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THE LSQR METHOD FOR SOLVING TENSOR LEAST-SQUARES PROBLEMS∗

ABDESLEM H. BENTBIB†, ASMAA KHOUIA‡, AND HASSANE SADOK§

Abstract. In this paper, we are interested in finding an approximate solution X̂ of the tensor least-squares
minimization problem minX

∥∥X ×1 A(1) ×2 A(2) ×3 · · · ×N A(N) − G
∥∥, where G ∈ RJ1×J2×···×JN and

A(i) ∈ RJi×Ii (i = 1, . . . , N ) are known and X ∈ RI1×I2×···×IN is the unknown tensor to be approximated.
Our approach is based on two steps. Firstly, we apply the CP or HOSVD decomposition to the right-hand side tensor G.
Secondly, we perform the well-known Golub-Kahan bidiagonalization for each coefficient matrix A(i)(i = 1, . . . , N )
to obtain a reduced tensor least-squares minimization problem. This type of equations may appear in color image
and video restorations as we described below. Some numerical tests are performed to show the effectiveness of our
proposed method.
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1. Introduction. The LSQR algorithm of Paige and Sanders [18] is one of the most
efficient algorithm for solving the linear system

Ax = b

or the linear least-squares problem,

(1.1) min
x
‖Ax− b‖2 ,

whereA is a matrix of sizem×n and b is a vector of sizem. The LSQR method is analytically
equivalent to the conjugate gradient method applied to the normal equations associated to (1.1).
The LSQR algorithm is based on the Golub-Kahan bidiagonalization procedure [7]. In the past
few years, many researchers have employed the LSQR algorithm for solving various equations.
For instance, in [19] the authors proposed a global version of LSQR (GL-LSQR) to obtain
an approximate solution of the matrix equation AX = B, with A ∈ Rn×n and B ∈ Rn×s.
Recently, a Golub-Kahan bidiagonalization process based on a tensor format was presented
in [1, 13] to solve the tensor equation

A(X ) = B,

where X is a tensor of size nd × nd−1 × · · · × n1 and A is a linear operator defined by

A : Rnd×nd−1×···×n1 −→ Rnd×nd−1×···×n1

X −→ A(X ) =

I∑
i=1

X ×1 Ai,d ×2 Ai,d−1 ×3 · · · ×d Ai,1.

Here, ×i, for i = 1, . . . , d, denotes the i-mode product; see below. In those references, the
authors used the Golub-Kahan bidiagonalization of the linear operator A. For an extensive
survey on the subject of higher-order tensors we refer to [5, 15].
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DEFINITION 1.1 ([5, 17]). Let X ∈ RI1×I2···×IN be an N th-order tensor, let Xi1i3···iN
denote the element (i1, i2, . . . , iN ) of X , and let U ∈ RJ×In be a matrix. Then, the n-mode
product of X by U , denoted by X ×n U , is a tensor of size I1× I2× · · ·× In−1×J × In+1×
· · · × IN , whose entries are given by

(X ×n U)i1...in−1jin+1...iN =

In∑
in=1

Xi1...in−1inin+1...iNUjin .

This paper is concerned with the numerical solution of a tensor least-squares problem of
the form

(1.2) min
X

∥∥∥L (X )− S ×1 G
(1) ×2 G

(2) ×3 · · · ×N G(N)
∥∥∥ .

Here L is a linear tensor operator defined by

L : RI1×I2×···×IN −→ RJ1×J2×···×JN

X −→ X ×1 A
(1) ×2 A

(2) ×3 · · · ×N A(N),

where S ∈ Rm1×m2×···×mN , G(i) ∈ RJi×mi , and A(i) ∈ RJi×Ii (i = 1, . . . , N ) are known
and X ∈ RI1×I2×···×IN is the unknown tensor to be approximated.

We point out that our approach can be applied to solve general least-squares problems

(1.3) min
X
‖L(X )− G‖

for an arbitrary right-hand side tensor G ∈ RJ1×J2×···×JN by decomposing the tensor G using
the CP [11] or the Tucker decomposition [21, 22], better known as the higher-order SVD
(HOSVD) [6]. It is easy to verify that, if the right-hand side tensor G is written in CP or
HOSVD format, then the solution X can also be written in CP or HOSVD format. The tensor
least-squares minimization problem (1.3) is a generalization of the equations arising in color
image and video restoration; see Section 6. It is not difficult to verify that (1.3) is equivalent
to the minimization problem

min
X
‖A vec(X )− vec(G)‖ ,

where A = A(N) ⊗ · · · ⊗ A(2) ⊗ A(1) and ⊗ denotes the Kronecker product. The operator
“vec” stacks the columns of a matrix or a tensor to form a vector. If Ii = Ji, for i = 1, . . . , N ,
then the eigenvalues of the matrix A arise as a product of eigenvalues of the matrices A(i)

(i = 1, . . . , N). The spectrum of A denoted by λ(A) is given by the set

λ(A) = {λ1λ2 · · ·λN such that λi ∈ λ(A(i)), i = 1, . . . , N};

see [12]. This leads to the following result:
LEMMA 1.2. If Ii = Ji, for i = 1, . . . , N , then the solution of the tensor problem (1.3) is

unique if and only if

λ1λ2 · · ·λN 6= 0,

for all λi ∈ λ(A(i)), i = 1, . . . , N .
When X is an order-2 tensor, that is a matrix X , then the tensor least-squares minimiza-

tion (1.3) becomes

min
X

∥∥∥A(1)XA(2)T −G
∥∥∥ .
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In this work, we are interested in finding an approximate solution of the tensor least-
squares problem (1.2). Our approach is based on performing the well-known Golub-Kahan
bidiagonalization for the matrix pair

(
A(i), G(i)

)
, for i = 1, . . . , N . More generally, we are

interested in solving the tensor problem (1.3) by writing the right-hand side tensor G in CP
or HOSVD format. Using this approach we can solve the problem (1.3) for higher orders
since we are dealing with matrices instead of tensors. In fact, when the dimension increases,
the problem becomes harder to handle since the data size of a tensor increases exponentially
with the dimensionality of the tensor itself. As a consequence, tensor computations can be
extremely expensive and require a large amount of memory. For example, the n-mode product

given in Definition 1.1 has a computational complexity of O
(
J
∏N
i=1
i6=n

Ii

)
. In addition, by

writing the approximate solution in CP or HOSVD decomposition format, we reduce the
required memory. For instance, the CP decomposition transforms the storage complexity of
an IN tensors to O(NRI), where R is the CP rank.

