -A^{T}\end{array}\right]$, where A, G, R are real $n \times n$ matrices and $G=G^{T}, R=R^{T}$. By straightforward algebraic manipulation, we can show that a Hamiltonian matrix M is equivalently defined by $M^{J}=-M$. Likewise, a matrix M is skew-Hamiltonian if and only if $M^{J}=M$ and it has the explicit block structure $M=\left[\begin{array}{cc}A & R \\ G & A^{T}\end{array}\right]$, where A, G, R are real $n \times n$ matrices and $G=-G^{T}, R=-R^{T}$. Any matrix $S \in \mathbb{R}^{2 n \times 2 p}$ satisfying $S^{T} J_{2 n} S=J_{2 p}$ (or $S^{J} S=I_{2 p}$) is called a symplectic matrix. This property is also called J-orthogonality. Symplectic similarity transformations preserve the Hamiltonian and skew-Hamiltonian structure.

REMARK 2.1. If the matrix $S=\left[\begin{array}{ll}H_{11} & H_{12} \\ H_{21} & H_{22}\end{array}\right]$ is symplectic, then

$$
\tilde{S}=\left[\begin{array}{cccc}
I & 0 & 0 & 0 \\
0 & H_{11} & 0 & H_{12} \\
0 & 0 & I & 0 \\
0 & H_{21} & 0 & H_{22}
\end{array}\right]
$$

is also symplectic.
PROPOSITION 2.2. Let $E_{i}=\left[e_{i}, e_{n+i}\right]$ for $i=1, \ldots, n$, where e_{i} denotes the i-th unit vector of length $2 n$. Then

$$
E_{i} J_{2}=J_{2 n} E_{i}, E_{i}^{J}=E_{i}^{T} \quad \text { and } \quad E_{i}^{T} E_{j}=\delta_{i j} I_{2}
$$

where

$$
E_{i}^{J}=J_{2}^{T} E_{i}^{T} J_{2 n} \quad \text { and } \quad \delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

More generally, given $m, s \in \mathbb{N}$ such that $n=m s$, we define the $\operatorname{set}\left(F_{i}\right)_{1 \leq i \leq m}$ as

$$
F_{i}=\left[e_{(i-1) s+1}, e_{(i-1) s+2}, \ldots, e_{i s} \vdots e_{n+(i-1) s+1}, e_{n+(i-1) s+2}, \ldots, e_{n+i s}\right] \in \mathbb{R}^{2 n \times 2 s}
$$

Then we have

$$
F_{i} J_{2 s}=J_{2 n} F_{i}, F_{i}^{J}=F_{i}^{T} \quad \text { and } \quad F_{i}^{T} F_{j}=\delta_{i j} I_{2 s}
$$

where

$$
F_{i}^{J}=J_{2 s}^{T} F_{i}^{T} J_{2 n} \quad \text { and } \quad \delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

PROPOSITION 2.3. Any $2 n \times 2 s$ real matrix U can be expressed uniquely as a finite linear combination of $\left(F_{i}\right)_{1 \leq i \leq m}, U=\sum_{i=1}^{m} F_{i} C_{i}$, where

$$
\begin{aligned}
& C_{i}= \\
& {\left[\begin{array}{ccc|ccc}
u_{(i-1) s+1,1} & \cdots & u_{(i-1) s+1, s} & u_{(i-1) s+1, s+1} & \cdots & u_{(i-1) s+1,2 s} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
u_{i s, 1} & \cdots & u_{i s, s} & u_{i s, s+1} & \cdots & u_{i s, 2 s} \\
\hline u_{n+(i-1) s+1,1} & \cdots & u_{n+(i-1) s+1, s} & u_{n+(i-1) s+1, s+1} & \cdots & u_{n+(i-1) s+1,2 s} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
u_{n+i s, 1} & \cdots & u_{n+i s, s} & u_{n+i s, s+1} & \cdots & u_{n+i s, 2 s}
\end{array}\right]}
\end{aligned}
$$

$\in \mathbb{R}^{2 s \times 2 s}$.
Proposition 2.4. Let M be a $2 n$-by- $2 n$ real matrix, where $n=m s$ with $m, s \in \mathbb{N}$. Then M can be represented uniquely as $M=\sum_{i=1}^{m} \sum_{j=1}^{m} F_{i} M_{i j} F_{j}^{T}$, where $M_{i j} \in \mathbb{R}^{2 s \times 2 s}$ is given by

Proposition 2.5. The matrix M from the previous proposition is Hamiltonian (respectively, skew-Hamiltonian) if $M_{i j}^{J}=-M_{j i}$; respectively, if $M_{i j}^{J}=M_{j i}$.

Proof. The result is obvious since $M^{J}=\sum_{i=1}^{m} \sum_{j=1}^{m} F_{i} M_{j i}^{J} F_{j}^{T}$.
DEFINITION 2.6. A matrix $M=\sum_{i=1}^{m} \sum_{j=1}^{m} F_{i} M_{i j} F_{j}^{T} \in \mathbb{R}^{2 n \times 2 n}$ is said to be in block upper J-triangular form if $M_{i j}=0_{2 s}$ for $i>j$ and $M_{i i}$ is upper triangular. It is called in J-Hessenberg form if $M_{i j}=0_{2 s}$ for $i>j+1$, and in block J-tridiagonal form if $M_{i j}=0_{2 s}$ when $i<j-1$ or $i>j+1$.

