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A SUBSPACE-ACCELERATED SPLIT BREGMAN METHOD
FOR SPARSE DATA RECOVERY WITH JOINT `1-TYPE REGULARIZERS∗

VALENTINA DE SIMONE†, DANIELA DI SERAFINO†, AND MARCO VIOLA†

Abstract. We propose a subspace-accelerated Bregman method for the linearly constrained minimization of
functions of the form f(u) + τ1 ‖u‖1 + τ2 ‖D u‖1, where f is a smooth convex function and D represents a linear
operator, e.g., a finite difference operator, as in anisotropic total variation and fused lasso regularizations. Problems of
this type arise in a wide variety of applications, including portfolio optimization, learning of predictive models from
functional magnetic resonance imaging (fMRI) data, and source detection problems in electroencephalography. The
use of ‖D u‖1 is aimed at encouraging structured sparsity in the solution. The subspaces where the acceleration is
performed are selected so that the restriction of the objective function is a smooth function in a neighborhood of the
current iterate. Numerical experiments for multi-period portfolio selection problems using real data sets show the
effectiveness of the proposed method.
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1. Introduction. We are interested in the solution of problems of the form

min f(u) + τ1 ‖u‖1 + τ2 ‖D u‖1
s.t. Au = b,

(1.1)

where f : Rn → R is an at least twice continuously differentiable closed convex function,
u ∈ Rn, D ∈ Rq×n, A ∈ Rm×n, and b ∈ Rm. The `1 regularization term in the objective
function encourages sparsity in the solution, while the use of ‖D u‖1 is aimed at incorporating
further information about the solution. For example, in the case of discrete anisotropic
Total Variation [23, 26], D is a first-order finite difference operator, and the regularization
encourages smoothness along certain directions. The combination of the two regularization
terms can be seen as a generalization of the fused lasso regularization introduced in [35] in
the case of least-squares regression. Problems of the form (1.1) arise, e.g., in multi-period
portfolio optimization [16], in predictive modeling and classification (machine learning) for
functional magnetic resonance imaging (fMRI) data [2, 19], in source detection problems in
electroencephalography [4], and in multiple change-point detection [30].

Methods based on Bregman iterations [6, 10, 26, 31] have proved to be efficient for the
solution of this type of problems. As we will see in Section 3, the Bregman iterative scheme
requires at each step the solution of an `1-regularized unconstrained optimization subproblem.
For this minimization, which does not need to be performed exactly but generally requires
high accuracy (see Theorem 3.1 in Section 3), one can use iterative methods suited to deal with
the `1 regularization term such as FISTA [3], SpaRSA [36], BOSVS [14], and ADMM [5]. A
possible drawback is that these methods may be inefficient when high accuracy is required.

Herein, we propose a subspace acceleration strategy for the Bregman iterative scheme,
which is aimed at replacing, at certain steps, the unconstrained minimization of the `1-
regularized subproblem with the unconstrained minimization of a smooth restriction of it to
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a suitable subspace. The proposed strategy finds its roots in the class of orthant-based meth-
ods [1, 9, 28] for `1-regularized minimization problems, which are based on the consecutive
minimization of smooth approximations to the problem over a sequence of orthants. However,
by following [12], instead of considering the restriction to the full orthant, we restrict the
minimization to the orthant face identified by the zero variables. Ideally, one would like
to perform this subspace minimization only when there is a guarantee that the subproblem
solution will lie on that orthant face. However, this is impractical to verify. For this reason,
starting from the work in [12], we introduce a switching criterion to decide whether to perform
the subspace acceleration step. The criterion is based on the use of some optimality measures
for the current iterate with respect to the current subproblem. More specifically, it is based on a
comparison between a measure of the optimality violation of the zero variables and a measure
of the optimality violation of the other variables. This strategy comes from the adaptation to
`1-regularized optimization of the concept of proportional iterates, developed in the case of
quadratic optimization problems subject to bound constraints or to bound constraints and a
single linear equality constraint [18, 20, 21, 24, 25, 29].

The idea of introducing acceleration steps over suitable subspaces to improve the perfor-
mance of splitting methods for problem (1.1) is not new. An example is provided, e.g., by [11].
However, the strategy we propose in this work differs from that subspace acceleration strategy
because we focus on Bregman iterations and aim at replacing nonsmooth unconstrained sub-
problems with smooth smaller ones, while the algorithm in [11] is based on the introduction of
a subspace acceleration step after the minimization steps in an ADMM algorithm [5], where
the subspace is spanned by directions obtained by using information from previous iterations.

This paper is organized as follows. In Section 2 we recall some concepts from convex
analysis that will be used later in this work. In Section 3 we briefly describe the Bregman
iterative scheme for the solution of problem (1.1) and prove its convergence in the case of
inexact subproblem minimization. In Section 4 we show how suitable subspace acceleration
steps can be introduced into the Bregman iterative scheme. In Section 5 we report numerical
results for the solution of portfolio optimization problems modeled by (1.1). We provide some
conclusions in Section 6.

Notation. Throughout this paper, scalars are denoted by lightface Roman or Greek
fonts, e.g., a, α ∈ R, vectors by boldface Roman or Greek fonts, e.g., v,µ ∈ Rn. The
i-th entry of a vector v ∈ Rn is denoted by vi or [v]i. Given a continuously differentiable
function F (x) : Rn → R, we use ∇iF (x) to indicate the first derivative of F with respect
to the variable xi. We use 0n and 1n to indicate the vectors in Rn with all entries equal
to 0 and 1, respectively; the subscript is omitted if the dimension is clear from the context.
For any vectors u ∈ Rn1 and v ∈ Rn2 , we use the notation [u; v] to represent the vector
[u>,v>]> ∈ Rn1+n2 . The Euclidean scalar product between u, v ∈ Rn is indicated as 〈u,v〉.
The norm ‖ · ‖ without subscript is the `2-norm. Superscripts are used to denote the elements
of a sequence, e.g.,

{
xk
}

.

2. Preliminaries. We recall some concepts that will be used in the next sections.
DEFINITION 2.1. Given a function Q : Rn → R, the convex conjugate Q∗ of Q is defined

as follows:

Q∗(y) = sup
x
〈y,x〉 −Q(x).

Note that Q∗ is a closed convex function for any given Q. If Q is strictly convex, then
Q∗ is also continuously differentiable; moreover, if Q is a closed convex function, then
Q∗∗(x) = Q(x) [27].
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DEFINITION 2.2. Given a closed convex function Q : Rn → R, a vector p ∈ Rn is said
to be a subgradient of Q at a point x ∈ Rn if

Q(y)−Q(x) ≥ 〈p, y − x〉 , ∀y ∈ Rn.

The set of all the subgradients of Q at x is referred to as the subdifferential of Q at x and is
denoted by ∂Q(x).

If Q is a closed convex function, then [27, Chapter X]

(2.1) p ∈ ∂Q(x) if and only if x ∈ ∂Q∗(p).