The remainder of the paper is organized as follows. In the next section we introduce the
notation adopted in this paper and some basic definitions and properties related to tensors. In
Section 3, we give a brief introduction to CP and HOSVD decompositions. In Section 4, we
construct an approximate solution of the minimization problem (1.3) based on Golub-Kahan
bidiagonalization. We work on the coefficient matrices A(i)(i = 1, . . . , N ) by taking the
right-hand side tensor G in rank-one format, and then we generalized it to the case where
the right-hand side tensor is approximated using the HOSVD decomposition in Section 5.
An example of an application to image and video restoration is given in Section 6. Finally,
numerical examples are presented in Section 7 that show the effectiveness of the proposed
approach.

2. Notation and preliminary concepts. In this section, we summarize some of the basic
facts about tensors and their computations that will be used in the paper.

DEFINITION 2.1. The inner product of two same-size tensors A,B ∈ RI1×I2×···×IN is
given by

〈A,B〉 =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

Ai1···iNBi1···iN .

It follows immediately that

〈A,A〉 =‖ A ‖2 =

I1∑
i1=1

I2∑
i2=1

. . .

IN∑
iN=1

A2
i1...iN .

DEFINITION 2.2 ([5, 15]). The n-mode matrix of a tensor A ∈ RI1×I2×···×IN , denoted
by A(n) ∈ RIn×(I1···In−1In+1···IN ), arranges the mode-n fibers into the columns of a matrix.
More specifically, we have for, j = 1 +

∑N
k=1,k 6=n(ik − 1)Jk and Jk =

∏k−1
m=1,m 6=n Im,

A(n)(in, j) = A(i1, i2, ..., iN ).

REMARK 2.3. Let A ∈ RI1×I2×I3 . We can express the n-mode matrix using the slices

A(1) = [A(:, 1, :),A(:, 2, :), . . . ,A(:, I2, :)] ,

A(2) =
[
A(:, :, 1)T ,A(:, :, 2)T , . . . ,A(:, :, I3)T

]
,

A(3) = [A(1, :, :),A(2, :, :), . . . ,A(I1, :, :)] .
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DEFINITION 2.4. The vectorization of the matrix Y ∈ RI×T is defined by

y = vec(Y ) =
[
Y (:, 1)T , Y (:, 2)T , . . . , Y (:, T )T

]T ∈ RIT .

Analogously, the vectorization of a tensor Y is defined as the vectorization of the associated
1-mode unfolded matrix Y(1)

vec(Y) = vec(Y(1)).

PROPOSITION 2.5 ([5, 15]). LetX ∈ RI1×I2×···×IN be anN th-order tensor, V ∈ RJ×In ,
U ∈ RK×Im , and W ∈ RIn×In . For distinct modes in a series of multiplication, the order of
the multiplication is irrelevant, i.e.,

X ×m U ×n V = X ×n V ×m U.

If the modes are the same, then

X ×n V ×nW = X ×nWV.

If U is an orthonormal matrix, then

‖X ×m U‖ = ‖X‖ .

PROPOSITION 2.6 ([5, 15]). Let X ∈ RI1×I2×···×IN be a N th-order tensor and
{Ui}1≤i≤N a set of matrices with Ui ∈ RJi×Ii , i = 1, . . . , N .

1. (X ×Ni=1 Ui)(n) = UnX(n)(UN ⊗ . . .⊗ Un+1 ⊗ Un−1 ⊗ . . .⊗ U1)T .
2. vec(X ×Ni=1 Ui) = (UN ⊗ UN−1 ⊗ · · · ⊗ U1) vec(X ).

DEFINITION 2.7 ([5, 15]). The outer product of the tensors Y ∈ RI1×I2×···×IN and
X ∈ RJ1×J2×···×JM is given by

Z = Y ◦ X ∈ RI1×I2×···×IN×J1×J2×···×JM ,

with

Zi1,i2,...,iN ,j1,j2,...,jM = Yi1,i2,...,iNXj1,j2,...,jM .

As special cases, the outer product of two vectors a ∈ RI and b ∈ RJ yields a rank-one matrix

A = a ◦ b = abT ∈ RI×J ,

and the outer product of three vectors a ∈ RI , b ∈ RJ , and c ∈ RQ yields a third-order
rank-one tensor

Z = a ◦ b ◦ c ∈ RI×J×Q, with zi,j,k = aibjck.

Using the outer product definition, a tensor of rank one can be defined as follows.
DEFINITION 2.8 ([5, 15]). A tensor X ∈ RI1×I2×···×IN of order N has rank-one if it

can be written as an outer product of N vectors, i.e.,

X = x(1) ◦ x(2) ◦ · · · ◦ x(N),

with x(i) ∈ RIi , for i = 1, . . . , N .
The following definition generalizes the matrix Kronecker product to tensors.
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DEFINITION 2.9 ([17]). The Kronecker product of two tensors Y ∈ RI1×I2×···×IN and
X ∈ RJ1×J2×···×JN is given by

Z = Y ⊗ X ∈ RI1J1×I2J2×···×INJN ,

with

Zk1,...,kN = Yi1,...,iNXj1,...,jN , kn = jn + (in − 1)Jn, n = 1, . . . , N.

PROPOSITION 2.10. Let Y ∈ RI1×I2×···×IN and X ∈ RJ1×J2×···×JN be two N th-order
tensors. We have the following result:

‖Y ⊗ X‖ = ‖Y‖ ‖X‖ .

Proof. The thesis is easy to verify using Definition 2.9.
PROPOSITION 2.11 ([5]). Let (ai)1≤i≤N be a family of N vectors of sizes Ii, with

i = 1, . . . , N . Then we have the relation

vec(a1 ◦ a2 ◦ · · · ◦ aN ) = aN ⊗ aN−1 ⊗ · · · ⊗ a1.

PROPOSITION 2.12 ([2]). Let Y ∈ RI1×I2×···×IN and X ∈ RJ1×J2×···×JN be two
tensors, and let Un ∈ RK×In and Vn ∈ RL×Jn . We have

(Y ⊗ X )×n (Un ⊗ Vn) = (Y ×n Un)⊗ (X ×n Vn).

3. Tensor decomposition. In this section, we give a brief introduction to higher-order
decompositions. In particular, we focus on two tensor decompositions, the CP decomposition
that approximates a tensor as sum of rank-one tensors and the higher-order SVD (HOSVD)
decomposition.

