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MATRIX COMPLETION FOR MATRICES WITH LOW-RANK DISPLACEMENT∗

DAMIANA LAZZARO† AND SERENA MORIGI†

Abstract. The matrix completion problem consists in the recovery of a low-rank or approximately low-rank
matrix from a sampling of its entries. The solution rank is typically unknown, and this makes the problem even
more challenging. However, for a broad class of interesting matrices with so-called displacement structure, the
originally ill-posed completion problem can find an acceptable solution by exploiting the knowledge of the associated
displacement rank. The goal of this paper is to propose a variational non-convex formulation for the low-rank matrix
completion problem with low-rank displacement and to apply it to important classes of medium-large scale structured
matrices. Experimental results show the effectiveness and efficiency of the proposed approach for Toeplitz and Hankel
matrix completion problems.
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1. Introduction. We consider the problem of the recovery of a low-rank structured
matrix characterized by a low displacement rank from its undersampled/incomplete entries.
This particular class of matrices with structure can be identified in a surprising variety of
applications in engineering, mathematics, and physics. The displacement of a matrix X is the
image L(X) of an appropriate linear displacement operator L applied to the matrix X and is
revealing its structure. Structured matrices are naturally associated with linear displacement
operators L (typically incorporating the operators of shift and scaling) and can be recovered
easily from their displacement matrix L(X), which has a smaller and known rank r with
respect to the rank of X [1, 20, 33]. Matrices like Cauchy, Vandermonde, Polynomial
Vandermonde, Chebyshev Vandermonde, Toeplitz, Hankel, and others belong to this special
class of matrices, and they only depend on O(n) parameters instead of n2.

Certain families of such particular class of structured matrices with low displacement
rank are particularly relevant and commonly studied because they arise in a wide range of
applications. Let us consider for example the standard image deconvolution problem, which
aims to recover an image f given an observed image g, degraded by a convolution with a
point spread function (PSF) h. The linear blurring process with the PSF h is represented by
a matrix X , which is often a block matrix whose blocks take the form of a Toeplitz matrix.
In this particular case, not only does X have Toeplitz blocks, but it is also block Toeplitz,
that is, its blocks are aligned in a Toeplitz fashion [18]. If the PSF h is not known, then the
problem becomes one of blind deconvolution, sometimes called inaccurate deconvolution if X
is partially known [8] and must be recovered. The image blind deconvolution problem remains
challenging and hard to solve.

The structure-preserving property is important also in the recovery of spectrally sparse
signals from a random subset of samples, as illustrated in [10, 12], where the low-rank Hankel
property has been exploited to recover the sparse signal, as well as in the restoration of signals
in MRI imaging [16].

The more general problem to recover a rectangular matrix from a sampling of its entries
is known as the Matrix Completion (MC) problem, which is highly ill-posed since with fewer
samples than entries, we have infinitely many completions. A possible solution candidate can
be obtained when the matrix that we wish to recover has low-rank or approximately low rank.
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Considering this additional information, the general formulation of the MC problem for the
recovery of a low-rank matrix M reads as

(1.1) X∗ = argmin
X∈Rm×n

rank(X) s.t. PΩ(X) = PΩ(M),

where only p sampled entries of a matrix M ∈ Rm×n are given,

{Mi,j : (i, j) ∈ Ω ⊂ {1, . . . ,m} × {1, . . . , n}} ,

and PΩ represents the projection operator on a random subset Ω of cardinality p,

PΩ(X) :=

{
Xi,j if (i, j) ∈ Ω,

0 otherwise.

The matrix rank minimization problem (1.1) is NP-hard in general due to the highly non-
convex and combinatorial nature of the rank function [11]. To overcome such a computational
difficulty, the authors in [5, 6, 37] introduced a convex relaxation of (1.1) which relies on
the nuclear norm, which is the convex envelope of rank(X), namely ‖X‖∗ =

∑κ
i=1 σi(X),

where σi(X), i = 1, . . . , κ, κ ≤ min(m,n), are the singular values of X . This convex
relaxation results in the following nuclear norm minimization problem, which is the tightest
convex relaxation to (1.1):

(1.2) X∗ = argmin
X∈Rm×n

‖X‖∗ s.t. PΩ(X) = PΩ(M).

Candès and Recht in [5] showed that applying the convex optimization model (1.2) in
case of MC problems with square matrices of dimension n, most low-rank matrices can be
recovered exactly provided that the number of samples obeys

(1.3) p ≥ Cn1.2κ log n

for some positive numerical constant C. The condition above assumes that the rank κ is not
too large. Similar results hold for arbitrary rectangular matrices as well.

Many algorithms have been designed to solve the optimization problem (1.2). For
example, the singular value thresholding (SVT) method [4, 45], the accelerated proximal
gradient (APG) method [41], the augmented Lagrange multiplier (ALM) method [26], as
well as its variants [43, 44]. In the latter, the authors focused on the specific Toeplitz matrix
completion problem, which has attracted a lot of attention in recent years. Many researchers
have studied the recovery of Toeplitz and Hankel matrices [10, 12]. Toeplitz and Hankel
matrices belong to a broader class of interesting matrices with displacement structure for which
the originally ill-posed completion problem can find an acceptable solution by exploiting the
knowledge of the associated displacement rank.

In this work we address the specific MC problem for the recovery of a low-rank structured
matrix with low L-displacement rank, which is a special case of the matrix completion
problem (1.1). To this aim, we propose a constrained non-convex variational formulation
which includes a low-rank promoting penalty function. This is directed to overcome the limits
of the nuclear norm, whose performance for sparse regularization of the singular values is only
suboptimal [31]. It is well known, in fact, that suitable non-convex penalty functions induce
sparsity of the singular values more effectively than the nuclear norm [9, 25, 27, 29, 34].