Moreover, we have that Q(x) +Q∗(p) = 〈p, x〉.
DEFINITION 2.3. A point-to-set map Φ : Rn → 2R

n

is said to be a monotone operator if

〈x− y, u− v〉 ≥ 0, for all x,y ∈ Rn, u ∈ Φ(x), v ∈ Φ(y).

Moreover, Φ is said to be a maximal monotone map if it is monotone and its graph, i.e., the set

{(x,y) ∈ Rn × Rn : y ∈ Ψ(x)} ,

is not strictly contained in the graph of any other monotone operator.
An example of a maximal monotone operator is the subdifferential of a lower-semicontin-

uous convex function; see [33] and the references therein.
DEFINITION 2.4. Given an operator Φ : Rn → 2R

n

, the inverse of Φ is the operator
Φ−1 : Rn → 2R

n

defined as

Φ−1(y) = {x ∈ Rn : y ∈ Φ(x)} .

3. The split Bregman method. For the sake of simplicity and self consistency, we
briefly describe the split Bregman method [26] for the solution of `1-regularized problems
of type (1.1). In order to separate the two `1 regularization terms, we introduce the auxiliary
variable d = Du, so that problem (1.1) can be reformulated as

min E(u,d) ≡ f(u) + τ1 ‖u‖1 + τ2 ‖d‖1

s.t.

{
Au = b,

D u− d = 0.

(3.1)

The split Bregman method is based on a Bregman iterative scheme for the solution of (3.1).
Letting u0 ∈ Rn, d0 ∈ Rq, and p0 =

[
p0
u; p0

d

]
∈ ∂E(u0,d0), the k-th iteration of the

Bregman method reads as follows:[
uk+1; dk+1

]
= argmin

u,d
D

pk

E

(
[u; d] ,

[
uk;dk

])
+
λ

2
‖Au− b‖2 +

λ

2
‖D u− d‖2,

pk+1
u = pku − λA>(Auk+1 − b)− λD>(Duk+1 − dk+1),

pk+1
d = pkd − λ(dk+1 −Duk+1),

where pk =
[
pku; pkd

]
and

D
p̄
E

(
[u; d], [ū; d̄]

)
= E(u,d)− E(ū, d̄)− 〈p̄u, u− ū〉 −

〈
p̄d, d− d̄

〉
,

with p̄ ∈ ∂E(ū, d̄) being the so-called Bregman distance associated with the convex function
E at the point [ū; d̄].
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Following [26, 31], thanks to the linearity of the equality constraints, a simplified iteration
can be used in place of the original Bregman one:

[
uk+1; dk+1

]
= argmin

u,d
E(u,d) +

λ

2
‖Au− bku‖2 +

λ

2
‖D u− d− bkd‖2,(3.2)

bk+1
u = bku + b−Auk+1,(3.3)

bk+1
d = bkd + dk+1 −Duk+1.(3.4)

In order to simplify the notation, it is convenient to rewrite (3.1) in terms of a single
variable x as

min K(x) ≡ F (x) +

n+q∑
i=1

δi|xi|

s.t. M x = s,

(3.5)

where

(3.6) x =

[
u
d

]
, F (x) = f(u), M =

[
A 0
D −I

]
, s =

[
b
0

]
,

and

δi =

{
τ1, if i ≤ n,
τ2, if i > n.

We also denote by nx = n + q the size of x and by ns = m + q the number of rows of M
(i.e., the size of s), so that M ∈ Rns×nx . Then, the iteration (3.2)–(3.4) can be written as

xk+1 = argmin
x

K(x) +
λ

2
‖M x− sk‖2,(3.7)

sk+1 = sk + s−M xk+1,(3.8)

where sk =
[
bku; bkd

]
.

We can rewrite (3.7)–(3.8) as the augmented Lagrangian iteration

xk+1 = argmin
x

K(x)−
〈
µk, Mx

〉
+
λ

2
‖M x− s‖2,(3.9)

µk+1 = µk + λ
(
s−M xk+1

)
,(3.10)

where we set µk = λ(sk − s) for all k.
The following theorem, which is adapted from [22, Theorem 3], provides a general

convergence result for the augmented Lagrangian scheme (3.9)–(3.10) when the minimization
in (3.9) is performed inexactly.

THEOREM 3.1. LetK(x) be a closed convex function, and letK(x)+‖M x‖2 be strictly
convex. Let µ0 ∈ Rns and x0 ∈ Rnx be arbitrary, and let λ > 0. Suppose that

(i)
∥∥∥∥xk+1 − argmin

x

(
K(x)−

〈
µk, M x

〉
+
λ

2
‖M x− s‖2

)∥∥∥∥ < νk,

(ii) µk+1 = µk + λ
(
s−M xk+1

)
,
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where νk ≥ 0 and
∑∞
k=0 νk < +∞. If there exists a saddle point (x̂, µ̂) of the Lagrangian

function

L(x,µ) = K(x)− 〈µ, M x− s〉 ,

then xk → x̂ and µk → µ̂. If no such saddle point exists, then at least one of the sequences
{xk} and {µk} is unbounded.

Proof. For each k, let x̄k be the unique solution to the minimization problem in (i) (the
uniqueness comes from the strict convexity of K(x) + ‖M x‖2). Since x̄k is a stationary
point, it satisfies the necessary condition

(3.11) 0 ∈ ∂K(x̄k)−M>µk + λM>
(
M x̄k − s

)
.

By defining µ̃k = µk − λ
(
M x̄k − s

)
, condition (3.11) can be written as

M>µ̃k ∈ ∂K(x̄k),

which, by (2.1), is equivalent to

x̄k ∈ ∂K∗(M>µ̃k).

Therefore,

(3.12) M x̄k − s ∈ Ψ(µ̃k),

where Ψ(µ̃k) ≡M ∂K∗(M>µ̃k)− s. From the definition of µ̃k and (3.12) it follows that

µ̃k = µk − λ
(
M x̄k − s

)
∈ µk − λΨ(µ̃k),

that is,

(3.13) µk ∈ µ̃k + λΨ(µ̃k) = (I + λΨ) (µ̃k).

Observe that Ψ(µ) = ∂
(
K∗(M>µ)− 〈s,µ〉

)
, i.e., it is the subdifferential of a closed convex

function. From [32, Corollary 31.5.2] we have that Ψ is a maximal monotone operator. Thus,
by [22, Corollary 2.2], for any c > 0, the operator JcΨ ≡ (I + cΨ)

−1 is single-valued and
has full domain. By (3.13), we have

µ̃k = (I + λΨ)
−1

(µk) = JλΨ(µk).