3.1. The CP decomposition. Let A ∈ RI1×I2×···×IN be an N th-order tensor. The CP
decomposition [5, 11, 14, 15] of A is given by

A =

R∑
r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r ,

where a(k)
r are vectors of size Ik, for 1 ≤ k ≤ N , and R is a positive integer. A CP

decomposition of a tensor A is called an exact CP decomposition if R = rank(A), where
rank(A) [15] represents the rank of the tensor A defined as the smallest number of rank-one
tensors that generateA as their sum. Unlike for matrices, where the best rank-R approximation
is given by the leading R factors of the SVD, the rank of a specific given tensor is hard to
define [10]. In practice, the rank of a tensor is determined numerically by fitting various
rank-R CP models. However, an interesting property associated with the CP decomposition
for higher-order tensors is the uniqueness under some conditions; see [11, 16].

If we define An =
[
a

(n)
1 a

(n)
2 · · · a(n)

R

]
, for n ∈ {1, . . . , N}, then the CP decomposition

can be symbolically written as

A = A1 ◦A2 ◦ · · · ◦AN ,

where the matrices An ∈ RIn×R are called factor matrices. Often, the vectors a(n)
r are chosen

such that ‖a(n)
r ‖ = 1. In this case, the CP decomposition is written as

A =

R∑
r=1

λra
(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r ,
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where λr is a scalar that compensates for the magnitudes of the vectors a(n)
r . Using the n-mode

multiplication of a tensor by a matrix, we obtain the representation

A = Λ×1 A1 ×2 · · · ×N AN ,

where Λ ∈ RR×R×···×R is defined by

Λi1,··· ,iN =

{
λr for i1 = i2 = · · · = iN = r,

0 otherwise.

For a given integer R, there are many algorithms to compute the CP decomposition. The most
popular approach is to apply the alternating least-squares method (ALS); see [4, 11, 15].

3.2. The HOSVD decomposition. There are many decompositions associated with
higher-order tensors that generalize the matrix SVD, for example, the higher-order SVD
(HOSVD).

DEFINITION 3.1. Let A ∈ RI1×I2×···×IN be an N th-order tensor. The Tucker de-
composition (often referred to as the higher-order SVD (HOSVD) [6, 22]) of A is defined
by

A = V ×1 U1 ×2 U2 ×3 · · · ×N UN ,

where V ∈ RR1×R2×···×RN is the core tensor, Un ∈ RIn×Rn are factor matrices, and
(R1, . . . , RN ) is the multi-linear rank of the tensor A, where Rn = rank(A(n)). In the case
of the HOSVD decomposition, the factor matrices Un, for n = 1, . . . , N , are orthonormal.

For computing the orthonormal factors Un, for n = 1, . . . , N , and the tensor V , we
compute the SVD associated with each n-mode matrix of the tensor

A(n) = UnΣnV
T
n

and put

V = A×1 U
T
1 ×2 U

T
2 ×3 · · · ×N UTN .

We point out that a rank(r1, · · · , rN ) approximation, with rn ≤ Rn, for n = 1, . . . , N ,
can be obtained easily by restricting the factor matrices Un to the first rn columns (truncated
SVD), for n = 1, . . . , N , and by restricting the core tensor V .

4. Rank-one approximation. In the following section we assume that the right-hand
side tensor G in (1.3) is of rank one, which means, it can be written as

G = g(1) ◦ g(2) ◦ · · · ◦ g(N),

where g(i) ∈ RJi , for i = 1, . . . , N . Applying a Golub-Kahan bidiagonalization to the pairs
(A(i), g(i)), for i = 1, . . . , N , leads to the following relations, for i = 1, . . . , N ,

(4.1) U
(i)
k+1(β

(i)
1 e1) = g(i), A(i)V

(i)
k = U

(i)
k+1B

(i)
k ,

where U (i)
k+1 = [u

(i)
1 , . . . , u

(i)
k+1] and V (i)

k = [v
(i)
1 , . . . , v

(i)
k ] are orthonormal bases, e1 is the

first unit vector of Rk, and B(i)
k is a bidiagonal matrix defined as
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B
(i)
k =



α
(i)
1

β
(i)
2 α

(i)
2

β
(i)
3 α

(i)
3

. . . . . .
β

(i)
k α

(i)
k

β
(i)
k+1


.

PROPOSITION 4.1. Let X (k) = Yk ×1 V
(1)
k ×2 V

(2)
k ×3 · · · ×N V (N)

k be an approximate
solution of (1.3) with Yk ∈ Rk×k×···×k. The corresponding residualRk can be expressed as

(4.2) Rk = (β
(1)
1 e1 ◦· · ·◦β(N)

1 e1−Yk×1B
(1)
k ×2 · · ·×N B(N)

k )×1U
(1)
k+1×2 · · ·×N U (N)

k+1.

The residual norm is given by

(4.3) ‖Rk‖ =
∥∥∥β(1)

1 e1 ◦ · · · ◦ β(N)
1 e1 − Yk ×1 B

(1)
k ×2 · · · ×N B

(N)
k

∥∥∥ .
Proof. Using the relations (4.1), we get

Rk = G − Xk ×1 A
(1) ×2 A

(2) ×3 · · · ×N A(N)

= G − Yk ×1 V
(1)
k ×2 V

(2)
k ×3 · · · ×N V

(N)
k ×1 A

(1) ×2 A
(2) ×3 · · · ×N A(N)

= G − Yk ×1 A
(1)V

(1)
k ×2 A

(2)V
(2)
k ×3 · · · ×N A(N)V

(N)
k

= G − Yk ×1 U
(1)
k+1B

(1)
k ×2 U

(2)
k+1B

(2)
k ×3 · · · ×N U

(N)
k+1B

(N)
k

= G − Yk ×1 B
(1)
k ×2 B

(2)
k ×3 · · · ×N B

(N)
k ×1 U

(1)
k+1 ×2 U

(2)
k+1 ×3 · · · ×N U

(N)
k+1.

