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ASYMPTOTIC INVERSION OF THE BINOMIAL AND NEGATIVE BINOMIAL
CUMULATIVE DISTRIBUTION FUNCTIONS∗

A. GIL†, J. SEGURA‡, AND N. M. TEMME§

Abstract. The computation and inversion of the binomial and negative binomial cumulative distribution functions
play a key role in many applications. In this paper, we explain how methods used for the central beta distribution
function (described in Gil, Segura, and Temme, [Numer. Algorithms, 74 (2017), pp. 77–91]) can be utilized to obtain
asymptotic representations of these functions and also for their inversion. The performance of the asymptotic inversion
methods is illustrated with numerical examples.

Key words. binomial cumulative distribution function, negative binomial cumulative distribution function,
asymptotic representation, asymptotic inversion methods

AMS subject classifications. 33B20, 41A60

1. Introduction. The binomial and negative binomial distribution functions are used
in many areas of science and engineering. In particular, the generation of random binomial
variables plays a key role in simulation algorithms such as, for example, the stochastic spatial
modeling of chemical reactions [4]. On the other hand, the negative binomial distribution is,
for example, widely used in genomic research to model gene expression data arising from
RNA-sequences; see, for example, [3, 5].

The binomial cumulative distribution function is defined by

(1.1) P (n, p, x) =

x∑
k=0

(
n

k

)
pk(1− p)n−k, 0 ≤ p ≤ 1,

with x and n positive integers, x ≤ n. The complementary function is

Q(n, p, x) =

n∑
k=x+1

(
n

k

)
pk(1− p)n−k = 1− P (n, p, x).

The negative binomial cumulative distribution function (also called Pascal distribution) is
given by

PNB(r, p, x) =

x∑
k=0

(
k + r − 1

r − 1

)
pr(1− p)k, 0 ≤ p ≤ 1,

with x and r positive integers. The complementary function, denoted byQNB(r, p, x), satisfies
QNB(r, p, x) = 1− PNB(r, p, x). The definition of the negative binomial distribution can
be extended to the case where the parameter r takes positive real values. In this case, the
distribution is called Pólya distribution.

These functions are particular cases of the cumulative central beta distribution. This
distribution function (also known as the incomplete beta function) is defined by

(1.2) Iy(a, b) =
1

B(a, b)

∫ y

0

ta−1(1− t)b−1 dt,
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where we assume that a and b are real positive parameters and 0 ≤ y ≤ 1. B(a, b) is the Beta
function

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

The relation between the binomial and the central beta distribution functions is the following:

(1.3) P (n, p, x) = I1−p(n− x, x+ 1), Q(n, p, x) = Ip(x+ 1, n− x).

In order to avoid a loss of significant digits by cancellation, it is always convenient to
compute the smallest of the two functions (P (n, p, x) or Q(n, p, x)). For this, one can use the
transition point for the function Ix(p, q), which is given by xt ≈ p/(p + q). In the case of
the binomial distribution, we will have pt ≈ (x+ 1)/(n+ 1). Then, if p > pt (p < pt) it is
preferable to evaluate P (n, p, x) (Q(n, p, x)).

For the negative binomial, we have

(1.4) PNB(r, p, x) = Ip(r, x+ 1), QNB(r, p, x) = I1−p(x+ 1, r).

In this case, the transition point will be given by pt ≈ r/(r + x+ 1). When p < pt (p > pt)
it is convenient to evaluate P (n, p, x) (Q(n, p, x)).

In this paper, we explain that the methods used for the central beta distribution function
(described in [2]) can be applied to obtain asymptotic representations of the binomial and
negative binomial cumulative distribution functions and also for inverting these functions.

The inversion problem is, however, now slightly different: In [2] we considered the
problem of finding y from the equation Iy(a, b) = α. In the present case, the problem
of inverting the binomial cumulative distribution function can be stated as follows: Given
α ∈ (0, 1], p ∈ (0, 1), and n (in the asymptotic problem a large positive integer), find the
smallest positive integer x such that

(1.5) α ≤ P (n, p, x) =

x∑
k=0

(
n

k

)
pk(1− p)n−k .