Thus, by hypothesis (i) we get∥∥∥µk+1 − (I + λΨ)
−1

(µk)
∥∥∥ =

∥∥∥µk+1 − µ̃k
∥∥∥ ≤ λ‖M‖ ∥∥xk+1 − x̄k

∥∥ < λ‖M‖νk ≡ βk,

with
∑∞
k=0 βk < +∞. By [22, Theorem 3] we have that the sequence {µk} satisfies one of

the following two conditions:
1) if Ψ has a zero, i.e., there exists a vector µ̂ such that

Ψ(µ̂) = M ∂K∗(M>µ̂)− s = 0,

then µk → µ̂;
2) if Ψ has no zeros, then the sequence is unbounded.
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Now we prove that in case 1) the sequence {xk} converges to a point x̂. To this aim, we

consider the minimization problem in (i). By defining Z(x) ≡ K(x) +
λ

2
‖M x− s‖2, which

is a strictly convex function by hypothesis, we can write the stationarity condition for x̄k as

0 ∈ ∂Z(x̄k)−M>µk,

or equivalently as

x̄k ∈ ∂Z∗(M>µk).

The strict convexity of Z implies that Z∗ is a continuously differentiable function, and hence

x̄k = ∇Z∗(M>µk),

which implies

x̄k → x̂ ≡ ∇Z∗(M>µ̂).

This, together with
∥∥xk+1 − x̄k

∥∥ < νk → 0 yields xk → x̂.
Now we show that the pair (x̂, µ̂) is a saddle point of the Lagrangian function L(x,µ),

i.e., it satisfies
a) 0 ∈ ∂xL(x̂, µ̂) = ∂K(x̂)−M>µ̂, or equivalently, M>µ̂ ∈ ∂K(x̂);
b) 0 = ∇µL(x̂, µ̂) = M x̂− s.

The proof of b) follows by noting that M xk+1 − s =
1

λ
(µk − µk+1) → 0. In order to

prove a), we observe that x̄k → x̂ implies µ̃k → µ̂; moreover, M>µ̃k ∈ ∂K(x̄k). The
assertion follows from the limit property of maximal monotone operators [7] applied to ∂K.

REMARK 3.2. Because of the equivalence between (3.7)–(3.8) and (3.9)–(3.10), the
previous theorem implies that if µk → µ̂, then the sequence {sk} generated in (3.7)–(3.8)
converges to ŝ = 1

λ µ̂+ s.

4. Subspace acceleration for the split Bregman subproblems. Let us introduce, for
each x ∈ Rnx , the sets

A+(x) = {i : xi > 0}, A−(x) = {i : xi < 0},
A0(x) = {i : xi = 0}, A±(x) = A+(x) ∪A−(x).

This partitioning of the variables has been used in [12, 34] to extend some ideas developed
in the context of active-set methods for bound-constrained optimization [20, 21, 25] to the
case of `1-regularized optimization. In the case of bound-constrained quadratic problems,
suitable measures of optimality with respect to the active variables (i.e., the variables that
are at their bounds) and the free variables (i.e., the variables that are not active) are used to
establish whether the set of active variables is “promising”. If this is the case, then a restricted
version of the problem, obtained by fixing the active variables to their values, is solved
with high accuracy. This results in very efficient algorithms in practice, able to outperform
standard gradient projection schemes [18, 29]. The extension of this strategy to the case of
`1-regularized optimization comes from the observation that zero and nonzero variables can
play the role of active and free variables, respectively.

The results contained in this section require a further assumption on the function f(u)
in (1.1).
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ASSUMPTION 4.1. The gradient of f is Lipschitz continuous with constant L over Rn,
i.e., for all u1,u2 ∈ Rn

‖∇f(u1)−∇f(u2)‖ ≤ L ‖u1 − u2‖.

Note that F (x) defined in (3.6) has Lipschitz continuous gradient with the same constant L.
In order to ease the description of our acceleration strategy, we reformulate the minimiza-

tion problem in (3.7) as follows:

(4.1) xk+1 = argmin
x

Hk(x) ≡ Gk(x) +

nx∑
i=1

δi|xi|,

where

Gk(x) = F (x) +
λ

2
‖M x− sk‖2.

In this way we separate the smooth part of the objective function from the `1 regularization
term. Recall that a point x ∈ Rnx is a solution to (4.1) if and only if it satisfies the stationarity
condition 0 ∈ ∂Hk(x), i.e.,

∇iGk(x) + δi = 0, if i ∈ A+(x),

∇iGk(x)− δi = 0, if i ∈ A−(x),∣∣∇iGk(x)
∣∣ ≤ δi, otherwise.

Consider the pair (x̂, ŝ) defined in Theorem 3.1 and in Remark 3.2. Let us define the
scalars

θ1 =
1

2
min

i∈A±(x̂)
|x̂i| and θ2 =

1

2
min

i∈A0(x̂)

(
δi −

∣∣∣∇iĜ(x̂)
∣∣∣) ,

where

Ĝ(x) = F (x) +
λ

2
‖M x− ŝ‖2.

We make the following assumptions, which imply that θ1, θ2 > 0.
ASSUMPTION 4.2. The solution x̂ to problem (3.5) satisfies x̂ 6= 0.
ASSUMPTION 4.3. The solution (x̂, ŝ) to problem (3.5) is nondegenerate, i.e.,

min
i∈A0(x̂)

(
δi −

∣∣∣∇iĜ(x̂)
∣∣∣) > 0.

From Assumption 4.1 and the definition of Ĝ(x), we have that ∇Ĝ(x) is Lipschitz
continuous. Indeed, a Lipschitz constant for∇Ĝ(x) is

L̂ = L+ λ ‖M‖2.

Since, for any x ∈ Rnx and k ∈ N,

∇Gk(x) = ∇F (x) + λM>(M x− sk) and ∇Ĝ(x) = ∇F (x) + λM>(M x− ŝ),

we have that for any y, z ∈ Rnx∥∥∇Gk(y)−∇Gk(z)
∥∥ =

∥∥∥∇Ĝ(y)−∇Ĝ(z)
∥∥∥ ≤ L̂‖y − z‖,
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i.e., L̂ is also a Lipschitz constant for∇Gk(x).
The following lemma shows that when xk is sufficiently close to x̂, then some entries of xk

and x̂ have the same sign (see [13, Lemma 3.1]).

LEMMA 4.4. If
∥∥xk − x̂

∥∥ ≤ θ1

2
, then

sign(xki ) = sign(x̂i) ∀i ∈ A±(x̂) ∪
(
A0(x̂) ∩A0(xk)

)
.

We recall that Rnx can be split into 2nx orthants, and we introduce the following definition:
DEFINITION 4.5. Given any nx-tuple σ ∈ {−1, 1}nx , the orthant associated with σ is

defined as

Ωσ = {x ∈ Rnx : (xi ≥ 0 if σi = 1) ∧ (xi ≤ 0 if σi = −1)} .

REMARK 4.6. Lemma 4.4 suggests that when the current iterate xk is close to the solution
x̂, the nonzero entries of xk have the same sign as the corresponding entries of the solution
x̂, i.e., xk and x̂ lie in the same orthant of Rnx . Therefore one could think of restricting the
current subproblem (4.1) to the orthant containing xk. The restriction of Hk(x) to an orthant
Ωσ has the form

Hk
|Ωσ (x) = Gk|Ωσ (x) + 〈νσ, x〉 ,

where we set for all i

[νσ]i =

{
δi, if σi = 1,

−δi, if σi = −1.