On the other hand, we have

G = g(1) ◦ g(2) ◦ · · · ◦ g(N)

= U
(1)
k+1(β

(1)
1 e1) ◦ U (2)

k+1(β
(2)
1 e1) ◦ · · · ◦ U (N)

k+1(β
(N)
1 e1)

= (β
(1)
1 e1 ◦ β(2)

1 e1 ◦ · · · ◦ β(N)
1 e1)×1 U

(1)
k+1 ×2 U

(2)
k+1 ×3 · · · ×N U

(N)
k+1,

which shows (4.2). Moreover, U (i)
k+1, for i = 1, . . . , N , are orthonormal matrices, which

proves (4.3).
The method determines the tensor Yk that minimizes ‖Rk‖,

Yk = arg min
Y

∥∥∥β(1)
1 e1 ◦ β(2)

1 e1 ◦ · · · ◦ β(N)
1 e1

−Y ×1 B
(1)
k ×2 B

(2)
k ×3 · · · ×N B

(N)
k

∥∥∥.(4.4)

This minimization problem is solved using the QR decomposition of each matrix B(i)
k , for

i = 1, . . . , N ,

Q
(i)
k B

(i)
k =

[
R

(i)
k

0

]
, Q

(i)
k (β

(i)
1 e1) =

[
f

(i)
k

φ̄
(i)
k+1

]
,
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where the matrix Q(i)
k is a product of k Givens rotation chosen to eliminate the subdiagonal

elements β(i)
2 , β

(i)
3 , . . . , β

(i)
k+1,

R
(i)
k =


ρ

(i)
1 θ

(i)
2

ρ
(i)
2 θ

(i)
3

. . . . . .
ρ

(i)
k−1 θ

(i)
k

ρ
(i)
k

 and f
(i)
k =


φ

(i)
1

φ
(i)
2
...

φ
(i)
k−1

φ
(i)
k

 .

The minimizer Yk of the minimization problem (4.4) can be obtained from the equation

Yk ×1 R
(1)
k ×2 R

(2)
k ×3 · · · ×N R

(N)
k = f

(1)
k ◦ f (2)

k ◦ · · · ◦ f (N)
k .

Therefore, an approximate solution is given by

X (k) = Yk ×1 V
(1)
k ×2 V

(2)
k ×3 · · · ×N V

(N)
k

= Vk
(1)Rk

(1)−1
fk

(1) ◦ V (2)
k R

(2)
k

−1
fk

(2) ◦ · · · ◦ V (N)
k R

(N)
k

−1
f

(N)
k

= x
(1)
k ◦ x

(2)
k ◦ · · · ◦ x

(N)
k ,

where xk(i) = V
(i)
k R

(i)
k

−1
f

(i)
k , for i = 1, . . . , N , which can also be written in the form

(see [18]) {
x

(i)
k = x

(i)
k−1 + φ

(i)
k d

(i)
k ,

x
(i)
0 = 0,

and d(i)
k can be updated using the expression

d
(i)
k =

1

ρ
(i)
k

(v
(i)
k − θ

(i)
k d

(i)
k−1),

d
(i)
0 = 0.

The following lemma is used to prove Theorem 4.3.
LEMMA 4.2. Let F and F̂ be two N th-order tensors of size k + 1× · · · × k + 1 defined

by

F =

[
f

(1)
k

φ̄
(1)
k+1

]
◦

[
f

(2)
k

φ̄
(2)
k+1

]
◦ · · · ◦

[
f

(N)
k

φ̄
(N)
k+1

]
,

F̂ =

[
f

(1)
k

0

]
◦
[
f

(2)
k

0

]
◦ · · · ◦

[
f

(N)
k

0

]
.

Then
〈
F , F̂

〉
=
∥∥∥F̂∥∥∥2

.

Proof. By construction it holds that

〈
F , F̂

〉
=

k+1∑
i1=1

k+1∑
i2=1

· · ·
k+1∑
iN=1

Fi1...iN F̂i1...iN .
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From Definition 2.7, it is easy to verify that

F̂i1...iN =

{
Fi1...iN for 1 ≤ i1, i2, . . . , iN ≤ k,
0 otherwise.

Then we have〈
F , F̂

〉
=

k∑
i1

k∑
i2

· · ·
k∑
iN

Fi1...iNFi1...iN =

k∑
i1

k∑
i2

· · ·
k∑
iN

F2
i1...iN =

∥∥∥F̂∥∥∥2

.

In the next theorem, we give an upper bound for the residual norm.
THEOREM 4.3. The residual norm ||Rk||2 satisfies the following inequality:

‖Rk‖2 ≤ Pk
N∑
i=1

φ̄
(i)2
k+1∥∥∥f̂ (i)
k

∥∥∥2 ,

where f̂ (i)
k =

[
fk

(i)

φ̄
(i)
k+1

]
and Pk =

∏N
i=1

∥∥∥f̂ (i)
k

∥∥∥2

.

Proof. We have

‖Rk‖2 =
∥∥∥Yk ×1 B

(1)
k ×2 · · · ×N Bk

(N) − β1
(1)e1 ◦ · · · ◦ β1

(N)e1

∥∥∥2

=
∥∥∥(Yk ×1 B

(1)
k ×2 · · · ×N Bk

(N) − β(1)
1 e1 ◦ · · · ◦ β(N)

1 e1

)
×1

Qk
(1) ×2 · · · ×N Qk

(N)
∥∥∥2

=

∥∥∥∥∥Yk ×1

[
R

(1)
k

0

]
×2 · · · ×N

[
R

(N)
k

0

]
−

[
f

(1)
k

φ̄
(1)
k+1

]
◦ · · · ◦

[
f

(N)
k

φ̄
(N)
k+1

]∥∥∥∥∥
2

.

Let Yk be the solution of the problem

Yk ×1 R
(1)
k ×2 R

(2)
k ×3 · · · ×N R

(N)
k = f

(1)
k ◦ f (2)

k ◦ · · · ◦ f (N)
k .

Then

‖Rk‖2 =

∥∥∥∥∥
[
f

(1)
k

φ̄
(1)
k+1

]
◦

[
f

(2)
k

φ̄
(2)
k+1

]
◦ · · · ◦

[
f

(N)
k

φ̄
(N)
k+1

]
−
[
f

(1)
k

0

]
◦
[
f

(2)
k

0

]
◦ · · · ◦

[
f

(N)
k

0

]∥∥∥∥∥
2

.