When we assume x ∈ [1, n], we cannot take α smaller than the sum of the first two terms of
the sum at the right-hand side. However, the sum of these two terms becomes very small when
n is large.

In the definitions of the finite sum in (1.1) and the subsequent equations, x should be an
integer, but in the representations in (1.3) and (1.4), x may be real. In the inversion procedure
we first assume that x is a real parameter and later round x to the smallest integer larger than x.

We give in detail the results for the binomial cumulative distribution function, and in the
final section we will redefine some parameters to obtain the results for the negative binomial
cumulative distribution function.

2. Results for the binomial distribution function. In Appendix A, we summarize
earlier results for the incomplete beta function. We use them for the present case, where we
need to change some notation. With the notation

ν = n+ 1, ξ =
x+ 1

ν
, 1− ξ =

n− x
ν

,

and from (1.4) and (A.8) (with a = x+ 1 and b = n− x), it follows that the representation
of both binomial distributions P (n, p, x) and Q(n, p, x) in terms of the complementary error
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function is

(2.1)
P (n, p, x) = I1−p(n− x, x+ 1) = 1

2erfc
(

+η
√
ν/2
)

+Rν(η),

Q(n, p, x) = Ip(x+ 1, n− x) = 1
2erfc

(
−η
√
ν/2
)
−Rν(η),

where the function Rν(η) has the asymptotic expansion given in (A.9). The expansion can be
obtained by using a recursive scheme given in (A.10) in terms of a function f(η) that arises
when a change of the variable of integration is used; see (A.1), (A.2), with the final result
in (A.4). In the present case we use

(2.2) f(ζ) =
λζ

t− ξ
, f(η) =

λη

p− ξ
, λ =

√
ξ(1− ξ),

where ζ is defined in (A.2) (t is a variable of integration in (A.1)), and the definition of η
becomes

(2.3) − 1
2η

2 = ξ log
p

ξ
+ (1− ξ) log

1− p
1− ξ

, sign(η) = sign(p− ξ).

REMARK 2.1. The choice of the sign follows from the change of variables in Appendix A.
We know that when p ↓ 0, the binomial distributions approach the values P (n, p, x) → 1,
Q(n, p, x) → 0. From equation (2.3) we see that the corresponding η in the complemen-
tary error function tends to infinity when p ↓ 0, and when we take η → −∞, we have
1
2erfc(η

√
ν/2)→ 1, which is the wanted limit for P (n, p, x). We see that this corresponds to

the choice sign(η) = sign(p− ξ). The result for p→ 1 follows similarly, in which case we
need positive values of η.

Other representations that follow from (2.1) and (A.4) are

(2.4)
Q(n, p, x) =

Fν(η)

Fν(∞)
, Fν(η) =

√
ν

2π

∫ η

−∞
e−

1
2νζ

2

f(ζ) dζ,

P (n, p, x) =
Gν(η)

Fν(∞)
, Gν(η) =

√
ν

2π

∫ ∞
η

e−
1
2νζ

2

f(ζ) dζ,

where f(ζ) is given in (2.2).
Here and in the representation of the incomplete beta function in (A.4), a function Fν(∞)

occurs, which is defined in (A.5). It has the large-ν asymptotic expansion stated in (A.5). The
first coefficients are given in (A.6).

2.1. Some expansions. An expansion of η in (2.3) in terms of powers of q = (p− ξ)/λ2
with λ =

√
ξ(1− ξ) reads

η = qλ
(
1− 1

3 (1− 2ξ)q + 1
36

(
7− 19ξ + 19ξ2

)
q2 +O

(
q3
))
.

The limiting values (for fixed ξ ∈ (0, 1)) are

(2.5) lim
p↓0

η = −∞, lim
p↑1

η = +∞.