Since Hk
|Ωσ (x) is a smooth function, if we knew that the current orthant contained the solution

to (4.1), then we could choose to solve the subproblem with high accuracy by using techniques
suited for smooth bound-constrained optimization problems. Similar ideas have been exploited
in the solution of unconstrained `1-regularized nonlinear problems giving rise to the family of
the so-called “orthant-based algorithms” [9, 28].

We aim at introducing subspace acceleration steps into the Bregman framework. This
means that, at suitable Bregman iterations, we want to replace the minimization of Hk with
the minimization of its restriction to the orthant face determined by A0(xk), i.e., the set{

y ∈ Rnx :
(
yi = 0, i ∈ A0(xk)

)
∧
(
sign(yi) = sign(xki ), i ∈ A±(xk)

)}
.

When A0(xk) is large, this could result in a significant reduction of the computational cost of
determining the next iterate.

Recall that the optimality of a given point x with respect to the problem (4.1) can be
measured in terms of the minimum-norm subgradient of Hk at a given point x, i.e., the vector
gk(x) defined componentwise as

[gk(x)]i =


∇iGk(x) + δi, if i ∈ A+(x) or (i ∈ A0(x) and ∇iGk(x) + δi < 0),

∇iGk(x)− δi, if i ∈ A−(x) or (i ∈ A0(x) and ∇iGk(x)− δi > 0),

0, otherwise.

By following [12, 34], we split gk(x) into the vectors βk(x) and ϕk(x), which measure the
optimality of x with respect to the zero and nonzero variables, respectively. The two vectors
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are defined componentwise as

[
βk(x)

]
i

=


∇iGk(x) + δi, if i ∈ A0(x) and ∇iGk(x) + δi < 0,

∇iGk(x)− δi, if i ∈ A0(x) and ∇iGk(x)− δi > 0,

0, otherwise,

[
ϕk(x)

]
i

=


0, if i ∈ A0(x),

min{∇iGk(x) + δi,max{xi,∇iGk(x)− δi}}, if i ∈ A+(x),

max{∇iGk(x)− δi,min{xi,∇iGk(x) + δi}}, if i ∈ A−(x).

It is straightforward to verify that if βk(x̄) = 0 and ϕk(x̄) = 0 at any point x̄ ∈ Rnx , then x̄
is a stationary point for Hk(x). It is worth noting that the vector ϕk(x) also takes into account
how many nonzero variables can change before becoming zero, i.e., before x enters another
orthant [12].

Now we can prove a bound for the components of ∇Gk(xk) corresponding to indices
in A0(x̂) when (xk, sk) is “sufficiently close” to (x̂, ŝ). The result extends a similar result
proved in [13] for the solution of `1-regularized unconstrained minimization problems to the
case of Bregman iterations for the problem (3.5).

THEOREM 4.7. If
∥∥xk − x̂

∥∥ ≤ min

{
θ1

2
,
θ2

2L̂

}
and

∥∥sk − ŝ
∥∥ ≤ θ2

2λ‖M‖
, then

i)
∣∣∇iGk(xk)

∣∣ ≤ δi − θ2, ∀i ∈ A0(x̂),

ii) βk(xk) = 0.
Proof. In order to prove i), let us consider an index k satisfying the hypotheses. For all i,

we can write∣∣∣∣∣∇iGk(xk)
∣∣− ∣∣∇iĜ(x̂)

∣∣∣∣∣ ≤ ∣∣∣∇iGk(xk)−∇iĜ(x̂)
∣∣∣

=
∣∣∣∇iĜ(xk) + [λM>(ŝ− sk)]i −∇iĜ(x̂)

∣∣∣
≤
∥∥∥∇Ĝ(xk) + λM>(ŝ− sk)−∇Ĝ(x̂)

∥∥∥
≤ L̂ ‖xk − x̂‖+ λ ‖M‖ ‖sk − ŝ‖ ≤ θ2

2
+
θ2

2
= θ2.

This implies that

(4.2)
∣∣∇iGk(xk)

∣∣ ≤ ∣∣∣∇iĜ(x̂)
∣∣∣+ θ2

for all i. Recall that δi = τ1 for i ≤ n and δi = τ2 otherwise. Without loss of generality, we
analyze the case i ≤ n; the case i > n can be proved in the same way. By defining

c1 = max
l∈A0(x̂)∩{1,...,n}

∣∣∣∇lĜ(x̂)
∣∣∣ ,

we have that

θ2 ≤ (τ1 − c1)/2.

Let i ∈ A0(x̂) ∩ {1, . . . , n}. From (4.2) and the previous inequality, we get∣∣∇iGk(xk)
∣∣ ≤ ∣∣∣∇iĜ(x̂)

∣∣∣+ θ2 ≤ c1 +
τ1 − c1

2

= τ1 −
τ1 − c1

2
≤ τ1 − θ2 = δi − θ2.
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This completes the proof of i).
To prove ii), we observe that βki (xk) can be nonzero only for i ∈ A0(xk) and that A0(xk)

can be written as

A0(xk) =
(
A0(xk) ∩A0(x̂)

)
∪
(
A0(xk) ∩A±(x̂)

)
.

From Lemma 4.4 it follows that A0(xk) ∩A±(x̂) = ∅. For i ∈ A0(xk) ∩A0(x̂) we have∣∣∇iGk(xk)
∣∣ ≤ δi − θ2 < δi,

which concludes the proof.
The previous theorem suggests that when (xk, sk) is in a neighborhood of the solution

(x̂, ŝ), the only variables that violate the optimality conditions are the nonzero ones.
By Remark 4.6, the orthant containing the solution is identified as the iterates converge

to the solution. Therefore, one could think of introducing into the general inexact Bregman
framework (3.7)–(3.8) an automatic criterion to decide whether the solution to (3.7) can be
searched in the current orthant face by means of a more efficient algorithm. Inspired by similar
conditions introduced in the framework of bound-constrained quadratic problems [18, 20, 25,
29], we propose to perform subspace acceleration steps whenever

(4.3)
∥∥∥βk(xk)

∥∥∥ ≤ γ ∥∥ϕk(xk)
∥∥ ,

where γ > 0 is a suitable constant. The idea is based on the observation that when the
optimality violation with respect to the zero variables is smaller than the violation with respect
to the nonzero ones, restricting the minimization to the latter could be more beneficial.

Moreover, since one could expect that the minimizer of problem (4.1) lies in the same
orthant face as xk for (xk, sk) “sufficiently close” to (x̂, ŝ), it is possible to replace the
minimization ofHk(x) over the orthant face containing xk by the minimization over the affine
closure of the orthant face, i.e.,

Fk =
{
y ∈ Rnx : yi = 0, i ∈ A0(xk)

}
.

