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A SPECTRAL NEWTON-SCHUR ALGORITHM FOR THE SOLUTION OF
SYMMETRIC GENERALIZED EIGENVALUE PROBLEMS∗
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Abstract. This paper proposes a numerical algorithm based on spectral Schur complements to compute a few
eigenvalues and the associated eigenvectors of symmetric matrix pencils. The proposed scheme follows an algebraic
domain decomposition viewpoint and transforms the generalized eigenvalue problem into one of computing roots
of scalar functions. These scalar functions are defined so that their roots are equal to the eigenvalues of the original
pencil, and these roots are computed by Newton’s method. We describe the theoretical aspects of the proposed scheme
and demonstrate its performance on a few test problems.
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1. Introduction. This paper considers the computation of a few eigenvalue-eigenvector
pairs (eigenpairs) of eigenvalue problems of the form Ax = λMx, where the matrices A and
M are assumed sparse and real symmetric and M is also positive-definite (SPD). Throughout
the rest of this paper we will use the notation (A,M) to refer to the eigenvalue problem with
the pencil A− λM .

The numerical technique presented in this paper combines domain decomposition with
Spectral Schur Complements (SSC) [4, 5, 9, 10, 11, 12, 15, 17, 18, 20]. In particular, we assume
that the adjacency graph of the given pencil is already partitioned into a set of non-overlapping
subdomains. The eigenvalue problem Ax = λMx can then be split into two disjoint parts:
a) one associated with interior variables of each subdomain and b) one associated with the
corresponding interface variables. Once the part of the solution associated with interface
variables is obtained, the corresponding part associated with interior variables is computed
independently in each subdomain [23, 25]. The restriction of the original eigenvalue problem
onto the region defined by the interface variables is also an eigenvalue problem, albeit of a
nonlinear nature. The dimension of this interface eigenvalue problem is equal to the total
number of interface variables of the discretized domain.

The algorithm proposed in this paper recasts the interface eigenvalue problem into one
of computing roots of scalar functions. These scalar functions are chosen so that their roots
are equal to the eigenvalues of the pencil (A,M). The root-finding problem is then solved by
Newton’s method. To define the scalar functions of interest, we consider a parameterization of
the eigenvalues of a first-order approximation of the nonlinear matrix-valued function associ-
ated with interface variables. In contrast to schemes which extract eigenpairs of the pencil
(A,M) via Rayleigh-Ritz projections onto low-dimensional subspaces, e.g., Krylov subspace
methods [21] or (generalized) Davidson subspace methods [24], the proposed algorithm is
based on single-vector iterations, and each sought eigenpair is computed independently of
each other.

The method proposed in this paper shares similarities with the technique presented in [11],
where the concept of SSC root-finding approaches was first introduced. However, there are
some notable differences. First, the technique presented in [11] considers only standard

∗Received January 4, 2019. Accepted November 12, 2019. Published online on February 11, 2020. Recommended
by Qiang Ye.
†Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA

(kalan019@umn.edu).
‡IBM Research, Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA (vkal@ibm.com).

132

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol52s132


ETNA
Kent State University and

Johann Radon Institute (RICAM)

SPECTRAL SCHUR COMPLEMENT ROOT-FINDER 133

eigenvalue problems while this paper focuses explicitly on generalized eigenvalue problems.
Second, the root-finding approach presented in [11] is applied to a scalar function defined
by a zeroth-order approximation of the nonlinear matrix-valued function associated with the
interface variables. In contrast, in this paper we exploit a first-order approximation instead.
This choice requires a separate theoretical analysis while it also leads to faster convergence of
the root-finding scheme.

The structure of this paper is as follows: Section 2 presents the general framework
of Schur complement eigenvalue solvers. Section 3 discusses the proposed approach and
its associated theoretical details. Section 4 discusses practical details. Section 5 presents
numerical experiments performed on a set of pencils and compares the scheme proposed in
this paper against the root-finding scheme presented in [11]. Extensions to the computation of
additional eigenpairs are also provided. Finally, Section 6 contains our concluding remarks.

2. The Schur complement viewpoint. Let A and M be partitioned in the following
2× 2 block form:

(2.1) A =

[
B E
ET C

]
, M =

[
MB ME

MT
E MC

]
,

where B and MB are square matrices of size d× d, E and ME are rectangular matrices of
size d× s, C and MC are square matrices of size s× s, and n = d+ s.

DEFINITION 2.1. For any matrix pencil (L,C) we define

Λ(L,C) := {λ | det [L− λC] = 0},

where the det operator denotes the determinant of the input matrix.
Let λ be some eigenvalue of the pencil (A,M). Similarly to (2.1) we consider the

following 2× 1 vector partitioning of the corresponding eigenvector x:

x =

[
u
y

]
,

where u ∈ Rd and y ∈ Rs. We can rewrite (A− λM)x = 0 as

(2.2)
(B − λMB)u+ (E − λME)y = 0,

(E − λME)Tu+ (C − λMC)y = 0,

where substituting

(2.3) u = (B − λMB)−1(E − λME)y

in the second equation in (2.2) leads to the nonlinear eigenvalue problem

(2.4) S(λ)y = 0,

where S(σ) : R→ Rs×s is a univariate, non-linear matrix-valued function defined as

S(σ) = C − σMC − (E − σME)T (B − σMB)−1(E − σME).

Combining (2.3) and (2.4) shows that an eigenpair (λ, x) of the pencil (A,M) can be
computed by the following procedure:

1. Compute a scalar-vector pair (λ, y) that satisfies (2.4).
2. Solve the linear system (B − λMB)u = −(E − λME)y to retrieve u.
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Unless mentioned otherwise, throughout the rest of this paper we will assume that:
(a) the sought eigenvalues λ are simple, and
(b) λ /∈ Λ(B,MB).

Extensions to the cases where λ is either a multiple eigenvalue of the pencil (A,M) or an
eigenvalue of the pencil (B,MB) (or both) are possible, and we will comment where deemed
necessary.

3. The method of Mixed Linear Approximations. Consider the following s × s pa-
rameterized (symmetric) generalized eigenvalue problem stemming from a first-order approxi-
mation of S(λ) around a real scalar σ ∈ R:

S(σ)ŷj(σ) = −θj(σ)S′(σ)ŷj(σ),

where S′(σ) denotes the first derivative of S(σ), θj(σ) denotes the jth eigenvalue of the pencil
(S(σ),−S′(σ)), and ŷj(σ) denotes the corresponding eigenvector.

DEFINITION 3.1. For any σ ∈ R, we define the following matrix-valued functions:

Bσ = B − σMB ,

Eσ = E − σME ,

Cσ = C − σMC .

PROPOSITION 3.2. For any σ ∈ R, the first derivative of S(σ), S′(σ), is given by the
formula

(3.1) S′(σ) =
dS(σ)

dσ
= −MC − ETσB−1σ MBB

−1
σ Eσ + ETσB

−1
σ ME +MT

EB
−1
σ Eσ.

Moreover, −S′(σ) (when defined) is SPD.
Proof. Let ω ∈ R. We can write

S(σ + ω)= Cσ − ωMC − (Eσ − ωME)T (Bσ − ωMB)−1(Eσ − ωME)

=Cσ+ω − ETσB−1σ+ωEσ + ω
(
ETσB

−1
σ+ωME +MT

EB
−1
σ+ωEσ − ωMT

EB
−1
σ+ωME

)
.