For the recovery of a structured matrix M of low-rank κ with low displacement rank r,
we propose to solve the following sparse low-rank minimization problem

(1.4) X∗ = argmin
X∈Rm×n

κ∑
i=1

φ (σi(X); a) s.t.

{
PΩ(X) = PΩ(M),

L(X) ∈Mr,
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withMr the non-convex closed set of all matrices of size m× n with rank up to r defined as

Mr =
{
X ∈ Rm×n : rank(X) ≤ r

}
,

and φ : R → R a parameterized, non-convex penalty function that will be discussed in
Section 3.

The use of non-convex penalty functions, however, generally leads to non-convex opti-
mization problems, which suffer from numerous issues such as spurious local minima and a
sensitivity to changes in the initialization. To avoid the intrinsic difficulties related to non-
convex optimization, we present a simple forward-backward splitting method to solve the
minimization problem (1.4), which relies on the Convex Non-Convex (CNC) strategy and a
projection step [23, 24, 39].

In the reported experiments we aim to demonstrate that the additional constraint on the
associated displacement rank, together with the non-convexity of the penalty function for
the nuclear norm, allow us to obtain a very robust algorithm that is able to recover low-rank
matrices starting from a set of sampled data with cardinality p much smaller than the estimated
value in (1.3).

The paper is organized as follows: In Section 2 we introduce some basic definitions and
concepts of structured matrices with low-rank displacement structure. In Section 3 we define
the non-convex sparsity promoting penalty φ used in our model. The proposed variational
MC model is presented in Section 4 together with the sketch of the forward-backward method
applied to minimization. In Section 5 we address the details of the implemented algorithm,
and in Section 6 we present two applications of the algorithm to the recovery of Toeplitz and
Hankel matrices. Finally, conclusions are drawn in Section 7.

2. Structured matrices and their low-rank displacement structure. The concept of
displacement structure was first introduced in [21]. Formally, we can associate structured
matrices X ∈ Rm×n with linear operators L : Rm×n → Rm×n of Sylvester or Stein types,
defined as follows:

DEFINITION 2.1. Given two matrices U ∈ Rm×m, V ∈ Rn×n, the displacement operator
L : Rm×n → Rm×n with respect to the displacement matrix pair (U, V ) is defined for every
matrix X ∈ Rm×n as

L(X) := ∇U,V (X) = X − UXV Stein type(2.1)

or

L(X) := ∆U,V (X) = UX −XV Sylvester type.(2.2)

The operators of Sylvester or Stein types can be transformed easily into each other if at
least one of the two associated operator matrices is non-singular. The relation between the
two different displacements of Sylvester type (2.2) and Stein type (2.1) is then given in the
following proposition.

PROPOSITION 2.2. If the operator matrix U is non-singular, then we have the identity
∇U,V = U∆U−1,V ; in case the operator matrix V is non-singular, then∇U,V = −∆U,V −1V .

In this work, without loss of generality, we will consider only displacements of Stein type.
The matrix X ∈ Rm×n is considered to possess a displacement structure with respect to U
and V whenever the rank of L(X), the so-called L-displacement rank, is low compared to
its sizes m and n and it remains relatively small even for increasing dimensions of X . For
example, if X is a Toeplitz matrix, then its L-displacement rank is at most 2.
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TABLE 2.1
Displacement rank for some structured matrices.

U V Class of structured matrices rank of∇U,V
Z0 ZT0 Toeplitz and its inverse r <= 2
Z0 Z0 Hankel r <= 2

Z0 + ZT0 Z0 + ZT0 Toeplitz+Hankel r <= 4

The displacement matrix L(X) can be represented by a pair of matrices G ∈ Rm×r and
H ∈ Rn×r called generator matrices (generators, for short) such that

(2.3) L(X) = GHT =

r∑
k=1

gkh
T
k ,

where gj and hj represent the jth columns of G and H , respectively, and r denotes the
L-displacement rank of the matrix X .

In practice, the generator matrices G and H can be efficiently obtained by the singular
value decomposition of the displacement matrix L(X) havingmn entries and a reduced rank r.
In particular, let UX , S, VX be the matrices obtained by the singular value decomposition of
L(X). Then the orthogonal generators are given by

(2.4) G = UX
√
S, H = VX

√
S.

For the specific classes of structured matrices of interest to us, the operator matrices U, V
assume a particular structure Zf , where Zf is the unit f -circulant matrix and f is any scalar
value:

Zf =


0 f
1 0

1 0
. . .

1 0

 .

In Table 2.1, matrices U and V are defined for the Stein operator for the case of the class of
matrices of our interest.

Provided L is invertible, when r is small, the pair of generators G,H in (2.3) can play the
role of a succinct data structure to represent the matrix X . More precisely, a matrix X can be
recovered easily from its displacement L(X) by applying the inverse of the linear operator L,
denoted by L−1, defined according to [33], in the case of a Stein-type displacement ∇Ze,ZTf
with ef 6= 1 as

(2.5) (1− ef)X = L−1(GHT ) :=

r∑
j=1

(
n−1∑
i=0

(Ziegj)(Z
i
fhj)

T

)

and in the case of a Stein-type displacement∇Ze,Zf with ef 6= 1 as

(2.6) (1− ef)X = L−1(GHT ) :=

r∑
j=1

(
n−1∑
i=0

(Ziegj)h
T
j Z

i
f

)
,

which correspond to the first and second row in Table 2.1, respectively. Due to the simplified
circulant structure of Ze and Zf , the computational effort required for the recovery of X by
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applying (2.5) or (2.6) is nearly linear in time. In particular, for a square matrix of dimension
n and rank r, the asymptotic complexity is O(rn log n); see [33] for details.