From Lemma 4.2, the residual norm can be expressed as

‖Rk‖2 =
∥∥∥F − F̂∥∥∥2

= ‖F‖2 − 2
〈
F , F̂

〉
+
∥∥∥F̂∥∥∥2

= ‖F‖2 −
∥∥∥F̂∥∥∥2

=

k+1∑
i1=1

k+1∑
i2=1

· · ·
k+1∑
iN=1

F2
i1i2...iN −

k∑
i1=1

k∑
i2=1

· · ·
k∑

iN=1

F2
i1i2...iN

≤
k+1∑
i2=1

· · ·
k+1∑
iN=1

F2
k+1i2...iN +

k+1∑
i1=1

· · ·
k+1∑
iN=1

F2
i1k+1...iN

+ · · ·+
k+1∑
i1=1

k+1∑
i2=1

· · ·
k+1∑

iN−1=1

F2
i1i2...k+1.
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Using Matlab notation, we have∥∥∥Rk||2 ≤ ‖F(k + 1, :, . . . , :)‖2 + ‖F(:, k + 1, . . . , :)‖2 + · · ·+ ‖F(:, :, . . . , k + 1)‖2 .

Since F(:, . . . , k + 1︸ ︷︷ ︸
i-th index

, . . . , :), for i = 1, . . . , N , can be written as

F(:, . . . , k + 1, . . . , :) = φ̄
(i)
k+1f̂

(1)
k ◦ · · · ◦ f̂ (i−1)

k ◦ f̂ (i+1)
k ◦ · · · ◦ f̂ (N)

k ,

using Proposition 2.11, we have

vec(F(:, . . . , k + 1, . . . , :)) = φ̄
(i)
k+1f̂

(N)
k ⊗ · · · ⊗ f̂ (i+1)

k ⊗ f̂ (i−1)
k · · · ⊗ f̂ (1)

k .

Therefore, we obtain

||Rk||2 ≤
N∑
i=1

φ̄
(i)2
k+1

∥∥∥f̂ (1)
k

∥∥∥2

· · ·
∥∥∥f̂ (i−1)
k

∥∥∥2 ∥∥∥f̂ (i+1)
k

∥∥∥2

· · ·
∥∥∥f̂ (N)
k

∥∥∥2

.

5. Approximation in the HOSVD format. In this section, we assume that the right-
hand side tensor G of (1.3) is written in the HOSVD format:

G = S ×1 G
(1) ×2 · · · ×N G(N),

where S ∈ Rm1×m2×···×mN and G(i) ∈ RJi×mi , for i = 1, . . . , N . The CP decomposition
is a particular case of an HOSVD, when m1 = m2 = · · · = mN = R and S = IR, where
IR is the tensor identity. Applying a global Golub-Kahan bidiagonalization [19] to the pairs
(A(i), G(i)), for i = 1, . . . , N , leads to the relations

(5.1) Uk+1
(i)(β1

(i)e1 ⊗ Imi) = G(i), A(i)V(i)
k = U(i)

k+1(B
(i)
k ⊗ Imi),

with U(i)
k+1 =

[
U

(i)
1 U

(i)
2 · · ·U

(i)
k+1

]
and V(i)

k =
[
V

(i)
1 V

(i)
2 · · ·V (i)

k

]
being F-orthonormal.

The method consists in searching an approximate solution of the form

X (k) = Yk ×1 V(1)
k ×2 V(2)

k ×3 · · · ×N V(N)
k ,

where Yk solves the minimization problem

min
Y

∥∥∥∥S ×1 (β
(i)
1 e1 ⊗ Im1

)×2 · · · ×N (β
(N)
1 e1 ⊗ ImN

)

− Y ×1 (B
(1)
k ⊗ Im1

)×2 · · · ×N (B
(N)
k ⊗ ImN

)

∥∥∥∥ .(5.2)

In particular, when S reduces to IR andm1 = . . . = mN = R, we obtain the next proposition.
PROPOSITION 5.1. Let

X (k) = (Yk ⊗ IR)×1 V(1)
k ×2 V(2)

k · · · ×N V(N)
k ,

where Yk ∈ Rk×k×···×k is an approximate solution of (1.3) and where the right-hand side
tensor G is written in CP decomposition format. Then the corresponding residualRk can be
expressed as

Rk = (β
(1)
1 e1 ◦ · · · ◦ β(N)

1 e1 − Yk ×1 B
(1)
k ×2 · · · ×N B

(N)
k )⊗

IR ×1 U(1)
k+1 ×2 · · · ×N U(N)

k+1.
(5.3)
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In this case, the method determines the tensor Yk that solves the minimization problem

Yk = arg min
Y

∥∥∥β(1)
1 e1 ◦ β(2)

1 e1 ◦ · · · ◦ β(N)
1 e1 − Y ×1 B

(1)
k ×2 B

(2)
k ×3 · · · ×N B

(N)
k

∥∥∥ .
Proof. Using the relations (5.1), we get

Rk = G − X ×1 A
(1) ×2 A

(2) ×3 · · · ×N A(N)

= G − (Yk ⊗ IR)×1 V(1)
k ×2 V(2)

k ×3 · · ·

· · · ×N V(N)
k ×1 A

(1) ×2 A
(2) ×3 · · · ×N A(N)

= G − (Yk ⊗ IR)×1 U(1)
k+1(B

(1)
k ⊗ IR)×2 U(2)

k+1(B
(2)
k ⊗ IR)×3 · · ·

· · · ×N U(N)
k+1(B

(N)
k ⊗ IR)

= G − Yk ×1 B
(1)
k ×2 B

(2)
k ×3 · · ·

· · · ×N B
(N)
k ⊗ IR ×1 U(1)

k+1 ×2 U(2)
k+1 ×3 · · · ×N U(N)

k+1.

On the other hand, we have

G = IR ×1 G
(1) ×2 · · · ×N G(N)

= IR ×1 U(1)
k+1(β

(1)
1 e1 ⊗ IR)×2 · · · ×N U(N)

k+1(β
(N)
1 e1 ⊗ IR)

= (β
(1)
1 e1 ◦ · · · ◦ β(N)

1 e1 ⊗ IR)×1 U(1)
k+1 ×2 · · · ×N U(N)

k+1,

which proves (5.3).
The minimization problem (5.2) is solved using the QR decomposition of the matrices

B
(i)
k , for i = 1, . . . , N . Then, the minimizer Yk of the problem (5.2) can be obtained from the

following equation:

Yk×1 (R
(1)
k ⊗Im1

)×2 · · ·×N (R
(N)
k ⊗ImN

) = S×1 (f
(1)
k ⊗Im1

)×2 · · ·×N (f
(N)
k ⊗ImN

).