Taking the derivative of S(σ + ω) with respect to ω gives

S′(σ + ω) = −MC + ETσB
−1
σ+ωME +MT

EB
−1
σ+ωEσ − ETσ

[
B−1σ+ω

]′
Eσ.

The result in (3.1) follows by setting S′(σ) = S′(σ + ω)ω=0 and noticing that[
B−1σ+ω

]′
ω=0

= B−1σ MBB
−1
σ .

To prove the second item, let the matrix Uσ ∈ Rn×n be defined as

Uσ =

[
I −B−1σ Eσ
0 I

]
.

Forming UTσMUσ explicitly gives

UTσMUσ =

[
I 0

ETσB
−1
σ I

] [
MB ME

MT
E MC

] [
I B−1σ Eσ
0 I

]
=

[
MB ME −MBB

−1
σ Eσ

MT
E − ETσB−1σ MB −S′(σ)

]
.

Recalling that M is SPD (and thus UTσMUσ is also SPD) concludes the proof.
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FIG. 3.1. Visualization of θj(σ) and θ(σ) ≡ θκσ (σ). The red circles along the real axis denote eigenvalues of
the pencil (A,M). Left: eigenbranches θj(σ), j = 1, . . . , 8. Right: eigenbranches θj(σ), j = 1, . . . , 8, (dotted
lines) and θκσ (σ) ≡ θ(σ) (solid line). Each eigenvalue of (A,M) is a root of (at least) one eigenbranch, and thus a
root of θ(σ) as well.

3.1. Eigenbranches.

DEFINITION 3.3. The scalar function θj(σ) : R→ R,

(3.2) θj(σ) = −
ŷTj (σ)S(σ)ŷj(σ)

ŷTj (σ)S′(σ)ŷj(σ)

will be referred to as the jth eigenbranch of (S(σ),−S′(σ)), j = 1, . . . , s. Consider now the
following integer:

(3.3) κσ := arg min1≤j≤s |θj(σ)|.

We then define the functions θ(σ) : R→ R and ŷ(σ) : R→ Rs as

θ(σ) := θκσ (σ),

ŷ(σ) := ŷκσ (σ),

i.e., (θ(σ), ŷ(σ)) denotes the eigenpair associated with the eigenvalue of smallest magnitude
of the pencil (S(σ),−S′(σ)).

Figure 3.1 visualizes the first few eigenbranches of a discretized 2D Laplacian operator.
The discussion in Section 2 tells us that a scalar ζ /∈ Λ(B,MB) is an eigenvalue of the pencil
(A,M) if and only if there exists an index 1 ≤ j ≤ s such that θj(ζ) = 0.1 We can see that
each eigenvalue of the pencil (A,M) is a root of (at least) one eigenbranch θj(σ), 1 ≤ j ≤ s,
and thus also a root of θ(σ). Thus, the problem of computing an eigenpair (λ, x) of the pencil
(A,M) is equivalent to that of computing the root λ of the scalar function θ(σ).

The rest of this section presents a root-finding approach to compute the eigenpair (λ, x)
of the pencil (A,M) under the assumption that some user-given initial approximation of λ is
available.

3.2. Formulation of a Newton-based procedure. In this paper we consider Newton’s
method as our root-finding algorithm [14]. While θ(σ) is not differentiable across its entire

1This does not exclude the possibility that θj(ζ) has roots which are not eigenvalues of the pencil (A,M).
Indeed, as we show later on, each eigenvalue of the pencil (B,MB) is typically a root of some θj(σ).

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

136 V. KALANTZIS

domain of definition, Newton’s method can still be applied if the integer κσ defined in (3.3)
remains fixed. Thus, it suffices to show analyticity of the eigenbranches.

PROPOSITION 3.4. The eigenbranches θj(σ), j = 1, . . . , s, are analytic functions of
σ ∈ R. The derivative of each eigenbranch is given by the formula

(3.4) θ′j(σ) =
dθj(σ)

dσ
= −

ŷTj (σ) [S′(σ) + θj(σ)S′′(σ)] ŷj(σ)

ŷTj (σ)S′(σ)ŷj(σ)
,

where

S′′(σ) =− 2ETσB
−1
σ MBB

−1
σ MBB

−1
σ Eσ − 2MT

EB
−1
σ ME + 2MT

EB
−1
σ MBB

−1
σ Eσ

+ 2ETσB
−1
σ MBB

−1
σ ME

denotes the second derivative of the matrix-valued function S(σ).
Proof. Differentiating S(σ)ŷj(σ) = −θj(σ)S′(σ)ŷj(σ) with respect to σ leads to

S′(σ)ŷj(σ) + S(σ)ŷ′j(σ) = −θj(σ)
[
S′′(σ)ŷj(σ) + S′(σ)ŷ′j(σ)

]
− θ′j(σ)S′(σ)ŷj(σ),

where ŷ′j(σ) =
dŷj(σ)

dσ
. After collecting terms we get

[S(σ) + θj(σ)S′(σ)] ŷ′j(σ) = − [S′(σ) + θj(σ)S′′(σ)] ŷj(σ)− θ′j(σ)S′(σ)ŷj(σ).

Multiplying by ŷTj (σ) from the left and noticing that ŷTj (σ) [S(σ) + θj(σ)S′(σ)] = 0 leads
to (3.4), which can be further simplified to

θ′j(σ) = −1− θj(σ)
ŷTj (σ)S′′(σ)ŷj(σ)

ŷTj (σ)S′(σ)ŷj(σ)
,

= −1 + θj(σ)ŷTj (σ)S′′(σ)ŷj(σ)
(
if ŷTj (σ)S′(σ)ŷj(σ) = −1

)
.

Differentiating S(σ + ω) twice leads to

S′′(σ+ω)= −ETσ
[
B−1σ+ω

]′′
Eσ−2

[
MT
E

(
B−1σ+ωME −

[
B−1σ+ω

]′
Eσ

)
− ETσ

[
B−1σ+ω

]′
ME

]
.

The expression of the second derivative then follows by setting S′′(σ) = S′′(σ + ω)ω=0 and
noticing that in addition to

[
B−1σ+ω

]′
ω=0

= B−1σ MBB
−1
σ , we also have

[
B−1σ+ω

]′′
ω=0

= 2B−1σ MBB
−1
σ MBB

−1
σ .

Regarding the analyticity of the eigenbranches, recall that for any σ /∈ Λ(B,MB) both
S(σ) and −S′(σ) are analytic matrix-functions while −S′(σ) is also SPD. Both θj(σ) and
ŷj(σ) then are analytic functions of σ with these results also holding for multiple (semi-
simple) eigenvalues of the pencil (S(σ),−S′(σ)); see [2]. When σ ∈ Λ(B,MB), the pencil
(S(σ),−S′(σ)) is not formally defined but the eigenpairs are, and the above results still apply.

REMARK 3.5. When M = I , we have MB = MC = I, ME = 0, and the two leading
derivatives of the matrix-valued function S(σ) are equal to S′(σ) = −I − ET (B − σI)−2E
and S′′(σ) = −2ET (B − σI)−3E, respectively.
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Algorithm 1 MLA.
//- - S(σ) = Cσ − ETσB−1σ Eσ - -//
0. Given tol ∈ R and an initial eigenvalue approximation σ ∈ R.
1. Do while (true):
2. Solve S(σ)ŷ(σ) + θ(σ)S′(σ)ŷ(σ) = 0 for the eigenvalue θ(σ)

of smallest magnitude and the associated eigenvector ŷ(σ).
3. If |θ(σ)| ≤ tol; Break; EndIf;

4. Compute θ′(σ) = −1− θ(σ)
ŷT (σ)S′′(σ)ŷ(σ)

ŷT (σ)S′(σ)ŷ(σ)
.