These results allow us to characterize a wide class of matrices with low displacement
rank, which includes the well-known classes of Toeplitz and Hankel matrices as well as other
classes of matrices which play an important role in some applications [1]. A Toeplitz matrix is
a structured matrix of the form

T ∈ Rn×n =


t0 t1 · · · tn−2 tn−1

t−1 t0 · · · tn−3 tn−2

...
. . . . . . . . .

...

t−n+2 t−n+3
. . . t0 t1

t−n+1 t−n+2 · · · t−1 t0

 ,

that is, its entries are constant along every diagonal. Thus, it is completely determined by
the entries in the first row and first column. A matrix whose entries are constant along every
antidiagonal is called a Hankel matrix and reads as

H ∈ Rn×n =


h0 h1 h2 · · · hn−1

h1 h2 h3 · · · hn
...

...
...

...
hn−2 hn−1 · · · h2n−4 h2n−3

hn−1 hn · · · h2n−3 h2n−2

 ,
which is completely determined by the entries in the first column and last row.

3. Low-rank inducing penalty functions. In this section we formally introduce the
class of non-convex penalty functions φ used as penalty term in the proposed variational
model (1.4), which will be discussed in detail in Section 4. In the following, we de-
note the sets of non-negative and positive real numbers as R+ := { t ∈ R : t ≥ 0} and
R∗+ := { t ∈ R : t > 0}, respectively.

We consider parameterized penalty functions φ(t; a) : R→ R such that for any value of
the parameter a ∈ R∗+, the following conditions are satisfied:

A1) φ(t; a)∈ C2(R∗+), φ(t; a)∈ C0(R+),

A2) φ′(t; a)> 0, ∀ t ∈ R∗+,

A3) φ′′(t; a) ≤ 0, ∀ t ∈ R∗+,
A4) supt∈R∗

+
φ′(t; a) = 1, inft∈R∗

+
φ′′(t; a) = φ′′(0+; a) = −a.

Assumptions A1)–A3) are quite standard and encompass a wide class of non-convex sparsity-
promoting penalty functions. Assumption A4), which corresponds to imposing boundedness
(from above/below) of the first- and second-order derivatives of the penalty function φ, is
mandatory when constructing CNC functionals; see, e.g., [23, 24, 34, 36, 39]. In fact, if the
second-order derivative of the penalty function tends to −∞ at any point in the domain, then
there is no possibility to compensate it by the positive but bounded second-order derivatives of
the convex quadratic fidelity term.

Without loss of generality, in this work we consider the non-convex parameterized penalty
function

(3.1) φ(t; a) =
1

a
log(1 + a|t|) ,

where the parameter a > 0 controls the degree of non-convexity of the penalty function. This
function satisfies the conditions A1)–A4).
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The proximity operator Θ : R→ R associated with the non-convex function φ(t; a) reads
as

(3.2) Θ(y;λ, a) = proxλφ(y;λ, a) = argmin
t∈R

{
f(t) =

1

2
(y − t)2 + λφ(t; a)

}
.

In [35, 39, 40], the authors prove that for 0 ≤ a < 1
λ , the function f in (3.2) is strictly

convex. Therefore, the proximity operator admits a unique solution of the convex minimization
problem (3.2).

The proximity operator associated with the logarithmic penalty (3.1) is a continuous
non-linear threshold function with λ as threshold value [39], namely

proxλφ(y;λ, a) = 0, ∀|y| < λ,

and is given by:

proxλφ(y;λ, a) =


[
|y|
2 −

1
2a +

√(
|y|
2 + 1

2a

)2

− λ
a

]
|y| ≥ λ,

0 |y| ≤ λ.

4. Variational matrix completion model. We are concerned with the recovery of spe-
cial matrices X ∈ Rm×n with displacement structure that are characterized by a low-rank
displacement matrix L(X) ∈Mr. The rank r, 0 < r � min(m,n), is chosen according to
the class of matrices to be recovered; see Table 2.1. To this aim, we assume that p sampled
entries {Mij : (i, j) ∈ Ω} of an incomplete matrix M are available, with Ω a random subset
of cardinality p. By relaxing the fidelity constraint in formulation (1.4), M can be recovered
by solving the constrained optimization problem:

(4.1) X∗ ∈ argmin
L(X)∈Mr

{
J (X;λ) =

1

2
‖PΩ(X)− PΩ(M)‖2F + λ

κ∑
i=1

φ (σi(X); a)

}
,

where κ < min(m,n), σi(X) is the ith singular value of the matrix X , ‖ · ‖F denotes the
Frobenius norm, and φ : R→ R, defined in (3.1), is a sparsity-inducing regularizer, possibly
non-convex, and parameterized by a positive value a.

In order to solve the minimization problem (4.1), we consider the following unconstrained
version with a functional given as the sum of a smooth convex function F : Rm×n → R and
a function G. The latter gathers the two non-convex non-smooth functions R : Rm×n → R,
which induces a low-rank on the recovered matrix X , and ιMr , which is the indicator function
of the non-convex setMr:

(4.2) X∗ ∈ argmin
X∈Rm×n

J (X;λ) =
1

2
F (X) + λR(X) + ιMr

(L(X))︸ ︷︷ ︸
G(X)

 .

The indicator function ιMr
: Rm×n → (−∞,∞] of the nonempty closed setMr is a proper,

lower semicontinuous, extended real-valued function defined by

ιMr
(Y ) :=

{
0 if Y ∈Mr,

+∞ otherwise.