This results in replacing the nonsmooth unconstrained minimization problem (4.1) with the
smooth optimization problem

(4.4) zk+1 = argmin
xi=0, i∈Ak0

Hk
|Fk(x) ≡ Gk|Fk(x) +

∑
i∈Ak±

νki xi,

where we set Ak± ≡ A±(xk), Ak0 ≡ A0(xk), and for all i ∈ Ak±,

νki =

{
δi, if sign(xk) = +1,

−δi, if sign(xk) = −1.

It is worth noting that, by fixing the zero variables, problem (4.4) can be equivalently
rewritten as an unconstrained minimization over R|A

k
±|. Therefore, efficient algorithms for

unconstrained smooth optimization can be exploited for its solution. Since the criterion (4.3)
does not guarantee that zk+1 lies in the same orthant as xk, we select the iterate xk+1 by a
projected backtracking line search ensuring a sufficient decrease in Hk, i.e.,

(4.5) Hk(xk+1)−Hk(xk) ≤ η〈∇Hk(xk), xk+1 − xk〉,
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where η is a small positive constant. Note that the orthogonal projection proj(z;x) of a point
z onto the orthant face containing x can be easily computed componentwise as

[proj(z;x)]i =


max{0, zi}, if i ∈ A+(x),

min{0, zi}, if i ∈ A−(x),

0, if i ∈ A0(x).

The resulting method, which we call Split Bregman with Subspace Acceleration (SBSA)
is outlined in Algorithm 1.

Algorithm 1 Split Bregman with Subspace Acceleration (SBSA).
1: Choose x0 = 0 ∈ Rnx , s0 = 0 ∈ Rns , λ > 0, γ > 0;
2: x1 ≈ argminxH

0(x);
3: for k = 1, 2, . . . do
4: sk = sk−1 + s−M xk;
5: if ‖βk(xk)‖ ≤ γ‖ϕk(xk)‖ then
6: zk+1 ≈ argmin

{
Hk
|Fk (x) : xi = 0, i ∈ Ak

0

}
;

7: xk+1 = proj
(
xk + αk(zk+1 − xk); xk

)
with αk obtained by backtracking line search;

8: if xk+1 not sufficiently accurate then . SAFEGUARD

9: xk+1 ≈ argminxH
k(x);

10: end if
11: else
12: xk+1 ≈ argminxH

k(x);
13: end if
14: end for

The following theorem, which is an adaptation of [28, Theorem A.3], shows that the line
search procedure at step 7 of Algorithm 1 is well defined.

THEOREM 4.8. The backtracking projected line search in the acceleration phases of
SBSA terminates in a finite number of iterations.

Proof. Consider the k-th iteration of algorithm SBSA, and suppose that an acceleration
step is taken. Let zk+1 be the point computed at line 6 of Algorithm 1 and dk = zk+1 − xk.
By construction, we have that dki = 0 for all i ∈ A0(xk). By following the first part
of the proof of [28, Theorem A.3], it is easy to show that there exists ᾱ > 0 such that
proj(xk + αdk;xk) = xk + αdk for all α ∈ (0, ᾱ], i.e., xk + αdk lies in the same orthant
face as xk. Since zk+1 is an approximate minimizer of Hk

Fk
and Hk

Fk
is convex, dk is a local

descent direction for Hk
Fk

in xk. This ensures that in a finite number of steps the backtracking
procedure can find a value of α guaranteeing a sufficient decrease for Hk

Fk
. By observing that

Hk(x) = Hk
Fk

(x) for each x lying in the same orthant face as xk, we conclude that the value
of α obtained with backtracking guarantees a sufficient decrease of Hk(x).

According to Theorem 3.1, the convergence of the inexact scheme is only guaranteed when
the solution of the subproblem in (4.1) is sufficiently accurate. For this reason, a safeguard has
been considered at lines 8–10 of Algorithm 1. This could be inefficient in practice because
the output of the subspace acceleration is likely to be rejected when the iterate is far from
the solution. In our implementation of Algorithm 1 we use a heuristic criterion to decide
whether to accept the iterate generated by the subspace acceleration step; see Section 5.2. We
recall that for the exact Bregman scheme applied to problem (3.5) it can be proved that (see
[31, Proposition 3.2])

(4.6) ‖Mxk+1 − s‖ ≤ ‖Mxk − s‖
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for all k. Based on this observation, we decided to accept the iterate produced by lines 6–7 of
Algorithm 1 if (4.6) is satisfied. Numerical experiments show the effectiveness of this choice.

5. Application: Multi-period portfolio selection. Portfolio selection is central to finan-
cial economics and is the building block of the capital asset pricing model. It aims at finding
an optimal allocation of capital among a set of assets by rational financial targets. For medium-
and long-time horizons, a multi-period investment policy is considered: the investors can
change the allocation of the wealth among the assets over time by the end of the investment,
taking into account the time evolution of available information. In a multi-period setting, the
investment period is partitioned into sub-periods, delimited by the rebalancing dates at which
decisions are taken. More precisely, if m is the number of sub-periods and tj = 1, . . . ,m+ 1
denote the rebalancing dates, then a decision taken at time tj is kept in the j-th sub-period
[tj , tj+1) of the investment. The optimal portfolio is defined by the vector

u = [u1; u2; . . . ; um],

where uj ∈ Rna is the portfolio of holdings at the beginning of period j and na is the number
of assets.

In a multi-period mean variance Markowitz framework, the optimal portfolio is obtained
by simultaneously minimizing the risk and maximizing the return of the investment. A
common strategy to estimate the parameters of the Markowitz model is to use historical data
as predictive of the future behavior of asset returns. This typically leads to ill-conditioned
numerical problems. Different regularization techniques have been suggested with the aim of
improving the problem conditioning. In the last years, `1 regularization techniques have been
considered to obtain sparse solutions in both the single and multi-period cases with the aim of
reducing costs [8, 15, 17]. Another useful interpretation of the `1 regularization is related to
the amount of shorting in the portfolio. From the financial point of view, negative solutions
correspond to short sales, which are generally transactions in which an investor sells borrowed
securities in anticipation of a price decline. A suitable tuning of the regularization parameter
permits short controlling in the solution [8].

We focus on the fused lasso portfolio selection model [16], where an additional `1 penalty
term for the variation is added to the classical `1 model in order to reduce the transaction costs.
Indeed, in the multi-period case, the sparsity of the solution reduces the holding costs, but
it does not guarantee low transaction costs if the pattern of nonzeros positions completely
changes across periods. The fused lasso term shrinks toward zero the differences of values
of the wealth allocated across the assets between two contiguous rebalancing dates, thus
encouraging smooth solutions that reduce transactions.