5. Update σ = σ − θ(σ)

θ′(σ)
.

6. EndDo
7. Return σ and x̂(σ) =

[
−(B−1σ Eσ ŷ(σ))T , ŷT (σ)

]T
.

3.2.1. The algorithm. Algorithm 1 sketches the main steps of Newton’s method applied
to the scalar function θ(σ). For any initial value of σ, Algorithm 1 computes the eigenpair
(θ(σ),ŷ(σ)) of the pencil (S(σ),−S′(σ)) and evaluates the derivative θ′(σ) to update σ. The
procedure terminates as soon as |θ(σ)| becomes smaller than a threshold tolerance tol ∈ R.
Throughout the rest of this paper we will refer to Algorithm 1 as the method of Mixed Linear
Approximations (MLA).

The convergence of MLA can be monitored by computing the residual norm of the approx-
imate eigenpair (σ, x̂(σ)), i.e., by computing the quantity ‖Ax̂(σ)− σMx̂(σ)‖. Alternatively,
we can set for a less accurate criterion and only monitor |θ(σ)| since

‖Ax̂(σ)− σMx̂(σ)‖2 =

∥∥∥∥[Bσ Eσ
ETσ Cσ

] [
−B−1σ Eσ ŷ(σ)

ŷ(σ)

]∥∥∥∥
2

=

∥∥∥∥[ 0
−θ(σ)S′(σ)ŷ(σ)

]∥∥∥∥
2

≤ |θ(σ)| ‖ŷ(σ)‖2 λmax (−S′(σ)) ,

where λmax(.) denotes the largest eigenvalue of −S′(σ) and is bounded from above for any
σ /∈ Λ(B,MB). When λ is multiple (with multiplicity up to s), the bottom s× 1 components
of the associated eigenvectors can be captured by computing all eigenvectors associated with
the (multiple) zero eigenvalue of the pencil (S(λ),−S′(λ)).

Since MLA is essentially Newton’s method applied to the scalar function θ(σ), we expect
the former to converge quadratically; at least if a sufficiently accurate initial approximation
is provided [14]. In practice, the observed convergence rate is higher due to the fact that
the pencil (S(σ),−S′(σ)) also becomes an increasingly better approximation of the pencil
(S(λ),−S′(λ)). Moreover, as we show in Section 4.1, the shape of the eigenbranches can be
very close to that of a linear function even when the initial value of σ is far from the sought
eigenvalue λ, in which case we expect MLA to converge rapidly.

3.2.2. Computational cost. Computing the eigenpair (θ(σ), ŷ(σ)) in Step 2 represents
the major computational procedure of MLA. We will refer to the eigenvalue solver used to
perform Step 2 in MLA as the inner eigenvalue solver. By default, inverse iteration is chosen
as our inner eigenvalue solver [8]. The main kernel then is the solution of linear systems of the
form S(σ)w = −S′(σ)b, which in practice can be accomplished by a preconditioned Krylov
subspace iterative solver.

The matrix S(σ) does not have to be formed explicitly, i.e., we only need to be able to
multiply a dense vector with the matrices Cσ and Eσ , as well as to solve a linear system with
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FIG. 3.2. Magnitude of θj(σ) and χ3,j(σ) as σ → λ3.

Bσ. To make the above computations practical, we consider matrix partitionings such that
both Bσ and Eσ are block-diagonal. Then, each time we update σ in MLA, we only need to
factorize the block-diagonal matrix Bσ , and this can be done in parallel.

3.3. Characterization of the eigenbranches as σ approaches an eigenvalue
of (A,M). We now consider the behavior of the eigenbranches as σ approaches a sim-
ple eigenvalue of (A,M).

THEOREM 3.6. Let λκ /∈ Λ(B,MB), 1 ≤ κ ≤ n, denote a simple eigenvalue of the

pencil (A,M) with an associated eigenvector x(κ) =
[(
u(κ)

)T
,
(
y(κ)

)T ]T
. Then,

span
{

lim
σ→λκ

ŷ(σ)

}
≡ span {ŷ(λκ)} ≡ span

{
y(κ)

}
.

Moreover, for any j 6= limσ→λκ κσ , we have

(3.5) lim
σ→λκ

θj(σ) = lim
σ→λκ

 ŷTj (σ)ŷj(σ)∑n
i=1, i 6=κ

(
ŷTj (σ)y(i)

) (
ŷTj (σ)S′(σ)y(i)

)
λi − σ

 ,

where 1 ≤ κσ ≤ s denotes the index of the eigenvalue of smallest magnitude of the pencil
(S(σ),−S′(σ)), i.e., (θκσ (σ), ŷκσ (σ)) ≡ (θ(σ), ŷ(σ)).

Theorem 3.6 suggests that as σ converges towards the sought (simple) eigenvalue of
(A,M), a shift-and-invert-based inner eigenvalue solver will require fewer iterations to com-
pute (θ(σ), ŷ(σ)). We will verify this statement experimentally in Section 5. Moreover, the
results shown in Theorem 3.6 can be extended to the case where λκ is a semi-simple eigenvalue
of (A,M) with a multiplicity up to s.

EXAMPLE 3.7.

A =


2 1 0 1
1 3 1 1
0 1 2 0
1 1 0 2

 , M =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,
and consider d = 1, s = 3. Figure 3.2 displays a plot of the magnitude of the eigenbranches
θj(σ), j = 1, 2, 3 (left subfigure), as well as the magnitude of the scalar function χ3,j(σ) as
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σ → λ3 (λ3 = 2.3473 is simple). As expected, there exists exactly one eigenbranch, in this
example θ2(σ), for which limσ→λ3

θ2(σ) = 0. In agreement with Theorem 3.6, we also have
limσ→λ3 χ2,1(σ) 6= 0 and limσ→λ3 χ3,j(σ) = 0 for any j 6= 2.

3.4. Characterization of the eigenbranches as σ approaches an eigenvalue
of (B,MB). Let the ηth eigenvalue-eigenvector pair of (B,MB) be denoted as (δη, vη),
η = 1, . . . , d. Setting

(3.6) wη = ETσ vη, fη = MT
E vη,

and making use of the equation

B−1σ =

d∑
η=1

vηv
T
η

δη − σ
,

we can rewrite

(3.7) S(σ) = Cσ −
d∑
η=1

wηw
T
η

δη − σ
,

and

(3.8) −S′(σ) = MC +

d∑
η=1

wηw
T
η

(δη − σ)2
−

d∑
η=1

wηf
T
η

δη − σ
−

d∑
η=1

fηw
T
η

δη − σ
.

While S(σ) and S′(σ) can not be formally defined when σ ∈ Λ(B,MB), the eigen-
branches remain well-defined regardless of how close σ approximates an eigenvalue of the
pencil (B,MB).