REMARK 2.7. A Hamiltonian block J-Hessenberg matrix is in block J-tridiagonal form.
2.1. Symplectic reflector. We recall that the symplectic reflector on $\mathbb{R}^{2 n \times 2}$ is defined in parallel with elementary reflectors as given in the following proposition from [2].

PROPOSITION 2.8. Let U, V be $2 n$-by-2 real matrices satisfying $U^{J} U=V^{J} V=I_{2}$. If the 2-by-2 matrix $C=I_{2}+V^{J} U$ is nonsingular, then $S=(U+V) C^{-1}(U+V)^{J}-I_{2 n}$ is symplectic and transforms U to V, hence it is called the symplectic reflector that takes U to V.

Lemma 2.9. Let $W=\left[\begin{array}{ll}w_{1} & w_{2}\end{array}\right] \in \mathbb{R}^{2 n \times 2}$ be a non-isotropic matrix $\left(\operatorname{det}\left(W^{J} W\right) \neq 0\right)$, and let $U=W q(W)^{-1}$ be its normalized matrix where, with $\alpha=w_{1}^{T} J w_{2}$,

$$
q(W)= \begin{cases}\sqrt{\alpha} I_{2} & \text { if } \alpha>0 \\
\sqrt{-\alpha}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] & \text { if } \alpha<0\end{cases}
$$

Then there exists a symplectic reflector S that takes U to E_{1}, and therefore W to $E_{1} q(W)$. The $2 n$-by- 2 real matrix $S W$ is of the form

$$
S W=\left[\begin{array}{cc}
* & 0 \\
0 & 0 \\
\vdots & \vdots \\
0 & 0 \\
0 & * \\
0 & 0 \\
\vdots & \vdots \\
0 & 0
\end{array}\right] \swarrow n+1 .
$$

REMARK 2.10. Applying symplectic reflectors to a matrix $A \in \mathbb{R}^{2 n \times 2 n}$, we obtain the factorization $A=S R$, where $S \in \mathbb{R}^{2 n \times 2 n}$ is symplectic and $R=\left[\begin{array}{ll}R_{11} & R_{12} \\ R_{21} & R_{22}\end{array}\right] \in \mathbb{R}^{2 n \times 2 n}$ is upper J-triangular (here $s=1$) and in addition R_{12} is strictly upper triangular. More precisely, the matrix R is of the form

$$
R=\left[\begin{array}{cccc|cccc}
* & * & \ldots & * & 0 & * & \ldots & * \\
& \ddots & \ddots & \vdots & & \ddots & \ddots & \vdots \\
& & \ddots & * & & & \ddots & * \\
& & & * & & & & 0 \\
\hline 0 & * & \ldots & * & * & * & \ldots & * \\
& \ddots & \ddots & \vdots & & \ddots & \ddots & \vdots \\
& & \ddots & * & & & \ddots & * \\
& & & 0 & & & & *
\end{array}\right] .
$$

3. The block J-Lanczos method. In this section, we propose a block symplectic Lanczos method to compute the reduced Hamiltonian form for $2 n$-by- $2 n$ real Hamiltonian matrices and construct a block J-orthogonal basis of the block Krylov subspace. Recall that the Krylov subspace method is an efficient tool for computing a few eigenvalues and associated eigenvectors of a large and sparse matrix. In the following, the dimension of $\left(F_{i}\right)_{1 \leq i \leq m}$ is given according to the context.

Let for $Q_{k}:=\left[q_{1}, \ldots, q_{k} \vdots q_{k+1}, \ldots, q_{2 k}\right] \in \mathbb{R}^{2 n \times 2 s k}$ be a $2 n$-by- $2 s k$ symplectic matrix for $k \leq m$, where $q_{i} \in \mathbb{R}^{2 n \times s}$ for $i=1,2, \cdots, 2 k$, and $n=m s$. Let H_{k} be a $2 s k$-by- $2 s k$ Hamiltonian block J-tridiagonal matrix (Hamiltonian J-Hessenberg form) computed by the J Lanczos recursion such that $M Q_{k}=Q_{k} H_{k}+W_{k} F_{k+1}^{T}$, where $W_{k} \in \mathbb{R}^{2 n \times 2 s}$ is J-orthogonal to Q_{k}; i.e., $Q_{k}^{J} W_{k}=0_{2 s k \times 2 s}$ which also means $q_{i}^{T} J W_{k}=0_{s \times 2 s}$ for $i=1,2, \ldots, 2 k$. That
is, H_{k} is in the form
with blocks $\alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i}, a_{i}, b_{i}, c_{i} \in \mathbb{R}^{s \times s}$, where β_{i} and γ_{i} are symmetric, and $b_{i} \neq 0_{s}$, $c_{i} \neq 0_{s}, \alpha_{i} \neq 0_{s}$, and $\delta_{i} \neq 0_{s}$ for $i=1, \ldots, k$.