We can also consider η as a function of ξ. The limiting values (for fixed p ∈ (0, 1)) are

(2.6) lim
ξ↓0

η =
√
−2 log(1− p), lim

ξ↑1
η = −

√
−2 log p.
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FIG. 2.1. Left: the function η defined in (2.3) as a function of ξ ∈ (0, 1) for two values of p: p = 1/3 (lower
curve) and p = 2/3 (upper curve). The function η has a zero at ξ = p. Right: the function η defined in (2.3) as a
function of p ∈ (0, 1) for two values of ξ: ξ = 1/3 (upper curve) and ξ = 2/3 (lower curve). The function η has a
zero at p = ξ.

At the left-hand side of Figure 2.1 we display two curves of η as a function of ξ for two
values of p: p = 1/3 (upper curve) and p = 2/3 (lower curve). The function η has a zero
at ξ = p. At ξ = 0 and ξ = 1, the values of η follow from (2.6). At the right-hand side of
Figure 2.1 we give a similar illustration of η as a function of p for two values of ξ: ξ = 1/3
(lower curve) and ξ = 2/3 (upper curve). The function η has a zero at p = ξ. At p = 0 and
p = 1, we have η → ±∞; see (2.5).

For the inversion procedure it is convenient to state the expansion of ξ in terms of powers
of η:

(2.7) ξ = p− p(1− p)
∞∑
k=1

akη̃
k, η̃ =

η√
p(1− p)

.

The first coefficients are

a1 = 1, a2 = 1
6 (2p− 1), a3 = 1

72 (2p2 − 2p− 1),

a4 = − 1
540 (2p3 − 3p2 − 3p+ 2), a5 = 1

17280 (4p4 − 8p3 − 48p2 + 52p− 23).

We also have

p = ξ + λ2
∞∑
k=1

bkη̂
k, η̂ =

η

λ
, λ =

√
ξ(1− ξ),

with the first coefficients

b1 = 1, b2 = 1
3 (1− 2ξ), b3 = 1

36 (13ξ2 − 13ξ + 1),

b4 = − 1
270 (2ξ − 1)(23ξ2 − 23ξ − 1),

b5 = 1
4320 (313ξ4 − 626ξ3 + 339ξ2 − 26ξ + 1).

With these coefficients we can find the coefficients of the expansion

f(η) =
λη

p− ξ
=

∞∑
k=0

ckη̂
k,
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and the first coefficients are

c0 = 1, c1 = 1
3 (2ξ − 1), c2 = 1

12 (ξ2 − ξ + 1),

c3 = − 1
135 (2ξ − 1)(ξ − 2)(ξ + 1), c4 = 1

864 (ξ2 − ξ + 1)2.

3. Inverting the binomial distribution function using the error function. We con-
sider the inversion as described in (1.5), assuming that ν = n+ 1 is a large parameter. The
inversion procedure is based on finding η from the equation (see (2.1))

(3.1) 1
2erfc

(
η
√
ν/2
)

+Rν(η) = α, α ∈ (0, 1),

and with η fixed, we compute ξ, and then x = νξ − 1 (rounded to an integer). We consider p
and n as fixed given quantities.

The starting point for the inversion is to consider the error function in (3.1) as the main
term in the representation. We compute η0, the solution of the reduced equation

(3.2) 1
2erfc

(
η0
√
ν/2
)

= α.

A simple and efficient algorithm for computing the inverse of the complementary error function
is included, for example, in the package described in [1]. Using this η = η0 in (2.3), we
compute ξ, either by using the series expansion in (2.7) or a numerical iteration procedure.

REMARK 3.1. When α or 1 − α is very small, the value of |η0| may be very large,
although a large value of ν may control this. Referring to the limits shown in (2.6) for a given
p, we observe that if the value of η0 satisfies η0 < −

√
−2 log(1− p) or η0 >

√
−2 log p,

then a corresponding value of ξ ∈ (0, 1) cannot be found.
Next we try to find a better approximation of η and assume that we have an expansion of

the form

(3.3) η ∼ η0 +
η1
ν
.