THEOREM 3.8. Let δk /∈ Λ(A,M), 1 ≤ k ≤ d, be a simple eigenvalue of (B,MB), and
define for any η = 1, . . . , d,

(3.9) εj,η(σ) = wTη ŷj(σ), φj,η(σ) = fTη ŷj(σ),

where wη and fη are defined in (3.6). Then:
• If limσ→δk εj,k(σ) 6= 0, then limσ→δk θj(σ) = 0.
• If limσ→δk εj,k(σ) = 0, then

lim
σ→δk

θj(σ) =

ŷTj (σ)Cσ ŷj(σ)−
∑d
η=1,η 6=k

ε2j,η(σ)

δη − σ

ŷTj (σ)Mcŷj(σ) +
∑d
η=1,η 6=k

[
ε2j,η(σ)

(δη − σ)2
− 2εj,η(σ)φj,η(σ)

δη − σ

] ·

Proof. Making use of equations (3.7) and (3.8), each eigenbranch θj(σ), j = 1, . . . , s,
can be written as

θj(σ) =

ŷTj (σ)Cσ ŷj(σ)−
∑d
η=1

ε2j,η(σ)

δη − σ

ŷTj (σ)Mcŷj(σ) +
∑d
η=1

ε2j,η(σ)

(δη − σ)2
−
∑d
η=1

2εj,η(σ)φj,η(σ)

δη − σ

.
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FIG. 3.3. Numerical values of θj(σ) and εj,1(σ) as σ → δ1.

Multiplying both the numerator and denominator by (δk − σ)2 gives
(3.10)

θj(σ) =

(δk − σ)2

(
ŷTj (σ)Cσ ŷj(σ)−

∑d
η=1,η 6=k

ε2j,η(σ)

δη − σ

)
− (δk − σ)ε2j,κ(σ)

(δk − σ)2

(
ŷTj (σ)Mcŷj(σ) +

∑d
η=1,η 6=k

[
ε2j,η(σ)

(δη − σ)2
− 2εj,η(σ)φj,η(σ)

δη − σ

])
+ γ(j, k, σ)

,

where

γ(j, k, σ) = ε2j,k(σ)− 2(δk − σ)εj,k(σ)φj,k(σ).

As σ → δk, the numerator in (3.10) approaches zero while the denominator approaches
limσ→δk γ(j, k, σ) = limσ→δk ε

2
j,k(σ). Therefore, when limσ→δk εj,k(σ) 6= 0, we have

lim
σ→δk

θj(σ) =
0

limσ→δk ε
2
j,k(σ)

= 0.

COROLLARY 3.9. Let wk 6= 0. Then, there exists at least one integer 1 ≤ j ≤ s such
that limσ→δk θj(σ) = 0.

Proof. The eigenvectors of (S(σ),−S′(σ)) are linearly independent and thus span
the entire s-dimensional space. Since wk is nonzero, there exists at least one eigenvector
ŷj(σ) of (S(σ),−S′(σ)) such that limσ→δk εj,k(σ) = limσ→δk w

T
k ŷj(σ) 6= 0, and thus by

Theorem 3.8, limσ→δk θj(σ) = 0.
EXAMPLE 3.10. Consider the same matrices A and M as in Example 3.7, and let d = 1,

s = 3. Figure 3.3 reports the values of θj(σ), j = 1, 2, 3, and εj,1(σ) as σ → δ1 (δ1 = 2.0 is
simple). As predicted by Theorem 3.8, only the eigenbranch for which limσ→δ1 εj,1(σ) 6= 0
(in this example θ2(σ)) shifts to zero. On the other hand, limσ→δ1 εj,1(σ) = 0 for any j 6= 2.

DEFINITION 3.11. Let r ∈ Rs\ {0}. We define the generalized Rayleigh quotient:

π(σ, r) =
rTS(σ)r

rT [−S′(σ)]r

=

rTCσr −
∑d
η=1

(rTwη)2

δη − σ

rTMCr +
∑d
η=1

(rTwη)2

(δη − σ)2
− 2

∑d
η=1

(rTwη)(rT fη)

δη − σ

.
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The eigenvalues of the pencil (S(σ),−S′(σ)) can be then characterized by a generaliza-
tion of the Courant-Fischer minimax theorem as

θj(σ) = min
dim(U)=j

max
r∈U, r 6=0

π(σ, r).

THEOREM 3.12. Let δk /∈ Λ(A,M), 1 ≤ k ≤ d, be a simple eigenvalue of (B,MB)
such that wk 6= 0. Then:

• There exists exactly one index 1 ≤ ζ ≤ s such that limσ→δk θζ(σ) = 0.
• For any eigenpair (θj(σ), ŷj(σ)) that satisfies limσ→δk θj(σ) 6= 0, we have

limσ→δk ŷ
T
j (σ)wk = 0.

Proof. Let I = [δk − σ0, δk) ∪ (δk, δk + σ0] for some positive σ0 ∈ R such that I
contains no other eigenvalues of (B,MB) or any eigenvalues of (A,M), and let σ ∈ I.
By Corollary 3.9, we know that there exists at least one integer 1 ≤ ζ ≤ s such that
limσ→δk θζ(σ) = 0. Let 1 ≤ ψ ≤ s be the first such integer, i.e.,

lim
σ→δk

θψ(σ) = lim
σ→δk

(
min

dim(U)=ψ
max

r∈U\{0}
π(σ, r)

)
= 0.

When ψ ≡ s, the pencil limσ→δk(S(σ),−S′(σ)) has exactly one zero eigenvalue. Let now
ψ < s, and define the subspaces

V = span
({
v|vTwk = 0

})
and Z = span

({
v|vT [−S′(σ)] ŷj(σ) = 0, j = 1, . . . , ψ

})
.

Note that dim(Z)= s−ψ and dim(V)= s−1 and the dimension of the subspace Z∩V will be
larger than or equal to one as long as wk /∈ Z . The latter is always true as the opposite implies
that S(σ) is singular. Thus, for any U such that dim(U )=ψ+ 1, we have dim(U ∩Z ∩V) ≥ 1,
and thus

lim
σ→δk

θψ+1(σ) = lim
σ→δk

(
min

dim(U)=ψ+1
max

r∈U\{0}
π(σ, r)

)
> 0.

To prove the second item, recall the variables εj,η(σ) = wTη ŷj(σ) and φj,η(σ) = fTη ŷj(σ),
η = 1, . . . , d, defined in (3.9). Setting

ζj,k(σ) = (δk − σ)2

ŷTj (σ)Cσ ŷj(σ)−
d∑

η=1,η 6=k

ε2j,η(σ)

δη − σ


and

ωj,k(σ) = (δk − σ)2

ŷTj (σ)Mcŷj(σ) +

d∑
η=1,η 6=k

[
ε2j,η(σ)

(δη − σ)2
− 2εj,η(σ)φj,η(σ)

δη − σ

] ,

we can rewrite (3.10) as

(3.11) lim
σ→δk

θj(σ) = lim
σ→δk

[
ζj,k(σ)− (δk − σ)ε2j,κ(σ)

ωj,k(σ) + (ε2j,k(σ)− 2(δk − σ)εj,k(σ)φj,k(σ))

]
.

Then, for any limσ→δk θj(σ) 6= 0, rearranging2 terms in (3.11) leads to
(3.12)

lim
σ→δk

ε2j,k(σ) = lim
σ→δk

[
2(δk − σ)εj,k(σ)φj,k(σ)− ωj,k(σ) +

ζj,k(σ)− (δk − σ)ε2j,κ(σ)

θj(σ)

]
.

2Note that the limit of the denominator is assumed non-zero and thus limσ→δk
a

b
=

limσ→δk a

limσ→δk b
.
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Since both limσ→δk ωj,k(σ) → 0 and limσ→δk ζj,k(σ) → 0, the right-hand side in (3.12)
converges to zero, and thus limσ→δk ε

2
j,k(σ) = limσ→δk

(
wTk ŷj(σ)

)2
= 0.

3.4.1. Characterization of the non-zero eigenvalues. Our interest now turns on deter-
mining to what values the nonzero eigenvalues of limσ→δk(S(σ),−S′(σ)) converge to.