Subsequently, our goal is to use the block Lanczos process to compute the $2 n$-by- $2 s k$ symplectic matrix Q_{k} and the $2 s k$-by- $2 s k$ Hamiltonian block J-tridiagonal matrix H_{k}. The block J-Lanczos method is presented here in two different ways with two normalization methods, one based on the $S R$ decomposition, and the other one based on the $R^{J} R$ decomposition.
3.1. The first approach. Here, $2 n$-by- s block vectors instead of single vectors and s -by- s matrix coefficients instead of scalars are used. Since $M Q_{k}=Q_{k} H_{k}+W_{k} F_{k+1}^{T}$, by comparing the i-th and $(k+i)$-th block columns on both sides of the equality, we obtain, for $i=1, \ldots, k$,

$$
\left\{\begin{aligned}
M q_{i} & =q_{i-1} c_{i-1}+q_{i} a_{i}+q_{i+1} b_{i}+q_{k+i-1} \delta_{i-1}^{T}+q_{k+i} \gamma_{i}+q_{k+i+1} \delta_{i} \\
M q_{k+i} & =q_{i-1} \alpha_{i-1}^{T}+q_{i} \beta_{i}+q_{i+1} \alpha_{i}-q_{k+i-1} b_{i-1}^{T}-q_{k+i} a_{i}^{T}-q_{k+i+1} c_{i}^{T}
\end{aligned}\right.
$$

Note that $b_{0}=0_{s}, c_{0}=0_{s}, \alpha_{0}=0_{s}$, and $\delta_{0}=0_{s}$. From the symplecticity of the matrix Q_{k}, we have

$$
q_{i}^{T} J q_{k+i}=I_{s} \text { and } q_{i}^{T} J q_{j}=0_{s} \text { for } j \neq k+i
$$

The s-by- s matrix coefficients a_{i}, γ_{i}, and β_{i} can be determined via

$$
\left\{\begin{array}{l}
a_{i}=-q_{k+i}^{T} J M q_{i} \\
\gamma_{i}=q_{i}^{T} J M q_{i} \\
\beta_{i}=-q_{k+i}^{T} J M q_{k+i}
\end{array}\right.
$$

for $i=1, \ldots, k$. It is well-known that the Hamiltonian matrix M satisfies $(J M)^{T}=J M$. Therefore, the matrix coefficients γ_{i} and β_{i} are symmetric. Indeed, we have

$$
\left\{\begin{array}{l}
\beta_{i}^{T}=\left(-q_{k+i}^{T} J M q_{k+i}\right)^{T}=-q_{k+i}^{T} \underbrace{(J M)^{T}}_{J M} q_{k+i}=\beta_{i} \\
\gamma_{i}^{T}=\left(q_{i}^{T} J M q_{i}\right)^{T}=q_{i}^{T} \underbrace{(J M)^{T}}_{J M} q_{i}=\gamma_{i}
\end{array}\right.
$$

Set

$$
\left\{\begin{array}{l}
u_{i}=M q_{i}-q_{i-1} c_{i-1}-q_{i} a_{i}-q_{k+i-1} \delta_{i-1}^{T}-q_{k+i} \gamma_{i} \\
v_{i}=M q_{k+i}-q_{i-1} \alpha_{i-1}^{T}-q_{i} \beta_{i}-q_{k+i-1} b_{i-1}^{T}-q_{k+i} a_{i}^{T}
\end{array}\right.
$$

Then we get

$$
\left\{\begin{array}{l}
u_{i}=q_{i+1} b_{i}+q_{k+i+1} \delta_{i} \\
v_{i}=q_{i+1} \alpha_{i}-q_{k+i+1} c_{i}^{T}
\end{array}\right.
$$

The J-orthogonality condition holds for both u_{i} and v_{i}, i.e.,

$$
\left\{\begin{array}{rlrl}
q_{i}^{T} J u_{i} & =q_{i}^{T} J M q_{i}-\gamma_{i} & & =0_{s} \\
q_{k+i}^{T} J u_{i} & =q_{k+i}^{T} J M q_{i}+a_{i} & & =0_{s} \\
q_{i-1}^{T} J u_{i} & =q_{i-1}^{T} J M q_{i}-\delta_{i-1}^{T} & & =-\left(M q_{i-1}\right)^{T} J q_{i}-\delta_{i-1}^{T} \\
& =0_{s} \\
q_{k+i-1}^{T} J u_{i} & =q_{k+i-1}^{T} J M q_{i}+c_{i-1} & =-\left(M q_{k+i-1}\right)^{T} J q_{i}+c_{i-1} & \\
=0_{s}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{rlrl}
q_{i}^{T} J v_{i} & =q_{i}^{T} J M q_{k+i}+a_{i}^{T} & =-\left(M q_{i}\right)^{T} J q_{k+i}+a_{i}^{T} & =0_{s} \\
q_{k+i}^{T} J v_{i} & =q_{k+i}^{T} J M q_{k+i}+\beta_{i} & & =-\left(M q_{k+i}\right)^{T} J q_{k+i}+\beta_{i} \\
q_{i-1}^{T} J v_{i} & =q_{i-1}^{T} J M q_{k+i}+b_{i-1}^{T} & & =-\left(M q_{i-1}\right)^{T} J q_{k+i}+b_{i-1}^{T} \\
& =0_{s} \\
q_{k+i-1}^{T} J v_{i} & =-q_{k+i-1}^{T} J M q_{k+i}+\alpha_{i-1}^{T} & & =\left(M q_{k+i-1}\right)^{T} J q_{k+i}+\alpha_{i-1}^{T}
\end{array}\right.
$$