Therefore, an approximate solution is found by

X (k) = S ×1 V(1)
k ×2 · · · ×N V(N)

k

= S ×1 Vk(1)(Rk
(1)−1fk

(1) ⊗ Im1
)×2 · · · ×N V(N)

k (Rk
(N)−1fk

(N) ⊗ ImN
)

= S ×1 X
(1)
k ×2 · · · ×N X

(N)
k ,

(5.4)

whereXk
(i) = Vk(i)(R

(i)
k

−1
fk

(i)⊗Imi
), for i = 1, . . . , N . The matrixX(i)

k can be expressed
in the form {

X
(i)
k = X

(i)
k−1 + φ

(i)
k D

(i)
k ,

X
(i)
0 = 0,

where D(i)
k can be updated using the expression

D
(i)
k =

1

ρ
(i)
k

(V
(i)
k − θ(i)

k D
(i)
k−1),

D
(i)
0 = 0.
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LEMMA 5.2. Let V(i)
k =

[
V

(i)
1 V

(i)
2 · · ·V (i)

k

]
, with V (i)

l ∈ RIi×mi for l = 1, . . . , k, be
an F-orthonormal basis, and let X be an N th-order tensors of size km1 × · · · × kmN , and
Z ∈ Rk×···×k. Then∥∥∥X ×i V(i)

k

∥∥∥ 6 ‖X‖ ,
∥∥∥(Z ⊗ Imi

)×i V(i)
k

∥∥∥ = ‖Z‖ .

Proof. See [2].
THEOREM 5.3. The residual norm ||Rk||2 satisfies the inequality

‖Rk‖2 ≤ ‖S‖2 Pk
N∑
i=1

φ̄
(i)2
k+1∥∥∥f̂ (i)
k

∥∥∥2 ,

where f̂ (i)
k =

[
fk

(i)

φ̄
(i)
k+1

]
and Pk =

∏N
i=1 ||f̂

(i)
k ||2.

Proof. Using the first relation in Lemma 5.2, we have

‖Rk‖2 6
∥∥∥Yk ×1 (B

(1)
k ⊗ Im1)×2 · · · ×N (B

(N)
k ⊗ ImN

)

−S ×1 (β
(i)
1 e1 ⊗ Im1

)×2 · · · ×N (β
(N)
1 e1 ⊗ ImN

)
∥∥∥2

.

Let

Z =
∥∥∥Yk ×1 (B

(1)
k ⊗ Im1

)×2 · · · ×N (B
(N)
k ⊗ ImN

)

−S ×1 (β
(i)
1 e1 ⊗ Im1)×2 · · · ×N (β

(N)
1 e1 ⊗ ImN

)
∥∥∥2

.

Thus, we have

Z =

∥∥∥∥∥Yk ×Ni=1

([
R

(i)
k

0

]
⊗ Imi

)
− S ×Ni=1

([
f

(i)
k

φ̄
(i)
k+1

]
⊗ Imi

)∥∥∥∥∥
2

.

Let Yk be the solution to the following equation:

Y ×1 (R
(1)
k ⊗ Im1

)×2 · · · ×N (R
(N)
k ⊗ ImN

)

= Sk ×1 (f
(1)
k ⊗ Im1

)×2 · · · ×N (f
(N)
k ⊗ ImN

).

Then we have

Z =

∥∥∥∥∥S ×Ni=1

([
f

(i)
k

φ̄
(i)
k+1

]
⊗ Imi

)
− S ×Ni=1

([
f

(i)
k

0

]
⊗ Imi

)∥∥∥∥∥
2

.

Let

f̂ (i) =

[
f

(i)
k

φ̄
(i)
k+1

]
and f (i) =

[
f

(i)
k

0

]
, i = 1, . . . , N.

Using Proposition 2.6, we have

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

104 A. H. BENTBIB, A. KHOUIA, AND H. SADOK

Z ≤ ‖S‖2
∥∥∥∥(f̂ (N) ⊗ ImN

)
⊗ · · · ⊗

(
f̂ (1) ⊗ Im1

)
−
(
f (N) ⊗ ImN

)
⊗ · · · ⊗

(
f (1) ⊗ Im1

)∥∥∥∥2

2

= ‖S‖2
∥∥∥∥(f̂ (N) ⊗ · · · ⊗ f̂ (1)

)
⊗ (ImN

⊗ · · · ⊗ Im1)

−
(
f (N) ⊗ · · · ⊗ f (1)

)
⊗ (ImN

⊗ · · · ⊗ Im1)

∥∥∥∥2

2

= ‖S‖2
∥∥∥∥∥∥
(
f̂ (N) ⊗ · · · ⊗ f̂ (1) − f (N) ⊗ · · · ⊗ f (1)

)
⊗ (ImN

⊗ · · · ⊗ Im1
)︸ ︷︷ ︸

IM

∥∥∥∥∥∥
2

2

= ‖S‖2
∥∥∥(f̂ (N) ⊗ · · · ⊗ f̂ (1) − f (N) ⊗ · · · ⊗ f (1)

)
⊗ IM

∥∥∥2

2

= ‖S‖2
∥∥∥f̂ (N) ⊗ · · · ⊗ f̂ (1) − f (N) ⊗ · · · ⊗ f (1)

∥∥∥2

2

= ‖S‖2
∥∥∥vec

(
f̂ (1) ◦ · · · ◦ f̂ (N)

)
− vec

(
f (1) ◦ · · · ◦ f (N)

)∥∥∥2

2

= ‖S‖2
∥∥∥f̂ (1) ◦ · · · ◦ f̂ (N) − f (1) ◦ · · · ◦ f (N)

∥∥∥2

.

The proof is completed by applying Theorem 4.3.
The discussed approach is summarized in Algorithm 1 given below.
REMARK 5.4. In line 23 of Algorithm 1, we compute the upper bound of the residual

norm ||Rk|| given in Theorem 5.3, where n̂(i)
j denotes

∥∥∥f̂ (i)
j

∥∥∥2

.

6. An example of an application to image and video restoration. In this section, we
describe a degradation model associated with color images and videos in the form (1.3). Image
restoration is the process of removing blur and noise from a degraded image to recover an
approximation of the original image. The well-known mathematical model associated with
gray-scale image restoration [3, 8, 9] is formulated as follows:

Kx = b, with x = vec(X), and b = vec(B),

where B ∈ Rm×n is the blurred image, X ∈ Rm×n is the true image, and K ∈ Rmn×mn
is the blurring matrix. The blurring matrix can be determined using both the point spread
function (PSF) and the imposed boundary conditions [9]. If the blur is separable, then the
blurring matrix can be decomposed as a Kronecker product of two matrices: K = Kr ⊗Kc.
In this case, the blurring model associated to the restoration of a gray-scale image can be
formulated in the form

KcXK
T
r = B.