We define ŵη = wη/‖wη‖, η = 1, . . . , d, where wη is defined in (3.6), and the corre-
sponding orthogonal projector

(3.13) Pη = I − ŵηŵη.

Moreover, let 1 ≤ k ≤ d, and assume that δk /∈ Λ(A,M) is a simple eigenvalue of (B,MB).
We define the matrices

Sk(σ) = Cσ −
d∑

η=1,η 6=k

wηw
T
η

δη − σ
,

and

−S′k(σ) = MC +

d∑
η=1,η 6=k

wηw
T
η

(δη − σ)2
−

d∑
η=1,η 6=k

wηf
T
η

δη − σ
−

d∑
η=1,η 6=k

fηw
T
η

δη − σ

and the operators

Sk,|(σ) = [PkSk(σ)Pk]|wk⊥ , −S′k,|(σ) = − [PkS
′
k(σ)Pk]|wk⊥ ,

where [PkSk(σ)Pk]|wk⊥ and [−PkS′k(σ)Pk]|wk⊥ are (s−1)×(s−1) matrices that denote the
restriction of PkSk(σ)Pk and −PkS′k(σ)Pk to the subspace orthogonal to ŵk, respectively.

LEMMA 3.13. Let Pk be defined as in (3.13). Then, the eigenvalues of the pencil
(Sk,|(σ), −S′k,|(σ)) are identical to the determined eigenvalues of the pencil (PkSk(σ)Pk,
−PkS′k(σ)Pk).

Proof. See Lemma 4 in [3].
We can now prove the following theorem.
THEOREM 3.14. Let δk /∈ Λ(A,M), 1 ≤ k ≤ d, be a simple eigenvalue of (B,MB),

and let τ1(δk) ≤ . . . ≤ τs−1(δk) denote the eigenvalues of the pencil (Sk,|(δk),−S′k,|(δk)).
Then

lim
σ→δk

θj(σ) = τi(δk),

where i ∈ {1, 2, . . . , s− 1} and j ∈ {1, 2, . . . , s} − {ζ} with ζ determined by Lemma 3.12.
Proof. Multiplying both sides of S(σ)ŷj(σ) = θj [−S′(σ)] ŷj(σ) by Pk from the left and

taking advantage of the identity

ŷj(σ) = Pkŷj(σ) +
(
ŵTk ŷj(σ)

)
ŵk

gives

PkS(σ)ŷj(σ) = θj [−PkS′(σ)] ŷj(σ)

PkS(σ)
[
Pkŷj(σ) +

(
ŵTk ŷj(σ)

)
ŵk
]

= θj
[
−PkS′(σ)][Pkŷj(σ) +

(
ŵTk ŷj(σ)

)
ŵk
]
.

Reordering terms and noticing that

PkS(σ)Pk = PkSk(σ)Pk, PkS
′(σ)Pk = PkS

′
k(σ)Pk,
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FIG. 4.1. Eigenbranches of the pencil (S(σ),−S′(σ)) for different values of d ≡ m and s when A is as
in (4.1) and M = I . The red circles along the real axis denote eigenvalues of the pencil (A, I). The dashed vertical
lines denote eigenvalues of matrix B = A(1 : m, 1 : m).

leads to

(3.14) Pk [Sk(σ) + θj(σ)S′k(σ)]Pkŷj(σ) = −Pk [Sk(σ) + θj(σ)S′k(σ)]
(
ŵTk ŷj(σ)

)
ŵk.

The right-hand side of (3.14) simply expresses the residual of the approximate eigenpair
(θj(σ), ŷj(σ)) with respect to the matrix pencil (PkSk(σ)Pk, −PkS′k(σ)Pk), which is now
well-defined as σ → δk and which converges to (PkSk(δk)Pk,−PkS′k(δk)Pk). The latter,
by Lemma 3.13, is a trivial extension of the pencil (Sk,|(δk),−S′k,|(δk)). To finalize the
proof, recall that by Lemma 3.12 we have limσ→δk ŵ

T
k ŷj(σ) = 0 for any limσ→δk θj(σ) 6= 0.

Thus, each nonzero limσ→δk θj(σ) converges to the corresponding eigenvalue of the pencil
(Sk,|(δk),−S′k,|(δk)).

The result in Theorem 3.14 can be easily extended to the case where δk is semi-simple.

4. Practical aspects of MLA.
DEFINITION 4.1. We define the “eigenpoles” of an eigenbranch3 θj(σ), 1 ≤ j ≤ s,

to be those real scalars δ ∈ Λ(B,MB) that satisfy limσ→δ θj(σ) = 0. Similarly, we define
the “regular roots” of an eigenbranch θj(σ) to be those real scalars λ ∈ Λ(A,M) that satisfy
θj(λ) = 0.

Figure 4.1 displays the eigenbranches of a toy pencil (A,M) where

(4.1) A =

[
B E
ET C

]
=


2 1 0 1
1 3 1 1
0 1 2 0
1 1 0 2

 ,
and M = I . The dimension d of the pencil (B,MB) was varied. When d = n − 1 = 3,
there exists only one eigenbranch, and this eigenbranch crosses the real axis at all real points
σ ∈ Λ(B,MB) ∪ Λ(A,M). Note that although λ1 = λ2 = 1, only one copy of this semi-
simple eigenvalue can be computed. On the other hand, when d = n − 2 = 2, we have
s = 2, and both eigenbranches cross the real axis at σ = λ1 = λ2. More generally, MLA can
compute the correct multiplicity of a semi-simple eigenvalue of (A,M) only if the latter is
less than or equal to s.

4.1. The impact of the location of the eigenvalues of (B,MB). Ideally, we would
like the shape of the eigenbranch θj(σ) which satisfies limσ→λ θj(σ) = 0 to be as close to
that of a linear function as possible.

Let us first consider the case where σ ≈ λ, i.e., σ lies in a small neighborhood around
λ. In this scenario, we expect the shape of the eigenbranch θj(σ) to be close to linear since

3See also the definition of an “eigenpole" in [1].
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FIG. 4.2. Top row (left subfigure): the eigenvalues of (B,MB) located inside the interval [0.0, 4.0] (marked
by “◦”) for three different arrangements. The eigenvalues λ1, . . . , λ12 of (A,M) (marked by “x”) are also shown.
Top row (middle and right subfigures): plot of θj(σ), 1 ≤ j ≤ 12, for the first and second arrangement of the
algebraically smallest eigenvalues of (B,MB). Bottom row: plot of θ′j(σ), 1 ≤ j ≤ 12, for the first (left), second
(middle), and third (right) arrangement of the eigenvalues of (B,MB).

θj(σ) ≈ 0 and thus θ′j(σ) = −1 + O(θ(σ)) ≈ −1 is almost constant. But what can we tell
about the shape of θj(σ) when σ is located further away from λ? While a detailed analysis
lies outside the scope of this paper, in general the further σ lies from the eigenpoles of θj(σ),
the closer to linear the shape of θj(σ) is. This observation implies that, ideally, the sought
eigenvalue λ should lie as far as possible from the eigenpoles of the eigenbranch which satisfies
limσ→λ θj(σ) = 0.