with $q_{j}^{T} J u_{i}=q_{k+j}^{T} J u_{i}=q_{j}^{T} J v_{i}=q_{k+j}^{T} J v_{i}=0_{s}$ for $j=1, \ldots, i$.
The $2 n$-by-s matrices q_{i+1} and q_{k+i+1} are computed by normalizing the $2 n$-by- $2 s$ matrix $W_{i}=\left[\begin{array}{ll}u_{i} & v_{i}\end{array}\right]$. Normalization is presented below in two ways. The first one is a normalization based on the $S R$ decomposition by using symplectic reflectors as recalled above (see [2]), and the second one is a normalization based on the symplectic Cholesky $R^{J} R$ decomposition using the $L U J$-factorization; see [3].
3.1.1. Normalization by using the $S R$ decomposition. At step i of the block J-Lanczos method given above, we decompose $W_{i}=\left[\begin{array}{ll}u_{i} & v_{i}\end{array}\right] \in \mathbb{R}^{2 n \times 2 s}$ into a product $W_{i}=S^{i} R^{i}$ by using the $S R$ decomposition based on symplectic reflectors given in Section 2.1, where the matrix $S^{i} \in \mathbb{R}^{2 n \times 2 n}$ is symplectic and $R^{i}=\left[\begin{array}{ll}R_{11}^{i} & R_{12}^{i} \\ R_{21}^{i} & R_{22}^{i}\end{array}\right] \in \mathbb{R}^{2 n \times 2 s}$ is upper J-triangular. We set, using Matlab notation,

$$
\left\{\begin{aligned}
q_{i+1} & =S^{i}(:, 1: s) \\
q_{k+i+1} & =S^{i}(:, n+1: n+s)
\end{aligned}\right.
$$

and

$$
\left\{\begin{aligned}
b_{i} & =R^{i}(1: s, 1: s) \\
\alpha_{i} & =R^{i}(1: s, s+1: 2 s) \\
\delta_{i} & =R^{i}(n+1: n+s, 1: s) \\
-c_{i}^{T} & =R^{i}(n+1: n+s, s+1: 2 s)
\end{aligned}\right.
$$

This leads to the block J-Lanczos algorithm in Algorithm 1.

```
Algorithm 1 The block \(J\)-Lanczos method
    Input: Hamiltonian matrix \(M \in \mathbb{R}^{2 n \times 2 n}\) and symplectic matrix \(V_{1}=\left[q_{1} q_{k+1}\right] \in \mathbb{R}^{2 n \times 2 s}\)
    with \(n=m s\) and \(k \leq m\).
    Initialize: \(b_{0}=0_{s}, c_{0}=0_{s}, \alpha_{0}=0_{s}, \delta_{0}=0_{s}, Q_{k}(:, 1: s)=q_{1}\),
    \(Q_{k}(:, k+1: k+s)=q_{k+1}\).
    For \(\mathbf{i}=1,2, \cdots, k-1\)
        \(a_{i}=-q_{k+i}^{T} J M q_{i}\)
        \(\gamma_{i}=q_{i}^{T} J M q_{i}\)
        \(\beta_{i}=-q_{k+i}^{T} J M q_{k+i}\)
        \(u_{i}=M q_{i}-q_{i-1} c_{i-1}-q_{i} a_{i}-q_{k+i-1} \delta_{i-1}^{T}-q_{k+i} \gamma_{i}\)
        \(v_{i}=M q_{k+i}-q_{i-1} \alpha_{i-1}^{T}-q_{i} \beta_{i}-q_{k+i-1} b_{i-1}^{T}-q_{k+i} a_{i}^{T}\)
        Normalization step: \(\left\{\begin{array}{l}W_{i}=\left[u_{i} v_{i}\right]=S^{i} R^{i} \quad(S R \text { decomposition } \\ \text { by using symplectic reflectors) }\end{array}\right.\)
        \(b_{i}=R^{i}(1: s, 1: s)\)
        \(c_{i}=-\left[R^{i}(n+1: n+s, s+1: 2 s)\right]^{T}\)
        \(\alpha_{i}=R^{i}(1: s, s+1: 2 s)\)
        \(\delta_{i}=R^{i}(n+1: n+s, 1: s)\)
        \(q_{i+1}=S^{i}(:, 1: s)\)
        \(q_{k+i+1}=S^{i}(:, n+1: n+s)\)
```


End For

Output: The symplectic matrix $Q_{k}=\left[q_{1}, \cdots, q_{k} \vdots q_{k+1}, \cdots, q_{2 k}\right] \in \mathbb{R}^{2 n \times 2 k s}$ and the Hamiltonian block J-Hessenberg matrix $H_{k} \in \mathbb{R}^{2 k s \times 2 k s}$ such that $Q_{k}^{J} M Q_{k}=H_{k}$.

REMARK 3.1. In order to prevent the loss of J-orthogonality in the block J-Lanczos type Algorithm 1, we do J-reorthogonalization by computing the $S R$ decomposition of $W_{i}=\left[Q(:, 1: i s), u_{i}: Q(:, k+1: k+i s), v_{i}\right] \in \mathbb{R}^{2 n \times 2(i+1) s}$ instead of taking $W_{i}=\left[u_{i} v_{i}\right]$. Then we obtain

$$
\left\{\begin{aligned}
b_{i} & =R^{i}(i s+1:(i+1) s, i s+1:(i+1) s) \\
c_{i} & =-\left[R^{i}(n+i s+1: n+(i+1) s,(2 i+1) s: 2(i+1) s)\right]^{T}, \\
\alpha_{i} & =R^{i}(i s+1:(i+1) s,(2 i+1) s: 2(i+1) s), \\
\delta_{i} & =R^{i}(n+i s+1: n+(i+1) s, i s+1:(i+1) s),
\end{aligned}\right.
$$

and

$$
\left\{\begin{aligned}
Q(:, i s+1:(i+1) s) & =S(:, i s+1:(i+1) s) \\
Q(:, k+i s+1: k+(i+1) s) & =S(:, n+i s+1: n+(i+1) s)
\end{aligned}\right.
$$

3.1.2. Normalization by using the $R^{J} R$ decomposition. At step i of the block J Lanczos algorithm given above, we compute $R_{i} \in \mathbb{R}^{2 s \times 2 s}$ such that $W_{i}^{J} W_{i}=R_{i}^{J} R_{i}$ where $W_{i}=\left[\begin{array}{ll}u_{i} & v_{i}\end{array}\right] \in \mathbb{R}^{2 n \times 2 s}$, thus $\left[q_{i+1}, q_{k+i+1}\right]=W_{i} R_{i}^{-1}$. The square matrix $R_{i} \in \mathbb{R}^{2 s \times 2 s}$ is derived from the $L U J$-decomposition with the pivoting strategy as presented in the following theorem. See [3] for more details on the $L U J$-decomposition.