Since the setMr is non-convex, ιMr
(X) is a non-convex function.
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We propose to compute approximate solutions X∗ of the minimization problem in (4.2)
by means of the Forward-Backward (FB) iterative scheme, outlined in Algorithm 1, applied to
the sum F (X) +G(X). In particular, the forward step generates a sequence {Zk} via

Zk = Xk−1 −
1

β
∇F (Xk−1),

which relies on the gradient of F given by

(4.3) ∇F (Xk−1) = PΩ(Xk−1)− PΩ(M).

We adopt a constant stepsize β, which is an upper bound for the Lipschitz constant of ∇F ,
which can be seen to satisfy LF = 1 as discussed in Section 4.1. The backward step requires
the solution of the following optimization problem

Xk = PMr
◦ proxλ

βR
(Zk) ,

where

(4.4) X̃k = proxλ
βR

(Zk) = argmin
X∈Rm×n

{
1

2
‖X − Zk‖2F +

λ

β

κ∑
i=1

φ (σi(X), a)

}
.

The proximal map of the indicator function reduces to the projection operator onto the set,
defined as PMr

(X), where the projection PMr
: Rm×n→→Rm×n has nonempty values and

defines in general a multi-valued map, as opposed to the convex case, where orthogonal
projections are guaranteed to be single-valued. However, the projection on the setMr has a
unique closed form computed by a truncated SVD of L(X̃k) and the inversion formula (2.5)
or (2.6), with r given as input according to the class of matrices to be recovered; see Table 2.1.

In particular, this projection can be efficiently computed by the singular value decomposi-
tion to reduce L(X̃k) to a r-rank displacement matrix and to obtain the generators G and H .
The matrix Xk is then built by applying the inverse operator L−1 to GHT , and it is taken as
input for the next FB splitting iteration k. The projection step is called Displacement Upgrade
step in Algorithm 1.

Algorithm 1 Forward-Backward Low Displacement Rank (FB-LDR)
Given X0 = PΩ(M) and the parameters β > 1, λ, r > 0.
repeat

Forward Step
Zk = Xk−1 − 1

β∇F (Xk−1)

Backward Step
X̃k = proxλ

βR
(Zk)

Displacement Upgrade step
[U, S, V ] = svd(L(X̃k), r)

Xk = L−1((U
√
S)(V

√
S)T )

until convergence

The following Theorem 4.1, proved in [34], defines a closed-form solution to the min-
imization problem (4.4) in the backward step, which involves thresholding of the singular
values of the matrix Z in (4.4), where the subscript index k is omitted. The result in Theo-
rem 4.1 relies on the convexity condition of the cost function in (4.4), imposed on the concavity
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parameter a. This can be easily derived from those of the scalar problem (3.2) as stated in [39].
Consequently, the objective function in (4.4) is strictly convex if

(4.5) 0 ≤ a < β

λ
,

hence its minimizer is unique.
THEOREM 4.1. Let Z = UΣV T be the SVD of a matrix Z and φ(t; a) : R → R be

a non-convex penalty function satisfying conditions A1)–A4). If the parameter a satisfies
conditions (4.5), then the global minimizer of (4.4) is

(4.6) X̃ = U ·Θ(Σ;λ, a) · V T ,

where Θ, defined in (3.2), is the threshold function associated with the non-convex penalty
function φ.

This result allows the use of non-convex penalty functions φ while maintaining convexity
of the objective function (4.4).

4.1. Basic convergence properties. In this section we first analyze the existence of min-
imizers for the proposed variational problem (4.2). Then some properties of the convergence
of the iterative FB-LDR algorithm will be established in order to guarantee that the proposed
iterative algorithm, which will be introduced in Section 5, does not break down.

PROPOSITION 4.2. The objective function J (X;λ) in (4.2) is proper, non-convex, lower
semicontinuous, coercive, and bounded from below by zero. Therefore, the set of global
minimizers of problem (4.2) is non-empty.

The gradient of the continuously differentiable function F given by (4.3) is a LF -
Lipschitz continuous function with constant LF = 1. It easy to see from (4.3) that, for
every X,Y ∈ Rm×n,

‖∇F (Y )−∇F (X)‖ = ‖PΩ(Y )− PΩ(X)‖ ≤ LF ‖X − Y ‖.

If X ∈ Ω and Y ∈ Ω, then LF = 1. If X /∈ Ω and Y /∈ Ω, then LF ‖X − Y ‖ ≥ 0, for
any constant LF . Finally, when X ∈ Ω and Y /∈ Ω (or vice versa), then ‖X‖ ≤ ‖X‖ (or
‖Y ‖ ≤ ‖Y ‖), which leads to LF = 1.

This gradient-Lipschitz property implies the decrease of the objective function.
PROPOSITION 4.3 (Descent Lemma). Let F : Rm×n −→ R be a continuously dif-

ferentiable function with gradient ∇F assumed LF -Lipschitz continuous. Then, for any
L ≥ LF ,

F (X) ≤ F (Y ) + 〈X − Y,∇F (Y )〉+
L

2
‖X − Y ‖2, ∀ X,Y ∈ Rm×n.

We adopt the following quadratic approximation model for F , for any L > 0:

QL(X,Y ) := F (Y ) + 〈X − Y,∇F (Y )〉+
L

2
‖X − Y ‖2 +G(X), ∀X,Y ∈ Rm×n,

with prox-grad map given by

pL(Y ) ∈ argmin
X
{QL(X,Y )} = argmin

X
{〈X − Y,∇F (Y )〉+

L

2
‖X − Y ‖2 +G(X)},

that is,

(4.7) pL(Y ) ∈ argmin
X
{QL(X,Y )} = prox1/L(G)(Y − 1

L
∇F (Y )).