EXAMPLE 4.2. We consider the computation of the eigenvalues λ1, . . . , λ12 of a SPD
pencil (A,M) generated by a five-point finite difference discretization of the Laplace operator
on the unit plane (M is chosen as the identity matrix). Each eigenvalue λj , j = 1, . . . , 12, is a
regular root of an eigenbranch θj(σ), and we focus on the shape of the eigenbranches θj(σ),
j = 1, . . . , 12, as their eigenpoles located the closest to [λ1, λ12] are progressively shifted
away. More specifically, we consider three different arrangements of the eigenpoles (we only
show those located within the interval [0.0, 4.0]), where each arrangement was formed by
progressively increasing the number of interface variables of the pencil (A,M) (thus reducing
the value of d). The exact location of the eigenvalues λ1, . . . , λ12 (some of these eigenvalues
were semi-simple) as well as the location of the algebraically smallest eigenpoles of the
eigenbranches θj(σ), j = 1, . . . , 12, are shown in Figure 4.2. In the same figure we also
display the eigenbranches θj(σ), 1 ≤ j ≤ 12, for the first and second arrangement of the
eigenpoles. It is easy to verify that for the second arrangement of the eigenpoles, the shape of
the eigenbranches is closer to linear compared to that for the first arrangement. The latter is
shown more clearly in the bottom row subfigures in Figure 4.2, where we plot

θ′j(σ) = −1− θj(σ)
ŷTj (σ)S′′(σ)ŷj(σ)

ŷTj (σ)S′(σ)ŷj(σ)
, j = 1, . . . , 12,

for the first (left), second (middle), and third (right) arrangement of the eigenpoles.
While it is impossible to determine what eigenvalues of (B,MB) are the eigenpoles of a

given eigenbranch θj(σ), it is possible to reduce the overall number of eigenpoles by reducing
the size of (B,MB). For example, the eigenvalues of the pencil (B,MB) in Figure 4.1 are
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FIG. 5.1. Black circles denote eigenvalue approximations. Left: computing an initial approximation of λ2 as
soon as λ1 is computed. Right: computing initial approximations of multiple eigenvalues using the eigenpairs of the
pencil (S(0),−S′(0)).

equal to {1, 2, 4}, {1.38, 3.61}, and {2}, when the size of the matrices B and MB is set
to d = 3, d = 2, and d = 1, respectively. Therefore, choosing the dimension d of the
pencil (B,MB) to be smaller increases the likelihood that a regular root λ ∈ Λ(A,M) of an
eigenbranch θj(σ) will be located relatively further away from the eigenpoles of the latter.

5. Numerical experiments. Our experiments were performed in a Matlab environment
(version R2018a) using 64-bit arithmetic (double precision) on a single core of a computing
system equipped with an Intel Haswell E5-2680v3 processor and 32 GB of system memory.

5.1. Computing more than one eigenpairs. MLA can be extended to the computa-
tion of more than one eigenpairs. The only requirement is the computation of an initial
approximation of each sought eigenvalue. We now briefly describe two such generalizations:

(a) The sought eigenpairs are computed sequentially, one after the other. As soon as a
scalar σ is signaled as an accurate approximation of some eigenvalue λ, we proceed
to compute the smallest (or second smallest if θ(σ) > 0) positive eigenvalue of the
pencil (S(σ),−S′(σ)). We then set this eigenvalue and corresponding eigenvector
as the new eigenpair (θ(σ), ŷ(σ)) in MLA. A similar technique can be also found
in [11]. An example is presented in the left subfigure of Figure 5.1, where after we
have computed the eigenvalue λ1, the initial approximation of the eigenvalue λ2 is
computed as λ1 − θ2(λ1)/θ′2(λ1), where θ2(λ1) is the smallest positive eigenvalue
of the pencil (S(λ1),−S′(λ1)).

(b) The sought eigenpairs are computed independently, and the roots of multiple eigen-
branches are chased simultaneously. To achieve this, we set the same initial approx-
imation σ for all sought eigenvalues. We then compute multiple eigenpairs of the
pencil (S(σ),−S′(σ)). These eigenpairs are then used to generate initial approxi-
mations of the eigenvalues near σ. An example is presented in the right subfigure of
Figure 5.1 where we set σ = 0 and update the initial eigenvalue approximation of the
eigenvalues λi, i = 1, 2, 3, as σ − θi(σ)/θ′i(σ) =: 0− θi(0)/θ′i(0), respectively.

The second approach can take advantage of parallel computing since the roots of different
eigenbranches can be computed independently. In addition, it allows MLA to compute
eigenvalues of the pencil (A,M) which lie further away from σ. Indeed, the only requirement
to compute an eigenvalue λ is to be able to “jump" on the correct eigenbranch. Depending on
how close the shape of the corresponding eigenbranch is to that of a linear function, the value
of σ need not be close to λ.
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FIG. 5.2. From left to right, top row: the finite element mesh, the sparsity pattern of A, and the sparsity pattern
of M . From left to right, bottom row: the sparsity pattern of the pencil (A,M) after setting p = 2, p = 4, and
p = 8, respectively.

5.2. Domain decomposition. We reorder the matrices A and M such that the submatri-
ces Bσ, Eσ, and ME are block-diagonal. To achieve this, we apply the METIS graph parti-
tioner [13] to partition the adjacency graph of the matrix |A|+ |M | into p non-overlapping par-
titions. We then permute the rows/columns of the matricesA andM so that variables/equations
associated with interior variables are listed before those associated with interface variables.
We then get the following block-pattern (we kept the same notation for the reordered version
of matrices A and M ):

A =


B1 E1

B2 E2

. . .
...

Bp Ep
ET

1 ET
2 . . . ET

p C

 , M =


M

(1)
B M

(1)
E

M
(2)
B M

(2)
E

. . .
...

M
(p)
B M

(p)
E(

M
(1)
E

)T (
M

(2)
E

)T
. . .

(
M

(p)
E

)T
MC

 ,

where the matrices Bi and M (i)
B are square matrices of size di × di and the matrices Ei and

M
(i)
E are rectangular matrices of size di × si. The variables di and si denote the number of

interior and interface nodes located in the ith subdomain of the adjacency graph of |A|+ |M |,
respectively. In addition, the matrices C and MC are of size s × s, where s =

∑p
i=1 si.

Figure 5.2 displays the sparsity pattern of the matrices A and M after a domain decomposition
reordering of a pencil (A,M) stemming from a finite element discretization of the Laplace
operator on the [−1, 1]× [−1, 1] plane using linear elements with target maximum mesh edge
length equal to h = 0.05.

Higher values of p lead to cheaper linear system solves with the matrix Bσ and increase
the amount of parallelism during computations with interior variables. On the other hand,
increasing p naturally leads to an increase in the number of interface variables, thus increasing
the dimension of the Schur complement eigenvalue problem. In this paper we do not consider
these trade-offs, although higher values of p lead to fewer eigenpoles which in practice leads
to faster convergence in MLA.
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5.3. Details on the experimental framework. Each approximate eigenpair (λ̃, x̃) will
be signaled as a sufficiently accurate approximation of an eigenpair (λ, x) as soon as the corre-
sponding residual norm satisfies the inequality ‖Ax̃−λ̃Mx̃‖ ≤ 1e-8×‖x̃TMx̃‖. On the other
hand, each approximation (θ̃, ỹ) of the eigenpair (θ(σ), ŷ(σ)) will be considered sufficiently
accurate as soon as the residual norm satisfies4 ‖S(σ)ỹ + θ̃S′(σ)ỹ‖ ≤ 1e-10×‖ỹTS′(σ)ỹ‖.
Unless mentioned otherwise, each eigenpair (θ(σ), ŷ(σ)) will be computed by an (inexact)
inverse iteration [19].