THEOREM 3.2. [3] Let M be a $2 n$-by-2n real skew-Hamiltonian, J-definite matrix (i.e., $X^{J} M X=\alpha I_{2}$, where $\alpha \neq 0$ for each matrix $X=\left[x_{1} x_{2}\right] \in \mathbb{R}^{2 n \times 2}$ that is not J-isotropic (that is, $x_{1}^{T} J x_{2} \neq 0$)), and let $M=L U$ be its $L U J$-factorization. The matrix $R=(L D)^{J}$,
where D is a diagonal matrix defined by

$$
D=\sum_{i=1}^{n} E_{i}\left(\begin{array}{cc}
\sqrt{\operatorname{sign}\left(u_{i i}\right) u_{i i}} & 0 \\
0 & \operatorname{sign}\left(u_{i i}\right) \sqrt{\operatorname{sign}\left(u_{i i}\right) u_{i i}}
\end{array}\right) E_{i}^{T}
$$

with $u_{i i}=e_{i}^{T} U e_{i}$ and $E_{i}=\left[\begin{array}{ll}e_{i} & e_{n+i}\end{array}\right] \in \mathbb{R}^{2 n \times 2}$, is lower J-triangular. It holds that $M=R^{J} R$.

REMARK 3.3. In the same manner as in the previous remark, to avoid the loss of J orthogonality, we normalize $W_{i}=\left[Q(:, 1: i s), u_{i}: Q(:, k+1: k+i s), v_{i}\right] \in \mathbb{R}^{2 n \times 2(i+1) s}$ instead of taking $W_{i}=\left[\begin{array}{ll}u_{i} & v_{i}\end{array}\right]$.
3.2. The second approach. Here, $2 n$-by- $2 s$ blocks of vectors instead of single vectors and $2 s$-by- $2 s$ matrix coefficients instead of scalars are used. Since at iteration i we have, for $i=1, \ldots, k$,

$$
\left\{\begin{aligned}
M q_{i} & =q_{i-1} c_{i-1}+q_{i} a_{i}+q_{i+1} b_{i}+q_{k+i-1} \delta_{i-1}^{T}+q_{k+i} \gamma_{i}+q_{k+i+1} \delta_{i} \\
M q_{k+i} & =q_{i-1} \alpha_{i-1}^{T}+q_{i} \beta_{i}+q_{i+1} \alpha_{i}-q_{k+i-1} b_{i-1}^{T}-q_{k+i} a_{i}^{T}-q_{k+i+1} c_{i}^{T},
\end{aligned}\right.
$$

we can combine the two equations into

$$
\begin{gathered}
M\left[\begin{array}{ll}
q_{i} & q_{k+i}
\end{array}\right]=\left[\begin{array}{ll}
q_{i-1} & q_{k+i-1}
\end{array}\right] \underbrace{\left[\begin{array}{cc}
c_{i-1} & \alpha_{i-1}^{T} \\
\delta_{i-1}^{T} & -b_{i-1}^{T}
\end{array}\right]}_{h_{i-1, i}}+\left[\begin{array}{ll}
q_{i} & q_{k+i}
\end{array}\right] \underbrace{\left[\begin{array}{cc}
a_{i} & \beta_{i} \\
\gamma_{i} & -a_{i}^{T}
\end{array}\right]}_{h_{i, i}} \\
+\left[q_{i+1} q_{k+i+1}\right] \underbrace{\left[\begin{array}{cc}
b_{i} & \alpha_{i} \\
\delta_{i} & -c_{i}^{T}
\end{array}\right]}_{h_{i+1, i}} .
\end{gathered}
$$

Let

$$
\left\{\begin{array}{l}
V_{i-1}=\left[\begin{array}{ll}
q_{i-1} & q_{k+i-1}
\end{array}\right] \\
V_{i}=\left[\begin{array}{ll}
q_{i} & q_{k+i}
\end{array}\right] \\
V_{i+1}=\left[\begin{array}{ll}
q_{i+1} & q_{k+i+1}
\end{array}\right]
\end{array}\right.
$$

and

$$
\begin{gathered}
\left\{\begin{array}{l}
h_{i, i}=T_{i} \\
h_{i+1, i}=C_{i}=h_{i, i+1}^{J}=\left[\begin{array}{cc}
a_{i} & \beta_{i} \\
\gamma_{i} & -a_{i}^{T} \\
b_{i} & \alpha_{i} \\
\delta_{i} & -c_{i}^{T}
\end{array}\right] \\
h_{i-1, i}=-C_{i-1}^{J}=\left[\begin{array}{cc}
c_{i-1} & \alpha_{i-1}^{T} \\
\delta_{i-1}^{T} & -b_{i-1}^{T}
\end{array}\right]
\end{array}\right. \\
\left(C_{i-1}=\left[\begin{array}{cc}
b_{i-1} & \alpha_{i-1} \\
\delta_{i-1} & -c_{i-1}^{T}
\end{array}\right] \Longleftrightarrow C_{i-1}^{J}=\left[\begin{array}{cc}
b_{i-1} & \alpha_{i-1} \\
\delta_{i-1} & -c_{i-1}^{T}
\end{array}\right]^{J}=-\left[\begin{array}{cc}
c_{i-1}^{T} & \alpha_{i-1}^{T} \\
\delta_{i-1}^{T} & -b_{i-1}^{T}
\end{array}\right]\right)
\end{gathered}
$$