We can find the coefficient η1 by using a perturbation method. We have from (3.2)

(3.4)
dα

dη0
= −

√
ν

2π
e−

1
2νη

2
0 .

To proceed, we consider P (n, p, x) = I1−p(n − x, x + 1) = α and use the representation
in (2.4). This yields

(3.5)
dα

dη
= − 1

Fν(∞)

√
ν

2π
e−

1
2νη

2

f(η),

with f(η) given in (2.2) and η given in (3.3). We obtain from (3.4) and (3.5) that

f(η)
dη

dη0
= Fν(∞)e

1
2ν(η

2−η20).

The coefficient η1 in (3.3) depends on η0, and we can substitute this approximation,
compare equal powers of ν, and find η1. It follows that

(3.6) η1 =
1

η0
log f(η0).
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This quantity is defined for η0 → 0 because of the expansion in (A.7).
For small values of η0 (that is, when ξ ∼ p, see (2.3)), we need an expansion of η1 in

terms of powers of η0. We have

η1 = −1− 2ξ

3λ
− 5ξ2 − 5ξ − 1

36λ2
η0 +

(2ξ − 1)(23ξ2 − 23ξ − 1)

1620λ3
η20

− 31ξ4 − 62ξ3 + 33ξ2 − 2ξ + 7

6480λ4
η30 + · · · , where λ =

√
ξ(1− ξ).

REMARK 3.2. The asymptotic estimates in this section are uniformly valid for values
ξ ∈ [δ, 1− δ], where δ is a small fixed positive number. This corresponds to the result of the
expansion of the incomplete beta function; see (A.9).

3.1. The algorithmic steps of the inversion procedure. In the following steps, the
algorithm for inverting the binomial distribution using the error function is summarized.

1. First obtain a value for η (η0) from (3.2).
2. With this value η0, obtain a first approximation ξ0 of ξ by solving equation (2.3)

either by a numerical iterative procedure or, when η0 is small, by using the expansion
in (2.7).

3. Evaluate η1 by using (3.6), where f(η0) = η0
√
ξ0(1− ξ0)/(p− ξ0); see (2.2).

4. Next compute η = η0 + η1/ν.
5. With this new value of η, obtain a further approximation of ξ by solving equation (2.3)

either by a numerical iterative procedure or, when η is small, by using the expansion
in (2.7).

6. Compute x = ξν − 1, and round it to the nearest larger integer; this gives the final x.

4. Numerical examples. As a first example to find x from α ≤ P (n, p, x), we take
n = 50, p = 0.4, and α = 0.51. With ν = 51, we compute η0

.
= −0.0035103 by

using (3.2). This gives ξ .
= 0.40172 by (2.7) and η1

.
= −0.13454 by (3.6). Then η ∼ η0 +

η1/ν
.
= −0.0061484. The new value of ξ follows from (2.7), ξ .

= 0.40301. This gives
x
.
= 19.554 and I1−p(n−x, x+ 1)

.
= 0.510043. Comparing this with α = 0.51, the absolute

error is 0.000043. The computations are done in Maple with the setting Digits = 16. The
integer value of x is 20.

When we take the same values of α and p, and n = 1500, we find x .
= 599.94236, with

P (n, p, x)
.
= 0.51000026659, yielding an absolute error of 2.6 × 10−7. Rounding x to the

nearest integers we find P (n, p, 599)
.
= 0.490189 and P (n, p, 600)

.
= 0.511212.

A more extensive test of the performance of the expansion is provided in Figure 4.1.
In the plots we show the relative errors when the approximation (3.3) has been considered
in the inversion process for p ∈ (0, 1) and with two different values of α (α = 0.35, 0.85)
and n (n = 100, 1000). As expected, a higher accuracy is obtained for the larger of the two
n-values.