In the non-separable case, one can approximate the matrixK by solving the Kronecker product
approximation (KPA) problem [23]

(6.1) (K̂r, K̂c) = arg min
Kr,Kc

‖K −Kr ⊗Kc‖ .
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Algorithm 1
1: Input: Coefficient matrices A(i) for i = 1, . . . , N . The right-hand side tensor G.
2: Output: An approximate solution Xk of (1.3).
3: Decompose G as S ×1 G

(1) ×2 G
(2) ×3 · · · ×N G(N)

4: Set β1
(i) =

∥∥G(i)
∥∥, U1

(i) =
1

β1
G(i), α1

(i) =
∥∥∥A(i)TU1

(i)
∥∥∥, and V1

(i) =
1

α1
A(i)TU

(i)
1

5: Set W (i)
1 = V

(i)
1 , φ̄(i)

1 = β
(i)
1 , ρ̄(i)

1 = α
(i)
1

6: for doj = 1, 2, 3 . . . , k
7: for doi = 1, 2, 3 . . . , N

8: W̄j = A(i)V
(i)
j − α(i)

j U
(i)
j , β(i)

j+1 = ||W̄ (i)
j ||, U

(i)
j+1 = W̄

(i)
j /β

(i)
j+1

9: S̄
(i)
j = A(i)TUj+1

(i) − βj+1
(i)Vj

(i), α(i)
j+1 = ||S̄(i)

j ||, Vj+1
(i) = S̄

(i)
j /αj+1

(i)

10: ρj
(i) =

√
ρ̄

(i)2
j + βj+1

(i)2

11: cj
(i) = ρ̄

(i)
j /ρj

(i)

12: s
(i)
j = β

(i)
j /ρ

(i)
j

13: θ
(i)
j+1 = s

(i)
j α

(i)
j+1

14: ρ̄
(i)
j+1 = c

(i)
j α

(i)
j+1

15: φ
(i)
j = c

(i)
j φ̄

(i)
j

16: nj
(i) = nj−1

(i)φj
(i)2

17: φ̄
(i)
j+1 = s

(i)
j φ̄

(i)
j

18: X
(i)
j = X

(i)
j−1 +

φ
(i)
j

ρ
(i)
j

W
(i)
j

19: Wj+1
(i) = Vj+1

(i) − φi+1
(i)

ρi(i)
Wj

(i)

20: n̂
(i)
j = nj

(i) + φ̄
(i)2
j+1

21: end for
22: Xj = S ×1 Xj

(1) ×2 · · · ×N Xj
(N)

23: If ‖S‖
√∏N

i=1 n̂
(i)
j

∑N
i=1

φ̄
(i)2
j+1

n̂
(i)
j

is small enough then stop.

24: end for

Using RGB format storage, color images are represented by a three-dimensional array of size
m× n× 3. The degradation model in tensor format is given in the following proposition.

PROPOSITION 6.1. Under the assumption that the blur is the same in all channels, the
blurring model associated with color images is given by the tensorial equation

(6.2) X ×1 Kc ×2 Kr = G,

where X ,G ∈ Rm×n×3 denote the original and the degraded image, respectively.
Proof. The blurring model is described by the equation

(6.3) (I3 ⊗K)x = g,

where x and g are defined by

x =

x(1)

x(2)

x(3)

 , g =

g(1)

g(2)

g(3)

 ,
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with x(i) = vec(X (:, ; , i)) and g(i) = vec(G(:, ; , i)), for i = 1, 2, 3.
Using the Kronecker approximation (6.1) of the blurring matrix K, (6.3) can be written as

(I3 ⊗Kr ⊗Kc)x = g,

which is equivalent to

(6.4) Kc[X (:, :, 1),X (:, :, 2),X (:, :, 3)](I3 ⊗KT
r ) = [G(:, :, 1),G(:, :, 2),G(:, :, 3)].

From (6.4) and using the transpose of each frontal slice, we obtain the equation

Kr[X (:, :, 1)T ,X (:, :, 2)T ,X (:, :, 3)T ](I3 ⊗KT
c )

= [G(:, :, 1)T ,G(:, :, 2)T ,G(:, :, 3)T ].
(6.5)

Using Remark 2.3, equation (6.5) can be rewritten in the form

(6.6) KrX(2)(I3 ⊗KT
c ) = G(2).

Using Proposition 2.6, equation (6.6) can be expressed as

(X ×1 Kc ×2 Kr ×3 I3)(2) = G(2).

This leads to the following tensor equation,

X ×1 Kc ×2 Kr = G.

REMARK 6.2. The blurring equation (6.2) given above represents gray-scale and color
videos degradation models, where X ,G ∈ Rm×n×p are third-order tensors in case of gray-
scale videos and X ,G ∈ Rm×n×3×p are fourth-order tensors in case of color videos, respec-
tively. The dimension p represents the number of frames. Note that the restoration of these
frames, one at a time, is extremely time consuming.

7. Numerical examples. In this section, we perform some numerical tests to show the
effectiveness of the approach described in this paper. The first part is devoted to the solution
of problem (1.3) for given matrices A(i), i = 1, . . . , N . In the second part, we present some
results for an application to image and video restoration. In order to solve the problem (1.3),
we decompose the right-hand side tensor G ∈ RJ1×J2×···×JN using either the HOSVD or the
CP decompositions. In our tables, we use Algorithm 1-CP to denote Algorithm 1, where we
decompose the right-hand side tensor G ∈ RJ1×J2×···×JN using the CP decomposition

G = G(1) ◦G(2) ◦ · · · ◦G(N),

where G(i) ∈ RJi×R, for i = 1, . . . , N . In addition, we use Algorithm 1-HOSVD to denote
Algorithm 1, where G is decomposed using the HOSVD decomposition

G = S ×1 G
(1) ×2 · · · ×N G(N),

where S ∈ Rm1×m2×···×mN and G(i) ∈ RJi×mi . All experiments are performed on a
computer with 2.7 GHz Intel(R) Core i5 and 8 GByte using Matlab 2016a. In all the tables,
“Iter” stands for the number of iterations.

7.1. Part 1. In this section, we present two numerical examples in order to show the
effectiveness of our approach for solving the problem (1.3) for given matrices A(i), i =
1, . . . , N .
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TABLE 7.1
Numerical results for Example 1.