Hence, $M V_{i}=-V_{i-1} C_{i-1}^{J}+V_{i} T_{i}+V_{i+1} C_{i}$. This leads to Algorithm 2.

```
Algorithm 2 The compact block \(J\)-Lanczos method.
    Input: Hamiltonian matrix \(M \in \mathbb{R}^{2 n \times 2 n}\) and symplectic matrix \(V_{1}=\left[q_{1} q_{k+1}\right] \in \mathbb{R}^{2 n \times 2 s}\)
    with \(n=m s\) and \(k \leq m\).
    Initialize: \(V_{0}=0_{2 n \times 2 s}, h_{0,1}=C_{0}=0_{2 s}, V_{1} \in \mathbb{R}^{2 n \times 2 s}\) such that \(V_{1}^{J} V_{1}=I_{2 s}\).
    For \(\mathbf{i}=\mathbf{1}, \mathbf{2}, \ldots, \mathbf{k}-\mathbf{1}\)
        \(h_{i, i}=T_{i}=V_{i}^{J} M V_{i}\)
        \(\Lambda_{i}=M V_{i}+V_{i-1} C_{i-1}^{J}-V_{i} T_{i}\).
        Normalization step: \(\left\{\begin{array}{l}\Lambda_{i}=S^{i} R^{i}(S R \text { decomposition } \\ \text { by using symplectic reflectors) }\end{array}\right.\)
        \(V_{i+1}=S^{i} F_{1}\) and \(h_{i+1, i}=C_{i}=h_{i, i+1}^{J}=F_{1}^{T} R^{i}\left(\right.\) such that \(\left.\Lambda_{i}=V_{i+1} C_{i}\right)\).
```


End For

```
\(Q_{k}=\sum_{i=1}^{k} V_{i} F_{i}^{T}\) and \(H_{k}=\sum_{j=1}^{k} \sum_{i=\min (j-1,1)}^{\min (j+1, k)} F_{i} h_{i j} F_{j}^{T}\).
```

Output: The symplectic matrix $Q_{k}=\left[q_{1}, \cdots, q_{k} \vdots q_{k+1}, \cdots, q_{2 k}\right] \in \mathbb{R}^{2 n \times 2 k s}$ and the Hamiltonian block J-Hessenberg matrix $H_{k} \in \mathbb{R}^{2 k s \times 2 k s}$ such that $Q_{k}^{J} M Q_{k}=H_{k}$.

REMARK 3.4. In the normalization step of the compact block J-Lanczos algorithm, instead of using the $S R$ decomposition one can use the $L U J$-decomposition with the pivoting strategy presented in [3] to compute $R_{i} \in \mathbb{R}^{2 s \times 2 s}$ such that $\Lambda_{i}^{J} \Lambda_{i}=R_{i}^{J} R_{i}$, where $\Lambda_{i}=M V_{i}+V_{i-1} C_{i-1}^{J}-V_{i} T_{i} \in \mathbb{R}^{2 n \times 2 s}$. We then obtain $C_{i}=R_{i}$ and $V_{i+1}=\Lambda_{i} R_{i}^{-1}$. Otherwise, in order to prevent loss of J-orthogonality, we normalize

$$
W_{i}=\sum_{j=1}^{i} V_{j} F_{j}^{T}+\Lambda_{i} F_{i+1}^{T} \in \mathbb{R}^{2 n \times 2(i+1) s}
$$

instead of taking $W_{i}=\Lambda_{i}$. By using the $S R$ decomposition, we obtain $V_{i+1}=S^{i} F_{i+1}$ and $C_{i}=F_{i+1}^{T} R^{i} F_{i+1}$. When we use the $R^{J} R$ decomposition to compute $Z=W_{i} R_{i}^{-1}$, where $R_{i} \in \mathbb{R}^{2(i+1) s \times 2(i+1) s}$ such that $W_{i}^{J} W_{i}=R_{i}^{J} R_{i}$, we then get $V_{i+1}=Z F_{i+1}$ and $h_{i, i+1}=C_{i}=F_{i+1}^{T} R_{i} F_{i+1}$.
4. Exponential block approximation method. The approximation of $\exp (A) V$ for a given tall matrix V and a square matrix A is recommended in many applications. It is the key element of many exponential integrators to solve systems of ODEs or time-dependent PDEs [6]. The use of Krylov subspace approaches in this context has been proposed in the literature; see [9], [10], [12], [13], [16], [17] [20]. The approximation procedure for $\exp (A) V$ that preserves structural properties of V is more efficient and accurate in the case when A is Hamiltonian and skew-symmetric or simply Hamiltonian. The preservation of geometric properties is necessary for the effectiveness of certain geometric integration methods; see [11], [19]. Structure-preserving methods can be used, for example, to calculate Lyapunov exponents of dynamical systems and geodesics; see [7], [10]. Our goal in this section is to present a structure-preserving block Krylov method for approximating the matrix-matrix product $\exp (A) V$ using the block Krylov subspace $K_{m}(A, V)=$ blockspan $\left\{V, A V, \ldots, A^{m-1} V\right\}$, for a given $2 n$-by- $2 n$ Hamiltonian, skew-symmetric matrix A and a $2 n$-by- $2 s$ rectangular matrix V where $s \ll n$.