Let rj ∈ Rna and Cj ∈ Rna×na contain respectively the expected return vector and the
covariance matrix, assumed to be positive definite, estimated at time tj , j = 1, . . . ,m. The
fused lasso portfolio selection model reads:

min

m∑
j=1

〈uj , Cjuj〉+ τ1‖u‖1 + τ2

m−1∑
j=1

‖uj+1 − uj‖1

s.t.


〈u1, 1na〉 = ξini,

〈uj , 1na〉 = 〈1na + rj−1, uj−1〉 , j = 2, . . . ,m,

〈1na + rm, um〉 = ξfin,

(5.1)

where τ1, τ2 > 0, ξini is the initial wealth, ξfin is the target expected wealth resulting from
the overall investment. The first constraint is the budget constraint. The strategy is assumed to
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be self-financing as required by the constraints running from 2 to m, where it is established
that at the end of each period the wealth is given by the revaluation of the previous one. The
(m + 1)-st constraint defines the expected final wealth. Problem (5.1) can be equivalently
formulated as

min 〈u, Cu〉+ τ1||u||1 + τ2‖D u‖1
s.t. Au = b,

(5.2)

where C ∈ Rn×n, with n = m · na, is the symmetric positive definite block-diagonal matrix

C = diag(C1, C2, . . . , Cm),

D ∈ R(n−na)×n is the discrete difference matrix defined by

dij =


−1, if j = i,

1, if j = i+ na,

0, otherwise,

A ∈ R(m+1)×n can be regarded as an (m+1)×m lower block-bidiagonal matrix with blocks
of dimension 1× na, defined by

Aij =


1>na , i = j,

−(1na + ri−1)>, j = i+ 1,

0>na , otherwise,

and b = (ξini, 0, 0, ..., ξfin)> ∈ Rm+1.

5.1. Testing environment. The SBSA algorithm has been tested on three real data sets.
Two of them use a universe of investments compiled by Fama and French1. Specifically,
the FF48 data set contains monthly returns of 48 portfolios representing different industrial
sectors, and the FF100 data set includes monthly returns of 100 portfolios on the basis of
size and book-to-market ratio. Both data sets consist of data ranging from July 1926 to
December 2015. We consider a preprocessing procedure that eliminates the elements with
the highest volatilities, so that the number of portfolios in FF100 is reduced to 96. In our
experiments we use data during periods of 10, 20, and 30 years with annual rebalancing, i.e.,
we consider the periods July 2005–June 2015, July 1995–June 2015, and July 1985–June 2015.
The corresponding test problems are called FF48-10y, FF48-20y, FF48-30y and FF100-10y,
FF100-20y, FF100-30y, respectively. The third data set, denoted ES50, contains the daily
returns of stocks included in the EURO STOXX 50 Index—Europe’s leading blue-chip index
for the Eurozone. The index covers the 50 largest companies among the 19 supersectors in
terms of free-float market cap in 11 Eurozone countries. The data set contains daily returns for
each stock in the index from January 2008 to December 2013. For this test case we consider
both annual (m = 6 years) and quarterly (m = 22 quarters) rebalancing. The corresponding
test problems are referred to as ES50-A and ES50-Q, respectively.

Following [16], a rolling window for setting up the model parameters is considered. For
each data set, the length of the rolling windows is fixed in order to build positive definite
covariance matrices and ensure statistical significance. Different data sets require different

1Data are available from http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data_library.html#BookEquity
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lengths of the rolling windows. FF100 requires ten-year data; for FF48 five years are sufficient;
one-year data are used for ES50.

Our portfolio is compared with the benchmark one that is based on the strategy where the
total amount is equally divided among the assets at each rebalancing date. The portfolio built
by following this strategy is referred to as the multi-period naive portfolio, and it is commonly
used as a benchmark by investors because it is a simple rule that reduces the risk enough to
make a profit. We assume that the investor has one unit of wealth at the beginning of the
planning horizon, i.e., ξini = 1. In order to compare the optimal portfolio with the naive one,
we set the expected final wealth equal to that of the naive one, i.e., ξfin = ξnaive, where

ξnaive =
1

na

(
. . .

(
1

na

(
ξini
na
〈1na + r1, 1na〉

)
〈1na + r2, 1na〉

)
. . .

)
〈1na + rm, 1na〉.

Following [16], we consider some performance metrics that take into account the risk and
the cost of the portfolio. The next metric measures the risk reduction factor of the optimal
strategy with respect to the benchmark one:

(5.3) ratio =
〈unaive, C unaive〉
〈uopt, C uopt〉

,

where unaive and uopt are the naive portfolio and the optimal one, respectively.
Another metric gives the percentage of active positions in the portfolio, which is an

estimate of the holding costs:

(5.4) density =
card ({|[uj ]i| ≥ ε1, i = 1, ..., na, j = 1, ...,m}) · 100

n
%,

where card(S) denotes the cardinality of the set S. The threshold ε1 is aimed at avoiding too
small wealth allocations since they make no sense in financial terms. We note that the density
of the naive portfolio is densitynaive = 100%, so we have holding costs in each period for all
assets. Finally, we use a metric giving information about the total number of variations in the
weights across the periods, which are a measure of the transaction costs:

(5.5) T = trace(V >V ),

where V ∈ Rna×(m−1) with

(5.6) vij =

{
1, if |[uj ]i − [uj+1]i| ≥ ε2,
0, otherwise.

Note that (5.5) is a pessimistic estimate of the transaction costs because weights could also
change for the effect of revaluation. In order to provide more detailed information about the
investment, it is convenient to refer also to ||V ||1, which is the maximum number of variations
over the periods, and to ||V ||∞, which is the maximum number of variations over the assets.

The choice of the regularization parameters τ1 and τ2 in (5.1) plays a key role in obtaining
solutions that meet the financial requirements. Starting from the numerical results in [16],
we selected parameters in {10−4, 10−3, 10−2}, guaranteeing a good trade-off between the
performance metrics and the number of short positions for the problems FF48-20y, FF100-20y,
and ES50-Q. In more detail, we first set τ1 as the smallest value producing at most 4% of
short positions in the solution and then set τ2 as the value associated with the maximum ratio
as defined in (5.3). We set τ1 = τ2 = 10−2 for FF48-20y, τ1 = 10−3 and τ2 = 10−4 for
FF100-20y, and τ1 = 10−3 and τ2 = 10−4 for ES50-Q. For the tests with different horizon
times, we decided to keep the same parameter setting if it has provided reasonable portfolios.
However, since the values of the parameters corresponding to FF100-20y produced a number
of shorts greater than 4% for FF100-30y, we increased them as τ1 = 10−2 and τ2 = 10−3.
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5.2. Implementation details and numerical results. We developed a MATLAB imple-
mentation of Algorithm 1 specifically suited to take into account that problem (5.2) is quadratic.
The stopping criterion used for both the standard Bregman iterations and the accelerated ones
is based on the violation of the equality constraints, i.e., the execution is halted when∥∥Auk − b

∥∥ ≤ tolB , and
∥∥Duk − dk

∥∥ ≤ tolB ,
with tolB = 10−4, which guarantees a sufficient high accuracy in financial terms. A maximum
number of Bregman iterations, equal to 10000, is also set. The parameter λ, penalizing the
linear constraint violation in (3.7), is set to 1.