The efficiency of the computation also improves as n increases. This is not always the
case in other existing algorithms for the inversion of the binomial distribution: for example,
the CPU time in the computation of 0.96 ≤ P (n, 0.5, x) for n = 10000 using the Matlab
function binoinv is approximately 100 times higher than the same computation for n = 100.
On the other hand, the algorithm implemented in R (the function qbinom) for the inversion of
the binomial distribution seems to be much more efficient than the Matlab function (according
to our tests, the difference in CPU times is only a factor 2 when computing with n = 100 and
n = 10000), but, as before, there is no improvement in the efficiency of the computation as n
increases.
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FIG. 4.1. Inversion of the binomial distribution: performance of the expansion (3.3) for p ∈ (0, 1) and two
different values of α and n.

5. Results for the negative binomial distribution function. We recall the relations for
the negative binomial distribution function

PNB(r, p, x) =

x∑
k=0

(
k + r − 1

r − 1

)
pr(1− p)k = Ip(r, x+ 1), 0 ≤ p ≤ 1.

Comparing this with the representation of P (n, p, x) in (1.3), we see that we can redefine the
parameters: we change p into 1− p, and write

ν = r + x+ 1, ξ =
r

ν
, 1− ξ =

x+ 1

ν
.

The representation of the two negative binomial distributions in terms of the complementary
error function is as in (2.1):

PNB(r, p, x) = Ip(r, x+ 1) = 1
2erfc

(
−η
√
ν/2
)
−Rν(η),

QNB(r, p, x) = I1−p(x+ 1, r) = 1
2erfc

(
+η
√
ν/2
)

+Rν(η),
(5.1)

where

(5.2) − 1
2η

2 = ξ log
p

ξ
+ (1− ξ) log

1− p
1− ξ

, sign(η) = sign(p− ξ).

In the analysis of P (n, p, x), the functionRν(η) has not been used, and we refer to Appendix A
to see its role in the asymptotic expansion of the incomplete beta function Ix(a, b). The
asymptotic expansion of PNB(r, p, x) for large ν follows from the expansion of the incomplete
beta function Ip(r, x+ 1).

6. Inverting the negative binomial distribution function using the error function.
We consider the inversion problem in the form: with a given positive integer r, p ∈ (0, 1), and
α ∈ (0, 1), find the smallest integer x such that

α ≤ PNB(r, p, x).

In particular, we assume that r is large.
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We use the representation in (5.1) and start with solving the equation

(6.1) 1
2erfc

(
−η
√
ν/2
)

= α.

Because the sought value of x is also part of ν, we have to modify the analysis for P (n, p, x).
We write the solution in the form

(6.2) −η
√
ν/2 = z, z = inverse erfc(2α), η = −z

√
2/ν = −z

√
2ξ/r,

because ν = r/ξ. To find the corresponding ξ from equation (5.2), we write this equation in
the form

(6.3) ψ(ξ) = − 1
2ρ

2, ρ = −z
√

2/r = η/
√
ξ,

where

(6.4) ψ(ξ) = − 1

2ξ
η2 =

1− ξ
ξ

log
1− p
1− ξ

+ log
p

ξ
,

d

dξ
ψ(ξ) = − 1

ξ2
log

1− p
1− ξ

.

The solution ξ of the equation ψ(ξ) = − 1
2ρ

2 should satisfy sign(p− ξ) = sign(η).
The limiting values of the function ψ(ξ) are

lim
ξ↓0

ψ(ξ) = −∞, lim
ξ↑1

ψ(ξ) = log p,

and for η we have

lim
ξ↓0

η =
√
−2 log(1− p), lim

ξ↑1
η = −

√
−2 log p.