The algorithm may suffer from breakdown if the matrix Λ_{i} computed in the algorithm is isotropic at a certain step i. Suppose that the algorithm goes until the iteration m. By construction, the matrices V_{i} generated by the algorithm are symplectic and J-orthogonal to
each other, i.e.,

$$
V_{i}^{J} V_{i}=I_{2 s} \text { and } V_{i}^{J} V_{j}=0_{2 s}, \text { for } i, j=1, \ldots, m ; i \neq j
$$

Let $Q_{m}=\sum_{i=1}^{m} V_{i} F_{i}^{T}$ and $H_{m}=\sum_{i=1}^{m} \sum_{j=\max (i-1,1)}^{m} F_{i} h_{i j} F_{j}^{T}$, where $h_{i j} \in \mathbb{R}^{2 s \times 2 s}$.
From Algorithm 2 we can easily obtain

$$
A Q_{m}=Q_{m} H_{m}+V_{m+1} h_{m+1, m} F_{m}^{T}
$$

Then

$$
Q_{m}^{J} A Q_{m}=H_{m}
$$

The matrix H_{m} is in $2 m s \times 2 m s$ block J-Hessenberg form, $h_{i j}=0_{2 s}$ for $i>j+1$. Therefore,

$$
A V=A Q_{m} F_{1} D_{1}=Q_{m} H_{m} F_{1} D_{1}+V_{m+1} h_{m+1, m} \underbrace{F_{m}^{T} F_{1}}_{\mathbf{0}} D_{1} .
$$

The $2 s$-by- $2 s$ real matrix D_{1} defined above satisfies $D_{1}^{J} D_{1}=V^{J} V$, which comes from the normalization of V using the decomposition $R^{J} R$, and since H_{m} is in block J-Hessenberg form (i.e., $h_{i j}=0_{2 s}$ for $i>j+1$), we have

$$
\begin{aligned}
A^{2} V & =A Q_{m} H_{m} F_{1} D_{1} \\
& =Q_{m} H_{m}^{2} F_{1} D_{1}+V_{m+1} h_{m+1, m} \underbrace{F_{m}^{T} H_{m} F_{1}}_{0} D_{1} .
\end{aligned}
$$

By induction this implies that $p_{m-1}(A) V=\Lambda_{m} p_{m-1}\left(H_{m}\right) F_{1} D_{1}$ for all polynomials p_{m-1} of degree $\leq m-1$. This relation suggests using the approximation

$$
\exp (A) V \simeq Q_{m} \exp \left(H_{m}\right) F_{1} D_{1}
$$

5. Numerical examples. The numerical examples given below demonstrate the effectiveness of the proposed block J-Lanczos method using the block symplectic $S R$ and $R^{J} R$ factorizations. By using the Frobenius norm, we compute the accuracy of the resulting symplectic matrix Q_{k} (i.e., $\left\|I_{2 k s}-Q_{k}^{J} Q_{k}\right\|_{F}$) and the Hamiltonian J-Hessenberg $2 k s$-by- $2 k s$ matrix H_{k} (i.e., $\left\|H_{k}-Q_{k}^{J} M Q_{k}\right\|_{F}$). We show the error as the dimension k increases. We also show the error obtained when approximating $\exp (A) V$ by $Q_{m} \exp \left(H_{m}\right) F_{1} D_{1}$, and we examine the error of the symplecticity and orthogonality preserving property of the exponential approximation. We display the error as the dimension m increases. The $2 n$-by- $2 s$ matrix V is given by $V=[U,-J U]$, where $U=\exp (G) I_{2 n \times s}$, with G being a $2 n$-by- $2 n$ skew-symmetric and Hamiltonian matrix derived in a way similar to A. Here, $I_{2 n \times s}$ consists of the first s columns of the identity matrix $I_{2 n}$. Since G is a skew-symmetric and Hamiltonian matrix, $V=[U,-J U]$ is ortho-symplectic. We remark that an ortho-symplectic matrix V satisfies $V J=J V$. The matrices in Example 5.1 are constructed in a way similar to the matrices of [18, Example 3.2] by L. Lopez and V. Simoncini. All numerical experiments are performed in Matlab 2015a.

Fig. 5.1. Example 5.1: $s=5, k=1, \ldots, 25$.

Example 5.1. We consider a 2000-by-2000 skew-symmetric and Hamiltonian matrix defined as

$$
A=\left[\begin{array}{cc}
A_{1} & A_{2} \\
-A_{2} & A_{1}
\end{array}\right]
$$

where A_{1} and A_{2} are the n-by- n skew-symmetric and symmetric parts, respectively. For $s=5$, varying m from 1 to 25 , we obtain the error displayed in Figure 5.1 and Figure 5.2.

Fig. 5.2. Example 5.1: $s=5, m=1, \ldots, 25$.

Example 5.2. In this example, we consider a 2000×2000 skew-symmetric and Hamiltonian matrix A constructed as

$$
A=\left[\begin{array}{cc}
A_{1} & A_{2} \\
-A_{2} & A_{1}
\end{array}\right]
$$

The blocks A_{1} and A_{2} are the n-by- n skew-symmetric and symmetric parts, respectively. A_{1} is taken as a random matrix with normally distributed numbers and $A_{2}=\operatorname{gallery}\left({ }^{\prime} r i s^{\prime}, n\right)$ is a 1000×1000 symmetric Hankel matrix, with elements $A(i, j)=0.5 /(n-i-j+1.5)$ for $i, j=1, \ldots, n$.