5.4. Numerical demonstration. We consider the computation of the nev = 20 alge-
braically smallest eigenvalues of three different pencils using the second mechanism discussed
in Section 5.1. The first two pencils are of the standard form (M = I), and the matrix A
represents a finite difference approximation of the Laplace operator on a regular grid with
homogeneous Dirichlet boundary conditions on the entire boundary of the domain [0, 1]×[0, 1]
and [0, 1]× [0, 1]× [0, 1], respectively. Their mesh sizes are chosen as a) nx = 253, ny = 148,
and nz = 1, and b) nx = 53, ny = 48, and nz = 15, and thus the dimension of the matrixA is
equal to n = 37 444 and n = 38 160, respectively. We finally consider the pencil “Kuu/Muu"
listed in Table 5.2. In all cases, the number of subdomains p is set such that n/s ≥ 10.

The initial approximation of all nev sought eigenvalues is set equal to σ := 0. MLA is then
applied to the computation of each eigenvalue independently of each other. The only deviation
from Algorithm 1 is that the first evaluation of MLA during the computation of the eigenvalue
λi replaces (θ(σ), ŷ(σ)) with the eigenpair (θi(σ), ŷi(σ)) so that MLA gets onto the right
eigenbranch. Figure 5.3 displays the nev sought eigenvalues of the above pencils together with
their approximation by MLA. The corresponding residual norms at each iteration of MLA are
also shown (different dashed curves correspond to different eigenpairs of the pencil (A,M)).
Notice that especially for the pencil “Kuu/Muu", the zero initial approximations were actually
quite far from all sought eigenvalues (e.g., λ20 = 194.42).

5.4.1. Comparisons against Krylov subspace eigenvalue solvers. A reasonable ques-
tion is how MLA compares with variants of the Lanczos method [16, 22]. In practice, such a
comparison is not trivial since MLA works with pencils of the form (S(σ),−S′(σ)) while the
Lanczos method works with the pencil (A,M). In addition, Lanczos is a subspace method,
e.g., it extracts approximate eigenpairs from a (Krylov) subspace, while MLA is a single-
vector iteration. Additionally, MLA is based on the concept of domain decomposition, and
thus a proper distributed memory implementation is required to fully exploit its advantages.
Nonetheless, MLA might be a competitive approach with respect to the Lanczos method even
for sequential architectures when: a) the number of sought eigenvalues nev is small and b) a
shift-and-invert approach is not feasible due to excessive fill-in in the associated triangular
factors.

Recall the 253 × 148 finite difference discretization of the 2D Dirichlet eigenvalue
problem discussed above, and consider the computation of its nev = 2 (algebraically) smallest
eigenvalues by Matlab’s Implicitly Restarted Arnoldi routine “eigs" (IRA) equipped with
a subspace of size forty, e.g., the maximum subspace dimension in IRA is twenty times the
number of sought eigenvalues (the default choice is only two times the number of sought
eigenvalues). Without shift-and-invert, applying IRA directly to the pencil (A,M) requires
82 cycles to approximate the two sought eigenpairs up to the required accuracy. In contrast,
applying IRA to the pencil (S(0),−S′(0)) in order to generate initial approximations in MLA
only requires 24 cycles. Compared to applying IRA directly to the discretized Laplacian, the
saving in orthogonalization costs achieved by MLA is proportional to the ratio 82n/24s, and

4In practice, the inner eigenvalue problem can be solved even less accurately (see [7] for more details on the
convergence of inexact Newton methods).
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FIG. 5.3. Left: the nev sought eigenvalues and their approximation by MLA. Right: the residual norms of the
nev sought eigenpairs at each iteration of MLA. Top figures: nx = 253, ny = 148, and nz = 1. Middle figures:
nx = 53, ny = 48, and nz = 15. Bottom figures: “{K/M}uu".

in this particular example, we had n = 37 444 and s = 2724.5 In summary, MLA managed to
compute the two smallest eigenpairs of the 253× 148 finite difference discretization of the
2D Dirichlet eigenvalue problem without shift-and-invert in about half of the time required by
IRA applied directly to the discretized Dirichlet eigenvalue problem. MLA was faster than
IRA even when seeking up to five smallest eigenpairs but lost ground to IRA as the number of
sought eigenpairs increased due to the ability of IRA to take advantage of high-dimensional
Krylov subspaces. In contrast, the cost of MLA is approximately linear with respect to the
value of nev. A wall-clock time comparison between IRA and MLA is provided in the left
subfigure of Figure 5.4.

In agreement with the earlier discussion in the beginning of this section, enabling shift-
and-invert leads to faster convergence for IRA. Indeed, computing the nev = 2 (algebraically)
smallest eigenvalues of 253× 148 finite difference discretization by IRA using a subspace of

5Similarly, memory savings were of the order O(n/s) in favor of MLA.
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FIG. 5.4. Wall-clock times to compute the nev algebraically smallest eigenvalues and associated eigenvectors for
the 253× 148 five-point finite difference approximation of the Laplace operator on a regular grid with homogeneous
Dirichlet boundary conditions. The variable “opts.p" denotes the maximum Krylov subspace dimension before
IRA restarts.

size 2nev now requires only 7 cycles. A wall-clock time comparison of MLA6 and IRA, this
time with shift-and-invert, is given in the right subfigure of Figure 5.4. Note that “opts.p"
can be chosen to be much smaller in the case of shift-and-invert. In summary, when shift-and-
invert was enabled, MLA was slower than IRA for any nev > 2. Nonetheless, MLA can still
be competitive to shift-invert Lanczos in cases where a distributed memory environment is
available and the sought eigenvalues are clustered.

The above experiment is by no means exhaustive as both IRA and MLA can take advantage
of several modifications and the test matrix used was not large. However, it sheds light in
which scenarios MLA might be a competitive approach with respect to Krylov subspace
eigenvalue solvers.

5.5. Comparisons against other root-finding eigenvalue solvers. We now compare
the numerical performance of MLA with that of the “Branch Hopping” root-finding technique
presented in [11]. This scheme essentially coincides with MLA applied to the pencil (S(σ), I)
and will be abbreviated as “BrH”.

TABLE 5.1
n: size of the matrices A and M , nnz(.): number of nonzero entries. The integers under the label “s" denote

the number of interface variables for the default choice of p = 16 subdomains.

# Matrix pencil n nnz(A)/n nnz(M)/n s Application
1. nos5 468 11.1 1.0 251 Structural
2. nos3 960 16.5 1.0 310 Structural
3. bcsst{k,m}27 1,224 45.9 45.9 418 Structural
4. FEmesh 2,689 6.9 6.8 287 Model problem
5. FDmesh 5,000 6.6 1.0 433 Model problem
6. {K,M}uu 7,102 47.9 24.0 911 Structural
7. Dubcova1 16,129 15.7 1.0 1226 2D/3D

6The shift-and-invert variant of MLA uses shift-and-invert only during the computation of eigenpairs of the
pencil (S(σ),−S′(σ)).
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FIG. 5.5. Total number of steps required by the inverse iteration (II) at each individual iteration of MLA when
computing the ten algebraically smallest eigenvalues of the matrices “nos3". The initial eigenvalue approximation σ0
for each sought eigenvalue λ was set to σ0 = λ(1 + 1e-2) ( left) and σ0 = λ(1 + 1e-3) (right).