So, when α < 1
2 , that is, the solution should satisfy p < ξ, we can always find a solution

of the equation ψ(ξ) = − 1
2ρ

2 for ξ ∈ (0, p). When 1
2 < α < 1, there is a solution for

ξ ∈ (p, 1) when log p < − 1
2ρ

2. For large values of r this may be satisfied, but if not, then
we cannot use the error function equation in (6.1) to find a value of ξ. For p → 1, we have
PNB(r, p, x)→ 1, and the interval (log p, 0) becomes very small.

For small values of ρ, the solution of the equation in (6.3) can be expanded in the form

(6.5) ξ = p− p(1− p)
∞∑
k=1

rkρ̃
k, ρ̃ =

ρ√
1− p

,

and the first coefficients are

r1 = 1, r2 = 1
6 (5p− 4), r3 = 1

72

(
47p2 − 74p+ 26

)
,

r4 = 1
540

(
268p3 − 627p2 + 453p− 92

)
,

r5 = 1
17280

(
6409p4 − 19868p3 + 21792p2 − 9608p+ 1252

)
.

We also have

p = ξ + ξ(1− ξ)
∞∑
k=1

skρ̂
k, ρ̂ =

ρ√
1− ξ

,

and the first coefficients are

s1 = 1, s2 = 1
3 (1− 2ξ), s3 = 1

36 (13ξ2 − 13ξ + 1),

s4 = 1
270 (1− 2ξ)(23ξ2 − 23ξ + 1),

s5 = 1
4320 (313ξ4 − 626ξ3 + 339ξ2 − 26ξ + 1).

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

278 A. GIL, J. SEGURA, AND N. M. TEMME

FIG. 6.1. Inversion of the negative binomial distribution: performance of the expansion (3.3) for p ∈ (0, 1)
and two different values of α and r.

The inversion method proceeds as in the case for P (n, p, x) with minor modifications.
1. Compute z and ρ from (6.2) and (6.3).
2. Compute ξ from (6.4) by solving ψ(ξ) = − 1

2ρ
2 by iteration or by using the expan-

sion (6.5) when ξ is small. Call this first approximation ξ0 and x0 = r/ξ0 − r − 1.
3. The corresponding η0 follows from equation (6.3): η0 = ρ

√
ξ0.

4. Compute

(6.6) η1 =
1

η0
log f(η0), f(η) =

η
√
ξ0(1− ξ0)

p− ξ0
.

5. Compute η = η0 + η1/ν with ν = r + x0 + 1.
6. The new value ξ follows from the expansion given in (6.5) when ξ is small (or by

solving ψ(ξ) = − 1
2ρ

2 by iteration), with ρ = η/
√
ξ0.

7. Finally, x = r/ξ − r − 1, rounded to the integer just larger than this value.
As an example to find the smallest integer x from α ≤ PNB(r, p, x), we take r = 50,

p = 0.4, and α = 0.51. The value z of (6.2) is z .
= −0.0177264 and ρ .

= 0.00354528.
Using (6.5) we obtain ξ0

.
= 0.398903. Then (see (6.3)) η0 = ρ

√
ξ0

.
= 0.00223916 and (6.6)

gives η1
.
= −0.137068, with x0 = r/ξ0 − r − 1

.
= 74.34369 and ν

.
= 125.344. The

approximation of η = η0 + η1/ν becomes η .
= 0.001145617 and ρ = η/

√
ξ0

.
= 0.00181387.

The corresponding ξ follows from the expansion in (6.5), which gives ξ .
= 0.399438, and

finally x = r/ξ − r − 1
.
= 74.1757. When we compute PNB(r, p, x) with these values, we

obtain PNB(r, p, x)
.
= 0.509992. Comparing this with α, we observe an absolute error of

0.79× 10−5. The computations are done by Maple with the setting Digits = 16.
When we take the same values of α and p, and r = 1500, we find x .

= 2250.71 with
PNB(r, p, x)

.
= 0.50999995, yielding an absolute error of 0.48× 10−7.