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

MATRIX COMPLETION FOR MATRICES WITH LOW-RANK DISPLACEMENT 489

PROPOSITION 4.4 (Sufficient decrease property). Let F : Rm×n → R be a continuously
differentiable function with gradient ∇F assumed LF -Lipschitz continuous, and let G(X) be
a proper, extended-valued function bounded from below by zero. Fix any L > LF . Then, for
any X ∈ dom G and any pL(Y ) ∈ Rm×n defined as in (4.7), we have

(4.8) J (X)− J (pL(Y )) ≥ 1

2
(L− LF )‖pL(Y )−X‖2.

Proof. Since pL(Y ) minimizesQL(pL(Y ), Y ), it holds thatQL(pL(Y ), Y ) ≤ QL(Y, Y ).
Hence, taking X = pL(Y ) in QL(X,Y ) in (4.7), we obtain

(4.9) 〈pL(Y )− Y,∇F (Y )〉+
L

2
‖pL(Y )− Y ‖2 +G(pL(Y )) ≤ G(Y ).

Invoking the descent lemma (see Lemma 4.3) for F and using then inequality (4.9), we get

F (pL(Y )) +G(pL(Y )) ≤ F (Y ) + 〈pL(Y )−Y,∇F (Y )〉+
L

2
‖pL(Y )− Y ‖2 +G(pL(Y ))

≤ F (Y ) +
LF
2
‖pL(Y )− Y ‖2 +G(Y )− L

2
‖pL(Y )− Y ‖2

= F (Y ) +G(Y )− 1

2
(L− LF )‖pL(Y )− Y ‖2.

This proves the inequality (4.8).
We now can establish basic convergence properties of the iteration sequence generated by

Algorithm 1.
PROPOSITION 4.5 (Basic convergence properties). Let {Xk}k∈N be a sequence generated

by Algorithm 1, and let L > LF . Assume that the function J is coercive and bounded from
below (inf J > −∞). Then the following holds:

(i) The sequence {J (Xk)}k∈N is nonincreasing, and in particular,

(4.10) J (Xk)− J (Xk+1) ≥ ρ‖Xk+1 −Xk‖2F , ∀k = 0, 1, . . . ,

with ρ = 1
2 (L− LF ) > 0.

(ii) We have

∞∑
k=1

‖Xk+1 −Xk‖2F < +∞,

which implies limk→∞(Xk+1 −Xk) = 0.
Proof. (i) For each X ∈ {Xk}k∈N, a generic iterate generated from Algorithm 1, the

estimate (4.8) holds. Since L > LF , it follows that ρ > 0, and thus {J (Xk)}k∈N is
monotonically nonincreasing.

(ii) Let N be a positive integer. Summing up (4.10) from k = 0 to N − 1, we obtain that

N−1∑
k=0

‖Xk+1 −Xk‖2F ≤ ρ(J (X0)− J (XN )) ≤ ρ(J (X0)− inf J ).

Taking N →∞, the series is finite, and we get assertion (ii).
Moreover, the sequence {Xk}k∈N is bounded and has at least one accumulation point.

Finally, one needs to prove that the set of limit points is a subset of the critical points for J
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on which J is constant to establish global convergence. However, this would require a quite
standard and essential requirement, i.e., to establish a subgradient lower bound for the iteration
gap, which, in this case, depends on the Lipschitz continuity of∇F but also on the subgradient
of G(X), which complicates the convergence analysis. Furthermore, an additional assumption
on the class of non-convex functions J is required. In particular, J in (4.2) has the Kurdyka-
Łojasiewicz property if the indicator function of the closed set Mr is semi-algebraic and
R(X) can be seen as the sum of semi-algebraic functions [32]. We will investigate these
requirements in a future work.

5. Algorithm FB-LDR with continuation. The proposed FB-LDR Algorithm solves
the minimization problem (4.1), where the choice of the regularization parameter λ represents
a well-known crucial issue. With the aim to facilitate the choice of the effective λ parameter,
we insert the FB-LDR algorithm in a continuation scheme (OUTER loop), which, starting from
a reasonable value for λ0, progressively diminishes the penalization parameter λ according to
the decreasing of the objective functional, that is,

(5.1) λi = cλ ·min(λi−1,J
(
Xi;λi−1

)
), 0 < cλ < 1.

For each outer iteration i, the minimization of (4.1) is then computed by the FB-LDR
strategy (INNER loop) using a fixed λi value. The precision of the solution of the inner loop
depends on the value of λi, which decreases at each iteration, and on a factor γ, which is taken
small (0.01) or larger (0.1) depending on the freedom ratio of the sought-for solution as will
be discussed in Section 6. The idea is to make the stopping criterion more stringent for harder
MC problems.

This strategy, often successfully used under the name of continuation (see [13, 17, 30]),
does not increase much the computing time of FB-LDR since the inner loop stopping criterion
depends on λi, and each outer iteration uses as starting point the previous iterate (the so called
warm starting strategy).

In order to accelerate the forward-backward inner iterative strategy, we used the variant
of the Fast Iterative Soft Thresholding Algorithm (FISTA) introduced in [2], which has been
proposed in [7] in order to achieve a convergent acceleration. In particular, at each inner
iteration k, the weights αk are computed as in [7], namely,

(5.2) αk =
tk − 1

tk+1
, tk =

k + c− 1

c
, c > 2 ∀k.

In our experiments the value for c is set to be 3. The stopping criterion for the inner loop is
determined by the relative error:

(5.3) errk+1 =
|J
(
Xi
k+1;λi

)
− J

(
Xi
k;λi

)
|

|J
(
Xi
k+1;λi

)
|

.