We tested MLA and BrH on a few pencils listed in Table 5.1. Without loss of generality
we consider the computation of the few algebraically smallest eigenvalues and associated
eigenvectors. All matrix pencils but 4) and 5) can be found in the Suite Sparse Matrix
Collection [6]. The matrix “FDmesh” is set as in the previous section except that now
nx = 100 and ny = 50, respectively. The matrix pencil “FEmesh” represents the pencil
shown in Figure 5.2. The matrix pencils 1), 2), and 5) are of the standard form.

TABLE 5.2
Total number of iterations required by MLA and BrH to compute the ten algebraically smallest eigenvalues and

the associated eigenvectors of the matrix pencils listed in Table 5.1. The numbers inside the parentheses denotes the
number of times each method misconverged.

Partitions p = 8 p = 16 p = 32

Matrix MLA BrH MLA BrH MLA BrH
nos5 28 29 21 28 20 26
nos3 27 (1) 30 (1) 27 30 23 27

bcsst{k,m}27 38 39 32 35 28 34
FEmesh 30 43 30 43 25 35
FDmesh 29 (1) 33 (2) 25 29 20 27
{K,M}uu 29 (1) 38 (1) 27 34 26 30
Dubcova1 30 (1) 35 (1) 27 30 21 28

Table 5.2 reports the total number of iterations required by MLA and BrH to compute the
ten algebraically smallest eigenvalues and the associated eigenvectors of the matrix pencils
listed in Table 5.1 as p varies. It is easy to notice that MLA is faster than BrH, requiring two
to three Newton steps per sought eigenpair. Moreover, in agreement with the discussion in
Section 4.1, increasing the number of partitions leads to faster convergence.

Figure 5.5 displays the total number of steps required by the inverse iteration to compute
the eigenvalue θ(σ) at each iteration of MLA, when the latter is applied to the computation
of the ten algebraically smallest eigenvalues and the associated eigenvectors of the matrix
“nos3". As the iteration index of MLA increases, the number of inverse iteration steps per
iteration decreases since the sought simple eigenvalue (root) λ of (A,M), θ(σ) converges to
zero while, at the same time, the rest of the eigenvalues of pencil (S(σ),−S′(σ)) converge to
nonzero values (recall that all sought eigenvalues were simple).
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6. Conclusion. This paper proposed a root-finding scheme based on domain decompo-
sition to compute eigenpairs of symmetric generalized eigenvalue problems. The proposed
scheme, termed as Mixed Linear Approximations (MLA), recasts the original eigenvalue
problem into one of computing roots of scalar functions defined by the eigenvalue of smallest
magnitude of a generalized eigenvalue problem stemming from a first-order approximation of
the non-linear matrix-valued function associated with the interface variables of the adjacency
graph of the original pencil. To solve this root-finding problem, MLA considers Newton’s
iteration. We discussed several theoretical and implementation details and demonstrated by
experiments that MLA can converge faster than the root-finding eigenvalue solver in [11].

Several practical details remain to be considered. For example, in our experiments we
primarily considered inverse iteration as the inner eigenvalue solver in MLA, however, other
approaches such as a (generalized) Davidson method [24] are possible. A comparison against
Lanczos methods in a distributed-memory setting is also an idea worth exploring in the future.
Furthermore, the trade-off between performing the Newton updates and the linear system
solutions inexactly and their effects on the convergence of MLA is the subject of ongoing
research. Finally, another interesting research direction would be the adaptation of MLA to
the solution of symmetric (Hermitian) nonlinear eigenvalue problems.
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Appendix A. Proof of Theorem 3.6.
For any σ /∈ {Λ(A,M) ∪ Λ(B,MB)} we can write

(A.1) (A− σM)−1 =

[
B−1σ +B−1σ EσS(σ)−1ETσB

−1
σ −B−1σ EσS(σ)−1

−S(σ)−1ETσB
−1
σ S(σ)−1

]
.

In addition, we have

(A.2)

(A− σM)−1 =

n∑
i=1

1

λi − σ
x(i)

(
x(i)
)T

=

n∑
i=1

1

λi − σ

[
u(i)

(
u(i)
)T

u(i)
(
y(i)
)T

y(i)
(
u(i)
)T

y(i)
(
y(i)
)T
]
.

Equating the (2,2) blocks of the right-hand sides in (A.1) and (A.2) gives

S(σ)−1 =

n∑
i=1

1

λi − σ
y(i)

(
y(i)
)T

.

Writing S(σ)ŷj(σ) = θj(σ)[−S′(σ)]ŷj(σ) as

(A.3)
1

θj(σ)
ŷj(σ) = −S(σ)−1S′(σ)ŷj(σ) =

n∑
i=1

1

λi − σ
y(i)

(
y(i)
)T

[−S′(σ)] ŷj(σ)

and defining the scalar function

χi,j(σ) = −
(
y(i)
)T

S′(σ)ŷj(σ),
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for all i = 1, . . . , n and j = 1, . . . , s, we can express (A.3) as

(A.4)
1

θj(σ)
ŷj(σ) =

χκ,j(σ)

λκ − σ
y(κ) +

n∑
i=1, i 6=κ

χi,j(σ)

λi − σ
y(i).

Now, let j ≡ κσ , and multiply both sides in (A.4) by (λκ − σ)/χκ,κσ . Taking limits leads to

(A.5)
lim
σ→λκ

(
λκ − σ

χκ,κσ (σ)θ(σ)
ŷ(σ)

)
= y(κ) + lim

σ→λκ

 n∑
i=1, i 6=κ

χi,κσ (σ)(λκ − σ)

χκ,κσ (σ)(λi − σ)
y(i)


= y(κ),

where the second equality follows directly from the fact that λκ is simple.
Since limσ→λκ θ(σ) → 0, the limit of each entry of the vector on the left-hand side

of (A.5) is of the form 0/0. Let `η denote the ηth, 1 ≤ η ≤ s, entry of the vector ŷ(σ).
Applying l’Hôspital’s rule (where we differentiate with respect to σ) gives

(A.6) lim
σ→λκ

(
(λκ − σ)`η
χκ,κσ (σ)θ(σ)

)
= lim
σ→λκ

(
[(λκ − σ) `η]

′

[χκ,κσ (σ)θ(σ)]
′

)
= lim
σ→λκ

(
`η

χκ,κσ (σ)

)
,

where we used limσ→λκ θ(σ) = θ(λk) = 0 and limσ→λκ θ
′(σ) = θ′(λk) = −1. Since both

χκ,κσ (σ) and θ′(σ) are non-zero, the above limit is well-defined. Applying (A.6) to all entries
of ŷ(σ) finally gives

lim
σ→λκ

(
1

χκ,κσ (σ)
ŷ(σ)

)
=

1

χκ,κλκ (λκ)
ŷ(λκ) = y(κ).

To prove the second item, first notice that the eigenvectors of (S(σ),−S′(σ)) are
S′(σ)-orthogonal, and thus ŷTj (σ)S′(σ)ŷκσ (σ) = 0, j 6= κσ. Recalling the fact that
span{limσ→λκ ŷκσ (σ)} ≡ span

{
y(κ)

}
leads to limσ→λκ(ŷTj (σ)S′(σ)y(κ)(σ)) = 0 for any

j 6= κσ . Thus, (A.4) is simplified to

(A.7) lim
σ→λκ

1

θj(σ)
ŷj(σ) = lim

σ→λκ

 n∑
i=1, i 6=κ

χi,j(σ)

λi − σ
y(i)

 ,

for any (θj(σ), ŷj(σ)), j = 1, . . . , s, j 6= κσ. Multiplying (A.7) by ŷTj (σ) from the left and
rearranging terms leads to (3.5).
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