For $s=5$, varying k from 1 to 20, we obtain Figure 5.3 and Figure 5.4. For $n=1000$ and $s=10$, varying k from 1 to 25 , the results are displayed in Figure 5.5 and Figure 5.6.

FIG. 5.3. Example 5.2: $s=5, k=1, \ldots, 20$.
6. Conclusion. The block J-Lanczos method is well adapted to compute a preserving geometric structure approximation of the exponential operator matrix-matrix product $\exp (A) V$. The presented numerical examples show the efficiency of the proposed algorithms. The J reorthogonality seems to be promising to get higher accuracy.

REFERENCES

[1] S. Agoujil and A. H. Bentbib, An implicitly symplectic Lanczos algorithm for Hamiltonian matrices, Int. J. Tomogr. Stat., 10 (2008), pp. 3-25.
[2] -, New symplectic transformations: symplectic reflector on $\mathbb{C}^{2 n \times n}$, Int. J. Tomogr. Stat., 11 (2009), pp. 99-117.

FIG. 5.4. Example 5.2: $s=5, k=1, \ldots, 20$.
[3] M. Bassour, PhD. Thesis, Faculty of Science and Technology of Marrakech (FST), The Laboratory of Applied Mathematics and Informatics (LAMAI), March 2011.
[4] P. Benner and H. Fassbender, An implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem, Linear Algebra Appl., 263 (1997), pp. 75-111.
[5] _The symplectic eigenvalue problem, the butterfly Form, the SR algorithm, and the Lanczos method, Linear Algebra Appl., 275/276 (1998), pp. 19-47.
[6] J. C. Bowman, Structure-preserving and exponential discretizations of initial value problems, Can. Appl. Math. Q., 14 (2006), pp. 223-237.
[7] T. J. Bridges and S. Reich, Computing Lyapunov exponents on a Stiefel manifold, Phys. D, 156 (2001), pp. 219-238.

FIG. 5.5. Example 5.2: $n=1000, s=10, k=1, \ldots, 25$.
[8] A. Bunse-Gerstner and V. Mehrmann, A symplectic QR like algorithm for the solution of the real algebraic Riccati equation, IEEE Trans. Automat. Control, 31 (1986), pp. 1104-1113.
[9] E. Celledoni and A. Iserles, Methods for the approximation of the matrix exponential in a Lie-algebraic setting, IMA J. Numer. Anal., 21 (2001), pp. 463-488.
[10] E. Celledoni and I. Moret, A Krylov projection method for systems of ODEs, Appl. Numer. Math., 24 (1997), pp. 365-378.
[11] M. Chyba, E. HAIRER, and G. Vilmart, The role of symplectic integrators in optimal control, Optimal Control Appl. Methods, 30 (2009), pp. 367-382.
[12] N. Del Buono, L. Lopez, and R. Peluso, Computation of the exponential of large sparse skew-symmetric matrices, SIAM J. Sci. Comput., 27 (2005), pp. 278-293.
[13] T. Eirola and A. Koskela, Krylov integrators for Hamiltonian systems, BIT Numer. Math., 59 (2019), pp. 57-76.

FIG. 5.6. Example 5.2: $n=1000, s=10, k=1, \ldots, 25$.
[14] L. Elbouyahyaoui, A. Messaoudi, and H. Sadok, Algebraic properties of the block GMRES and block Arnoldi methods, Electron. Trans. Numer. Anal., 33 (2008/09), pp. 207-220.
http://etna.ricam.oeaw.ac.at/vol.33.2008-2009/pp207-220.dir/pp207-220. pdf
[15] W.R. Ferng, W-W. Lin, and C.-S. Wang, A Structure-Preserving Lanczos-type Algorithm with Application to Control Problems, in Proceedings of the 36th IEEE Conference on Decision \& Control, IEEE Conference Proceedings, Los Alamitos, 1997, pp. 3855-3860.
[16] ——, The shift-inverted J-Lanczos algorithm for the numerical solutions of large sparse algebraic Riccati equations, Comput. Math. Appl., 33 (1997), pp. 23-40.
[17] M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 34 (1997), pp. 1911-1925.
[18] L. Lopez and V. Simoncini, Preserving geometric properties of the exponential matrix by block Krylov subspace methods, BIT Numer. Math., 46 (2006), pp. 813-830.
[19] R. I. McLachlan and G. Reinout W. Quispel, Geometric integrators for ODEs, J. Phys. A, 39 (2006), pp. 5251-5286.
[20] Y. SAAD, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 29 (1992), pp. 209-228.
[21] D. Watkins, On Hamiltonian and symplectic Lanczos processes, Linear Algebra Appl., 385 (2004), pp. 23-45.

[^0]: *Received March 11, 2019. Accepted December 10, 2019. Published online on January 29, 2020. Recommended by Wen-Wei Lin.
 ${ }^{\dagger}$ Laboratory LabSI, Faculty of Science, Ibn Zohr University, Agadir, Morocco
 (atikaarchid11@gmail.com, a.archid@uiz.ac.ma).
 ${ }^{\ddagger}$ Laboratory LAMAI, Faculty of Science and Technology, Cadi Ayyad University, Marrakech, Morocco (a.bentbib@uca.ac.ma).
 ${ }^{\S}$ Faculty of Science and Technology, Moulay Ismail University, Errachidia, Morocco (agou jil@gmail.com).