In Algorithm 2 we report the main computational steps of the proposed implementation,
which include the automatic choice of the regularization parameter λ in the cost function. The
algorithm iterates over i in the outer loop and over k in the inner loop, and it is considered
convergent for a given tolerance tol as soon as the following stopping criterion is satisfied:

(5.4)

∣∣∑κ
s=1 φ

(
σs(X

i+1); a
)
−
∑κ
s=1 φ

(
σs(X

i); a
)∣∣∑κ

s=1 φ (σs(Xi+1); a)
≤ tol.

The recovered low-rank matrix X∗ will belong to the class of structured matrices (Toeplitz,
Hankel, . . . ) as required by imposing the displacement rank r according to Table 2.1.
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The complexity of Algorithm 2 basically is determined by twice computing the singular
value decompositions in the inner loop. The first SVD operator is applied to low-rank
matrices Zk since the number of sampled entries is typically much lower than the number of
entries in the unknown matrix M . The second SVD operator is applied to the displacement
matrices L(X), whose rank is very low; see Table 2.1. Consequently, we are interested
in numerical methods for computing approximate SVD factorizations of large-scale low-
rank matrices. Our implementation applies the routine lansvd() of the PROPACK library,
which relies on Lanczos bidiagonalization with partial reorthogonalization [22]. Finally,
the construction of the inverse displacement operator implies O(rn log n) operations. This
allows us to classify the proposed algorithm as suitable for a class of medium-large scale MC
problems.

Algorithm 2 FB-LDR-C.
inputs: X0 = PΩ(M), sampled matrix
outputs: X∗ low-rank recovered matrix

parameters: λ0 > 0, β > 1, r > 0, γ > 0

OUTER LOOP (OVER i): CONTINUATION
repeat

INNER LOOP (OVER k): FB
repeat
Forward Step

Zk = Xi
k−1 − 1

β (PΩ(Xi
k−1)− PΩ(M))

Backward Step
[UZ , SZ , VZ ] = svd(Zk)

X̃i+1
k = UZΘ(Sk;λi, a)V TZ (Θ defined in (4.6))

Acceleration Strategy
tk+1 = k+c−1

c , αk = tk−1
tk+1

X̂i+1
k = X̃i+1

k + αk(X̃i+1
k − X̃i

k)
Displacement Upgrade Step

[U, S, V ] = svd(L(X̂i+1
k ), r)

Xi+1
k = L−1(GHT ) (G,H defined in (2.4))

until errk+1 ≤ γ · λi (errk+1 defined in (5.3))
EXIT INNER LOOP
Parameter update:
λi+1 = cλ min(λi,J

(
Xi+1
k ;λi

)
)

until (5.4) is satisfied
X∗ = Xi+1

The descent property of the sequence of values J (Xi;λi), for all i, is described by the
following result, which guarantees that the reduction rule (5.1) generates a monotonically
decreasing sequence of parameter values, and this ensures the convergence of the continuation
strategy.

PROPOSITION 5.1. Assume that the conditions of Proposition 4.5 hold. Let λi and λi+1

be values of the penalization parameters at two successive iterative steps such that λi+1 < λi,
and Xi, Xi+1 be the corresponding minimizers of the optimization problems (4.2). Then, the
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functional J (X;λ) satisfies

J
(
Xi+1;λi+1

)
< J

(
Xi;λi

)
.

Proof. From the definition of J
(
Xi;λi

)
in (4.1) and the assumption on Xi and Xi+1 as

minimizers, we have

J
(
Xi;λi

)
=

1

2

∥∥PΩ(Xi)− PΩ(M)
∥∥2

F
+ λiR(Xi)

>
1

2

∥∥PΩ(Xi)− PΩ(M)
∥∥2

F
+ λi+1R(Xi) = J

(
X;λi+1

)
|Xi

≥ 1

2

∥∥PΩ(Xi+1)− PΩ(M)
∥∥2

F
+ λi+1R(Xi+1) = J (Xi+1;λi+1),

and this proves the result.

6. Numerical experiments. In the following experiments we aim to demonstrate that,
exploiting the non-convexity of the penalty function for the nuclear norm together with the rank
constraint on the displacement structure, the proposed algorithm is able to recover low-rank
matrices belonging to a given class of structured matrices (Toeplitz, Hankel,. . . ), starting
from a number of sampled data p much less than the estimated value in (1.3). We present
two applications of the proposed method to the completion of low-rank Toeplitz matrices
(Section 6.1) and to the spectrally sparse signal reconstruction via low-rank Hankel matrix
completion (Section 6.2). The numerical experiments presented here aim to evaluate the
proposed Algorithm FB-LDR-C and to compare its performance with some state-of-the-art
methods proposed for similar problems. The initial regularization parameter λ0 is set to be 0.1,
the damping parameter cλ defined in (5.1) is 10−5, and the tolerance in (5.4) is 10−9.

We will denote by FB-C the simplified version of Algorithm FB-LDR-C, where the
displacement upgrade step is omitted. Hence, FB-C computes approximate solutions to the
convex, unconstrained version of the low-rank matrix completion model (4.1).

The experiments were executed using Matlab 2019 on a PC with a 3.2GHz Intel i7-8700
CPU and 32 GB memory. The algorithms have been evaluated with respect to successful
recovery rates, computational efficiency, robustness and are capability of handling particularly
difficult recovery problems.

In the remainder of this section, before presenting some numerical results, we provide a
brief summary of the evaluation metrics used throughout the reported experiments to measure
the quality of the presented variational method as well as of the state-of-the-art algorithms
considered for comparison.

Let M ∈ Rm×n be a κ-rank matrix to be reconstructed. The set of matricesMκ of rank
up to κ is an algebraic variety of dimension κ(m+ n− κ).