The inner minimization in the standard Bregman iterations, i.e., for the `1-regularized
problems at lines 2, 9, and 12 of Algorithm 1, is performed by means of the FISTA algorithm
from the FOM package.2 We recall that Theorem 3.1 requires the error in the solution of
the subproblems to satisfy hypothesis (i). This condition cannot be used in practice not
only because the solution to the subproblem in (i) is unknown, but also because the required
tolerance becomes too small after a few steps. However, as noted in [22, 33], the criterion can
be replaced by more practical ones. We decided to stop the minimization when∥∥zl+1 − zl

∥∥ ≤ tolF ,
where zl is the l-th FISTA iterate and tolF is a fixed tolerance. In our tests we set tolF = 10−5

for FF48 and FF100, while for ES50 it is necessary to set tolF = 10−6 to ensure convergence
of SB within the maximum number of outer iterations. The maximum number of FISTA
iterations is set to 5000.

Regarding the subspace acceleration steps (line 6 of Algorithm 1), since they can be easily
reformulated as unconstrained quadratic optimization problems, we use the conjugate gradient
(CG) method. In this case the minimization is stopped when∥∥ρl∥∥ ≤ ∥∥ρ0

∥∥ tolCG,
where ρl denotes the residual at the l-th CG iteration and tolCG is a fixed tolerance. In the
tests we set tolCG = 10−2; we also choose a maximum number of CG steps equal to half
the size of the subproblem to be solved. In the condition for sufficient decrease (4.5), we set
η = 10−1.

Concerning criterion (4.3) for switching between the standard Bregman iterations and the
subspace acceleration steps, we observed that small values of γ tend to penalize the execution
of the acceleration steps leading to no improvement in the performance of the algorithm. Thus,
in order to favor the use of subspace acceleration steps, we decided to initialize the parameter
γ equal to 10 and to update it during the algorithm with an automatic adaptation strategy
similar to that used in [18]. In particular, the value of γ is reduced by a factor 0.9 when (4.3)
holds, i.e., when subspace acceleration steps are performed, and is increased by a factor 1.1
otherwise. To warmstart the algorithm, we perform 5 standard Bregman iterations before
allowing the acceleration.

As regards the safeguard at lines 8–10 of Algorithm 1, by numerical experiments we
found that if ‖Mxk+1 − s‖ > ‖Mxk − s‖, then it is generally convenient to accept xk+1,
compute sk+1 according to line 4, and solve the subproblem involving Hk+1 by FISTA.

In order to assess the performance of SBSA, we compare it with two state-of-the-art
methods for the solution of problem (1.1):

• The split Bregman iteration in [26, Section 3], which we denote SB;
• The accelerated ADMM algorithm proposed in [11], called AL_SOP.

2https://sites.google.com/site/fomsolver/
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TABLE 5.1
Execution times (seconds) and outer iterations of the four algorithms. “—” indicates that the algorithm does

not satisfy the stopping criterion within the maximum number of iterations.

SBSA SBSA-LSA SB AL_SOP
Problem time outit time outit time outit time outit
FF48-10y 2.61 7 2.61 7 9.38 156 2.31 2235
FF48-20y 6.06 11 6.06 11 9.29 53 10.16 4353
FF48-30y 9.12 14 9.12 14 93.30 693 38.47 8889
FF100-10y 6.63 13 6.63 13 35.81 121 4.52 1502
FF100-20y 17.16 10 17.31 11 19.87 19 19.07 2385
FF100-30y 42.10 9 42.10 9 46.08 21 — —
ES50-Q 30.80 209 30.96 210 59.59 195 8.06 2743
ES50-A 5.05 304 5.05 305 14.87 269 0.87 1377

We note that the SB algorithm is equal to the SBSA algorithm without subspace acceleration.
For SB we made the same choices as for SBSA for the solution of the `1-regularized subprob-
lems with FISTA and the stopping criteria, to make the effect of the acceleration steps clearer.
Regarding AL_SOP we observe that, by introducing suitable auxiliary variables, problem (5.2)
can be equivalently written as

min 〈u, Cu〉+ τ1 ‖v‖1 + τ2 ‖d‖1

s.t.


Au = b,

u− v = 0,

D u− d = 0.

(5.7)

Given yk = [uk;vk;dk], the (k + 1)-st iteration of the ADMM scheme applied to prob-
lem (5.7) consists of the minimization of a quadratic function to determine uk+1 and the
application of two soft-thresholding operators to determine vk+1 and dk+1. By adapting
the strategy proposed in [11], we introduce at the end of each iteration an acceleration step
over the subspace spanned by yk+1 − yk. The choice of the subspace and the parameter
ε in the acceleration step was made by following the choice in [11, Section 4]. In order to
make a fair comparison between SBSA and AL_SOP, we decided to use in AL_SOP the same
stopping criterion as in SBSA with the additional requirement

∥∥uk − vk
∥∥ ≤ tolB . Moreover,

at each iteration the solution of the quadratic programming problem for computing uk+1 was
performed by CG with the same stopping criterion used for the subproblems in SBSA. The
maximum number of outer iterations for AL_SOP was set to 25000.

Finally, we also carried out a comparison with a version of SBSA where the last iterate was
forced to be a subspace acceleration. In the following, this strategy is denoted as SBSA-LSA
(LSA: Last Step is an Acceleration).

All the tests were performed with MATLAB R2018b on a 2.5 GHz Intel Core i7-6500U
with 12 GB RAM, 4 MB L3 Cache, and a Windows 10 Pro (ver. 1909) operating system.

The results of the tests are summarized in Tables 5.1 and 5.2. In Table 5.1 we report,
for each problem and each of the four algorithms, the number of outer iterations and the
execution time in seconds. The number of outer iterations shows that SBSA-LSA performed a
further (final) subspace acceleration step only for the three problems FF100-20y, ES50-Q, and
ES50-A, without a practical increase of the execution time. We see that the SBSA versions of
the split Bregman algorithm are able to outperform SB for all the test problems. The reduction
of the total time obtained with SBSA and SBSA-LSA varies between 9% for FF100-30y and
90% for FF48-30y. We note that the cost per iteration of AL_SOP is far smaller than the one
of the other algorithms. However, the proposed accelerated method outperforms AL_SOP in
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TABLE 5.2
Comparison among the portfolios computed by the four considered algorithms. The values in brackets corre-

spond to solutions without thresholding. Tnaive denotes the transaction costs for the naive solution.