A more detailed example of the performance of the asymptotic inversion of the negative
binomial distribution is provided in Figure 6.1. In the plots we display the relative errors
(obtained by comparing to the values of the incomplete beta function Ip(r, x + 1)) when
the approximation in (3.3) has been used in the inversion process. The results obtained for
p ∈ (0, 1) and two different values of α (α = 0.35, 0.85) and r (r = 100, 1000) are shown
for comparison. The expansion (6.5) has been considered in all cases to obtain the value ξ0.
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Appendix A. Summary of the asymptotic results for the incomplete beta function.
We collect results from [2, 7], [8, Section 38.4], with a slightly different notation. We write

ν = a+ b, ξ =
a

ν
, b = ν(1− ξ).

Then (1.2) can be written as

(A.1) Ix(a, b) =
1

B(a, b)

∫ x

0

eν(ξ log t+(1−ξ) log(1−t)) dt

t(1− t)
.

We consider ν a large parameter and ξ bounded away from 0 and 1. The maximum of the
exponential function occurs at t = ξ. We use the transformation

(A.2) − 1
2ζ

2 = ξ log
t

ξ
+ (1− ξ) log

1− t
1− ξ

,

where the sign of ζ equals the sign of t− ξ. The same transformation holds for x 7→ η if t and
ζ are replaced by x and η, respectively. That is,

(A.3) − 1
2η

2 = ξ log
x

ξ
+ (1− ξ) log

1− x
1− ξ

.

When taking the square root of η we assume that sign(η) = sign(x − ξ), this means that
sign(η) = sign (x− a/(a+ b)).

Using (A.2) we obtain

−ζ dζ
dt

=
ξ − t
t(1− t)

,

and we can write (A.1) in the form

(A.4) Ix(a, b) =
Fν(η)

Fν(∞)
, Fν(η) =

√
ν

2π

∫ η

−∞
e−

1
2νζ

2

f(ζ) dζ,

where

(A.5) f(ζ) =
ζλ

t− ξ
, Fν(∞) =

Γ∗(a)Γ∗(b)

Γ∗(a+ b)
∼
∞∑
k=0

Fk
νk
, λ =

√
ξ(1− ξ).

The function Γ∗(x), the slowly varying part of the Euler gamma function, is defined by

Γ∗(x) =
Γ(x)√

2π/xxxe−x
, x > 0.

The first coefficients Fk are

F0 = 1, F1 =
1− ξ + ξ2

12λ2
, F2 =

(1− ξ + ξ2)2

288λ4
,

F3 = −139ξ6 − 417ξ5 + 402ξ4 − 109ξ3 + 402ξ2 − 417ξ + 139

51840λ6
.

(A.6)

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

280 A. GIL, J. SEGURA, AND N. M. TEMME

The first coefficients of the Taylor expansion

(A.7) f(ζ) = a0 + a1ζ + a2ζ
2 + a3ζ

3 + · · ·

are

a0 = 1, a1 =
2ξ − 1

3λ
, a2 =

1− ξ + ξ2

12λ2
.

When we replace in (A.4) the function f(ζ) by 1, the integral becomes the complementary
error function defined by

erfc z =
2√
π

∫ ∞
z

e−t
2

dt.

As explained in [6], we can write

(A.8) Ix(a, b) = 1
2erfc

(
−η
√
ν/2
)
−Rν(η), ν = a+ b,

where the relation between x and η follows from (A.3), and Rν(η) has the expansion

(A.9) Rν(η) ∼ 1

Fν(∞)

e−
1
2νη

2

√
2πν

∞∑
k=0

Ck(η)

νk
, ν →∞,

and Fν(∞) is defined in (A.5). This expansion is uniformly valid for ξ = a/(a+b) ∈ [δ, 1−δ],
where δ is a small fixed positive number.

The coefficients Ck(η) can be obtained from the scheme

(A.10) Ck(η) =
fk(η)− fk(0)

η
, fk(ζ) =

d

dζ

fk−1(ζ)− fk−1(0)

ζ
,

k = 0, 1, 2, . . ., with f0 = f defined in (A.5).
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