We denote the sampling ratio as SR = p/(mn), i.e., the number of measurements
divided by the number of entries of the matrix, and we denote the degree of freedom ratio
as FR = κ(m + n − κ)/p, i.e., the dimension of the set of rank-κ matrices divided by the
number of measurements.

For the particular cases of Toeplitz and Hankel matrices M ∈ Rn×n, characterized by a
string of 2n− 1 entries, the sampling ratio reduces to

(6.1) SR = p/(2n− 1),

where p is related to the string, i.e., 0 ≤ p ≤ 2n− 1, and the degree of freedom becomes

(6.2) FR = κ(2n− κ)/p,

where p is here related to the full matrix M .
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The indicators (6.1) and (6.2) help to quantify the difficulty of a recovery problem. In
particular, if FR > 1, then there is always an infinite number of matrices with rank κ with
the given entries, so we cannot hope to recover the matrix M under this data condition. The
largest rank such that FR ≤ 1, denoted by κmax, is given by

(6.3) κmax = (2n−
√

(2n)2 − 4p)/2.

We conducted several tests concerned with both easy matrix recovery, when FR < 0.4, and
harder recovery problems, characterized by FR ≥ 0.4. An MC problem is considered "easy"
when the matrices are of very low-rank compared to the matrix size and the number of samples,
and hence they are easy to recover. On the other hand, the âĂIJhardâĂİ problems involve
matrices that are not of very low-rank and for which a very limited number of entries were
sampled, thus they are considered very challenging problems; see [29] for more details.

6.1. Numerical results for Toeplitz matrix completion. In our tests, M denotes a real
Toeplitz matrix of predefined rank κ. Random Toeplitz matrices of rank κ were created by the
MATLAB function M = gallery(’toeppd’,n,κ,w,theta), which returns an n×n
symmetric, positive semi-definite (PSD) Toeplitz matrix composed of the sum of two PSD
Toeplitz matrices of rank κ (or, for certain theta values, rank 1).

We compared the proposed Algorithm FB-LDR-C for structured MC problem with
methods from the family of Augmented Lagrange Multipliers (ALM) modified to address the
MC problem for Toeplitz matrices. In particular, we consider ALM [26], Smoothed ALM
(SALM) [44], and Mean ALM (MV) [43], which recover Toeplitz matrices by solving convex
optimization problems with a penalty given by the nuclear norm. The compared algorithms are
optimized as proposed by the authors using the suggested parameter values. The performance
of the algorithms for the MC problems is evaluated by the following error metric:

(6.4) Err :=
‖X −M‖F
‖M‖F

,

where X is the recovered matrix obtained from p samples of the full κ-rank matrix M .
We conducted two sets of MC tests for Toeplitz matrices; the first, reported in Table 6.1,

is concerned with easy matrix recovery cases, where FR < 0.4, while the second, reported in
Table 6.2, considers the hard recovery problems, characterized by FR ≥ 0.4, where FR is
defined by (6.2).

In Tables 6.1 and 6.2 we report the comparisons of the results obtained for 10 conducted
random recovery tests in terms of average of execution time (Time) and error (Err), as
defined in (6.4). In the first columns we report the dimension of the problem (n), the unknown
rank of the matrix to be recovered (κ), the sampling ratio (SR), the freedom ratio (FR), and
the algorithm applied. All times reported are in seconds.

For a given SR value, the higher the rank of the matrix to be reconstructed, the more
difficult the MC problem is—compare, i.e., the first block of Table 6.1 with the second block
of Table 6.2. Trivially, according to formulas (6.1) and (6.2), the higher the SR values, the
easier the MC reconstruction problem. In our experiments we reconstruct Toeplitz matrices
with a rank κ closest to the maximum rank κmax in (6.3), such that the MC problem admits a
unique solution starting from the given samples.

The proposed algorithm for the "easy" cases reported in Table 6.1 always obtained
the exact reconstruction of the Toeplitz matrices, thanks to the improvement induced by
the constraint on the low displacement rank matrix, at the expense of a slightly increased
computational effort. When slightly lower accuracy is required, the unconstrained FB-C
method shows very good performance in less computational time.
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TABLE 6.1
Completion of Toeplitz matrices, easy cases (FR < 0.4).

n κ SR FR ALGORITHM Time (sec) Err
500 10 0.1 0.40

ALM 9.73 2.89e-07
MV 6.78 1.31e-10

SALM 8.46 1.13e-09
FB-C 11.54 2.67e-04

FB-LDR 9.18 2.27e-10
500 20 0.2 0.39

ALM 11.38 8.99e-02
MV 15.58 8.38e-02

SALM 13.41 5.06e-02
FB-C 3.80 1.55e-06

FB-LDR 6.42 1.04e-10
1000 20 0.1 0.39

ALM 33.27 1.80e-01
MV 40.21 1.85e-01

SALM 40.68 1.93e-01
FB-C 18.53 4.54e-06

FB-LDR 31.97 1.45e-09
2000 20 0.1 0.20

ALM 176.19 1.74e-01
MV 212.39 1.92e-01

SALM 217.39 1.92e-01
FB-C 125.94 1.34e-04

FB-LDR 167.99 9.04e-09

The real efficacy of the proposed FB-LDR-C algorithm is most encountered in Table 6.2
for the "difficult" cases, where all the compared methods fail to recover the Toeplitz matrices
with an acceptable accuracy, while our proposal demonstrates robustness for high FR values,
namely, the number of given samples is relatively small with respect to the dimension of the
set of rank-k matrices.

6.2. Numerical results for Hankel matrix completion. The problem of spectrally
sparse signal recovering from a random subset of regular time domain samples can be refor-
mulated as a low-rank Hankel matrix completion problem [10, 12].