Problem ratio density # shorts T ‖V ‖1 ‖V ‖∞ Tnaive

SBSA
FF48-10y 2.32 15% [19.2%] 0 [0] 30 [104] 6 [10] 8 [11] 480
FF48-20y 2.28 12.6% [14.4%] 0 [0] 55 [148] 11 [20] 7 [8] 960
FF48-30y 4.64 16.3% [17.6%] 29 [29] 109 [274] 14 [30] 15 [16] 1440
FF100-10y 2.94 10.5% [10.5%] 18 [18] 82 [110] 7 [10] 14 [15] 960
FF100-20y 9.08 14.1% [15.7%] 81 [82] 217 [351] 16 [17] 34 [37] 1920
FF100-30y 7.07 7.2% [8.3%] 51 [51] 174 [279] 16 [20] 18 [21] 2880
ES50-Q 2.48 17.9% [29.8%] 0 [0] 45 [380] 10 [22] 9 [32] 1100
ES50-A 2.25 18.3% [32.3%] 0 [0] 17 [114] 3 [6] 10 [27] 300

SBSA-LSA
FF48-10y 2.32 15% [19.2%] 0 [0] 30 [104] 6 [10] 8 [20]
FF48-20y 2.28 12.6% [14.4%] 0 [0] 55 [148] 11 [20] 7 [11]
FF48-30y 4.64 16.3% [17.6%] 29 [29] 109 [274] 14 [30] 15 [16]
FF100-10y 2.94 10.5% [10.5%] 18 [18] 82 [110] 7 [10] 14 [15]
FF100-20y 9.08 14.1% [15.7%] 81 [82] 217 [349] 16 [17] 34 [37]
FF100-30y 7.07 7.2% [8.3%] 51 [51] 174 [279] 16 [20] 18 [21]
ES50-Q 2.48 17.5% [26.6%] 0 [0] 47 [332] 10 [22] 9 [26]
ES50-A 2.25 18.3% [28.7%] 0 [0] 17 [104] 3 [6] 10 [25]

SB
FF48-10y 2.32 15% [17.5%] 0 [0] 30 [93] 6 [10] 8 [16]
FF48-20y 2.28 12.6% [14.9%] 0 [0] 55 [165] 11 [20] 7 [17]
FF48-30y 4.64 16.3% [18.0%] 29 [41] 109 [286] 14 [30] 15 [24]
FF100-10y 2.94 10.5% [10.6%] 18 [18] 82 [112] 7 [10] 14 [15]
FF100-20y 9.08 14.1% [15.7%] 81 [89] 217 [339] 16 [18] 34 [40]
FF100-30y 7.07 7.2% [8.8%] 51 [51] 175 [312] 16 [20] 18 [33]
ES50-Q 2.48 15.5% [28.3%] 0 [0] 48 [355] 11 [22] 10 [26]
ES50-A 2.27 18.3% [33.3%] 0 [0] 16 [105] 3 [6] 10 [27]

AL_SOP
FF48-10y 2.32 15% [100%] 0 [194] 31 [480] 7 [10] 8 [48]
FF48-20y 2.28 12.6% [100%] 0 [420] 55 [960] 11 [20] 7 [48]
FF48-30y 4.64 16.4% [100%] 29 [699] 113 [1440] 14 [30] 15 [48]
FF100-10y 2.91 12.9% [100%] 18 [488] 107 [960] 9 [10] 17 [96]
FF100-20y 8.95 17.8% [100%] 89 [560] 307 [1920] 17 [20] 45 [96]
FF100-30y 7.07 7.8% [100%] 59 [1465] 201 [2880] 18 [30] 18 [96]
ES50-Q 0.85 100% [100%] 0 [ 0] 698 [1100] 18 [22] 50 [50]
ES50-A 2.00 45.3% [100%] 0 [124] 35 [300] 3 [6] 21 [50]

terms of time for the problems FF48-20y, FF48-30y, FF100-20y, and FF100-30y. In particular,
for FF100-30y, AL_SOP does not converge in 25000 iterations, corresponding to more that
360 seconds. AL_SOP requires about the same execution time as SBSA for FF48-10y, while
it is much faster for ES50-Q and ES50-A. However, as we will see later, the quality of the
solutions of the ES50 problems computed by AL_SOP is worse.

In Table 5.2 we report the values of the quality metrics described in Section 5.1 for
the portfolios obtained by using the four algorithms. These metrics are computed before
and after thresholding the solution with ε1 = ε2 = 10−4 (see (5.4) and (5.6)). The values
before thresholding are given in brackets. For each algorithm we report a single value for the
ratio since it is not practically affected by thresholding (we obtained the same results up to
the fourth or fifth significant digit). The table shows that the portfolios produced by SBSA,
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SBSA-LSA, and SB are equivalent in financial terms since the corresponding thresholded
solutions produce the same ratios, numbers of short positions, densities, and transaction costs.
The densities, transaction costs, and numbers of shorts obtained before thresholding give
further information about the quality of the optimal solution found by the algorithms. The
additional subspace acceleration step performed by SBSA-LSA for the ESQ50 problems
allows us to obtain solutions with slightly smaller densities and smaller transaction costs.
Inspection of the non-thresholded solutions of SBSA-LSA and SB shows that in general our
subspace-accelerated algorithm is able to compute solutions comparable with those of SB
in terms of the objective function values. On the other hand, the non-thresholded solutions
obtained by SBSA-LSA may have slightly smaller densities or transaction costs. By looking
at the thresholded solutions obtained with AL_SOP, we observe that for the FF100 problems
they produce portfolios with slightly poorer qualities since they have slightly higher densities,
shorts, and transaction costs. Regarding the ES50 problems, for which AL_SOP outperformed
SBSA and SBSA-LSA in terms of time, we see that the portfolio computed for ES50-A has
a smaller ratio and a much greater density and transaction cost as compared with the other
methods, while almost all the metrics concerning the portfolio produced for ES50-Q are worse
than those obtained with the other algorithms. In particular, for ES50-Q, the ratio is smaller
than 1, and hence the computed portfolio it is not able to satisfy the financial requirements.

In our opinion, the results suggest that the proposed split Bregman method with subspace
acceleration is not only efficient in terms of computational cost, but is also better than the
SB and AL_SOP methods in enforcing structured sparsity in the solution, especially when
no thresholding is applied. This behavior seems to depend on the backtracking projected line
search performed at each acceleration step, which allows us to set variables exactly to zero.

6. Conclusions. A Split Bregman method with Subspace Acceleration (SBSA) has been
proposed for sparse data recovery with joint `1-type regularizers. The acceleration technique,
inspired by orthant-based methods, consists of replacing `1-regularized subproblems at certain
iterations with smooth unconstrained optimization problems over orthant faces identified by
zero variables. These smooth problems can be solved by fast methods. Suitable optimality
measures are used to decide whether to perform subspace acceleration. Numerical experiments
show that SBSA is effective in solving multi-period portfolio optimization problems and
outperforms the split Bregman method and the accelerated ADMM algorithm proposed in [11]
in terms of computational time and quality of the solution.

Future work will focus on the solution of problems where the function f in (1.1) is not
quadratic such as those arising in some classification tasks for fMRI data [19].
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