Let x(t) be a continuous one-dimensional spectrally κ-sparse signal; that is, x(t) is a
weighted superposition of κ complex sinusoids

(6.5) x(t) =

κ∑
j=1

cje
(2πfj−dj)t,

where cj , fj , and dj represent the non-zero complex amplitude, the normalized frequency,
and the damping factor of the jth sinusoid, respectively. Furthermore, let the column vector
x = [x(0), x(1), .., x(n− 1)]T denote the discrete samples of x(t). In some circumstances,
the measurements of the signal x are incomplete due to high experimental cost, hardware
limitation, or other reasons. The spectrally sparse signal, as defined in (6.5), appears in a
wide range of applications, for instance, in analog-to-digital conversion [42], nuclear magnetic
resonance spectroscopy [14], and fluorescence microscopy [38].
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TABLE 6.2
Completion of Toeplitz matrices, difficult cases (FR ≥ 0.4).

n κ SR FR ALGORITHM Time (sec) Err
500 10 0.05 0.76

ALM 10.47 7.85e-01
MV 28.82 3.30e-01

SALM 33.03 4.98e-01
FB-C 10.65 4.76e-01

FB-LDR-C 28.07 4.50e-05
500 20 0.1 0.78

ALM 13.05 4.20e-01
MV 23.05 2.20e-01

SALM 22.31 2.66e-01
FB-C 12.01 2.04e-03

FB-LDR-C 21.4 3.99e-09
500 20 0.08 0.96

ALM 10.24 6.47e-01
MV 36.85 4.72e-01

SALM 34.84 5.31e-01
FB-C 11.85 9.81e-01

FB-LDR-C 29.75 1.72e-04
1000 20 0.05 0.77

ALM 33.77 5.92e-01
MV 97.20 4.39e-01

SALM 144.73 4.61e-01
FB-C 34.98 2.61e-01

FB-LDR-C 109.28 4.76e-05
1000 30 0.1 0.59

ALM 81.3 9.18e-02
MV 88.11 9.00e-02

SALM 97.33 9.84e-02
FB-C 24.18 9.90e-03

FB-LDR-C 62.11 3.80e-09
2000 20 0.025 0.77

ALM 129.6 1.03
MV 731.8 6.07e-01

SALM 573.67 6.28e-01
FB-C 117.4 1.82e-01

FB-LDR-C 636.99 1.03e-05

In this experiment, we aim to recover x(t) from partial measurements xj , j ∈ Ω, where
Ω is a random set of indices of the observed entries, a subset of the complete index set
0, . . . , 2n− 1, with |Ω| = p, p < 2n−1. Recent results, such as those documented in [10, 12],
reformulated the signal reconstruction problem within the framework of Low Rank Hankel
Matrix Completion (LRHMC), which is the minimization problem (1.1) with X = H(x),
where H(x) denotes a Hankel matrix arranged from the vector x.

In our experiment, the spectrally sparse signals of length n with κ frequency components
are formed in the following way: each frequency fj is uniformly sampled from [0, 1), and
the argument of each complex coefficient dj is uniformly sampled from [0, 2π), while the
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(a) (b)

(c) (d)

FIG. 6.1. Phase transition recovery: (a) IHT algorithm; (b) FB-LDR-C algorithm; (c) IHT successes over
FB-LDR-C; (d) FB-LDR-C successes over IHT.

amplitude is selected to be 1 + 100.5cj with cj being uniformly distributed on [0, 1]. Then p
entries of the test signals are uniformly randomly sampled. For a given triple (n, κ, p), 50
random tests were conducted. A successful reconstruction xrec of a test signal x satisfies the
relative error

(6.6) ‖xrec − x‖2/‖x‖2 ≤ 10−3.

The tests were conducted with n = 127 and SR = p/n taking 18 equispaced values from 0.1
to 0.95. We compare our algorithm with the proposal in [3], named IHT.

The empirical phase transitions for the two tested algorithms are illustrated in Figure 6.1,
first row, where each column corresponds to a different SR value, and each row corresponds
to a different rank κ. Each pixel of the image is white colored when the algorithm recover all
of the 50 random test signals, satisfying (6.6), while it is black colored if the algorithm fails to
recover each of the randomly generated signals. Grayscale color indicates partial recover of
the entire set of 50 signals.

The performance of IHT degrades severely when the sampling ratio SR is lower than
0.45, while FB-LDR-C can still achieve good performance even for the recovery of matrices
with rank greater than 30. This is better highlighted observing Figure 6.1 (second row), where
the differences between the performance in Figure 6.1(b) and Figure 6.1(a) are illustrated. In
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particular, Figure 6.1(c) represents blue-colored the cases where IHT outperforms FB-LDR-C,
while Figure 6.1(d) denotes in red color the cases where FB-LDR-C outperforms IHT.

7. Conclusion and research directions. This paper introduced a novel variational ap-
proach for matrix completion and related spectrally sparse signal recovery problems which
involves matrices with low-rank displacement structure. We proposed a forward-backward
strategy with projection for the minimization of the optimization problem, which leads to
an easy to implement and surprisingly effective algorithm both in terms of computational
cost and capability of handling particularly difficult recovery problems characterized by the
freedom ratio FR > 0.4. Our algorithm exploits the constraint on the rank of the associated
displacement matrix, which makes the original formulation (1.4) non-convex. Convexifying
the setMk is not of any interest since the convex hull is the whole space of rank-κ matrices
in Rm×n; we could instead investigate the use of some relaxed forms of the rank function or
the quasiconvex hull of the rank function [19].

Finally, a natural research direction will be to extend our optimization framework to
include the recovery of other important classes of matrices with displacement structure such
as the well-known classes of Vandermonde and Cauchy matrices, which play an important
role in several applications.
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