N n p R Iter ‖Rk‖ ‖Xk −X ?‖ CPU-time(sec)

3
200 100 5 21 3.14× 10−8 7.66× 10−13 0.18
400 300 10 30 1.95× 10−6 2.46× 10−12 0.78
500 400 10 30 8.40× 10−6 4.37× 10−12 5.16

4 50 50 10 23 2.53× 10−7 8.16× 10−12 0.11
100 50 20 30 1.92× 10−7 3.31× 10−12 0.17

Example 1. In the first example, the coefficient matrices A(i), i = 1, . . . , N , are gener-
ated using the Matlab command

A(i) = gallery(’cycol’, [n p], l),

with l = 20. In this case, A(i) are n× p matrices with cyclically repeating columns such that
the rank cannot exceed l. We construct the right-hand side tensor so that all the entries of the
exact solution X ? are equal to one. Table 7.1 displays the obtained results. The used stopping
criterion is

‖Rk‖ ≤ ε,

where ε is a given tolerance equal to 10−6, and the maximum number of iterations allowed is
equal to 30. In this example, we decompose the right-hand side tensor using a CP decomposi-
tion.

We point out that the CPU time includes the required time for computing the CP decom-
position and the construction of the solution X (k) in (5.4).

Example 2. In this example, we keep the same data of the previous example except for
the coefficient matrices A(i), i = 1, . . . , N . They are taken from [20] and have the same
size n:

A(i) = eye(n) +
1

2
√
n
rand(n),

where eye(n) and rand(n) are Matlab functions that compute the identity matrix of order n
and an n× n matrix with random entries, respectively. We compared our approach with GLS-
BTF described in [19]. The numerical results, which are obtained by applying Algorithm 1,
are listed in Table 7.2. For this example, the considered stopping criterion is

‖Rk‖
‖G‖

< 10−10,

with the maximum number of allowed iterations equal to 160. We point out that the reported
CPU-time covers the required time for computing the HOSVD decomposition of the right-hand
side tensor and the time for constructing the solution X (k). In Table 7.2, “error” denotes
the upper bound of the residual norm described in Theorem 5.3. In this example, we set
mi = Ji = n, for i = 1, . . . , N.

Table 7.2 demonstrates the efficiency of our approach especially in terms of execution
time. Note that for the GLS-BTF method we did not give the exact error and the residual norm
when N = 3, n = 400 and when N = 4, n = 100 due to a high CPU-time needed to execute
its associated algorithm. In order to show the quality of the bound given in Theorem 5.3, we
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TABLE 7.2
Comparison of Algorithm 1 and GLS-BTF.

Method N n Iter ‖Rk‖ error ‖Xk −X ?‖ CPU-
time(sec)

Alg.1-
HOSVD

3
100 27 3.42× 10−10 1.34× 10−9 3× 10−11 0.21
400 30 4.72× 10−8 7.39× 10−8 1.39× 10−9 17.94

4
50 27 6.12× 10−10 2.81× 10−9 4.60× 10−11 2.01

100 27 6.34× 10−8 1.33× 10−7 6.55× 10−10 35

GLS-
BTF [19]

3
100 131 4.06× 10−6 5.41× 10−6 11.71
400 _ _ _ _

4
50 160 8.5× 10−5 1.18× 10−4 106.18

100 _ _ _ _

TABLE 7.3
Numerical results for Example 2 with n = 1000, 10.000.

N n R Iter error CPU-time(sec)

3 1000 10 25 1.97× 10−9 0.22
10,000 10 25 3.45× 10−7 10.27

4 1000 10 30 2.07× 10−10 0.34
10,000 5 30 3.03× 10−8 16.13

compare the residual norm and the value of ’error’, which represent the upper bound of the
residual norm.

We point out that, when solving problem (1.3) for higher dimensions, the approximate
solution X (k) in (5.4) is not explicitly computed, only the coefficient matrices X(i)

k , i =
1, . . . , N , are constructed. The numerical results are shown in Table 7.3. We keep the same
matrices A(i), i = 1, . . . , N , defined in this example under the assumption that the right-hand
side tensor is written in CP decomposition format

G = G(1) ◦G(2) ◦ · · · ◦G(N),

with G(i) = rand(Ji, R), i = 1 . . . , N . The used stopping criterion is

‖Rk‖ ≤ ε,

where ε is a given tolerance equal to 10−10 and where the maximal number of iterations is
equal to 25 when N = 3, and equal to 30 when N = 4.

7.2. Part 2: an application to image and video restoration. In this section, we provide
some numerical results that illustrate the performance of the approach described in this work
applied to the problem of image restoration. To determine the effectiveness of our methods,
we evaluate the relative error defined by

Relative error =
||X (k) −Xtrue||
||Xtrue||

,

where X (k) denotes the computed restoration. In addition we evaluate the Signal-to-Noise
Ratio (SNR) defined by

SNR = 10log10

||Xtrue − E(Xtrue)||2

||X (k) −Xtrue||2
,
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(a) (b)

FIG. 7.1. Example 1. (a) Exact image. (b) Blurred image.

TABLE 7.4
Results for Example 1.

R = m Method Iter SNR Relative error CPU-time(sec)

100 Algorithm 1-CP 40 19.51 6.32× 10−2 1.96
Algorithm 1-HOSVD 40 22.44 4.51× 10−2 0.63

150 Algorithm 1-CP 20 21.77 4.87× 10−2 2.75
Algorithm 1-HOSVD 20 24.23 3.67× 10−2 0.54

where E(Xtrue) denotes the mean gray-level of the uncontaminated image Xtrue. In the
following examples, we point out that the CPU time covers both the time of the decomposition
of the right-hand side tensor G and the construction of the solution. In the next example, we
set m = m1 = m2 and mi = Ji, for i = 3, . . . , N , with N = 3 in the case of color images
and gray-scale videos and N = 4 in the case of color videos.

7.2.1. Example 1. This example illustrates the performance of Algorithm 1 applied to
the restoration of a 3-channel RGB color image that has been contaminated by Gaussian blur,
whose point spread function is given by

k(s, t) =
1

2πα2
exp

{
− 1

2α2

(
s2 + t2

)}
,

and by noise (generated by Matlab’s randn function) with noise level ν = 10−3. This noise
level is defined as ν = ‖E‖

‖Ĝ‖ , where E is a tensor that represents the noise in G, i.e., G := Ĝ+E ,

and Ĝ is the noise-free image. The true and blurred noisy images of size 388× 516× 3 are
presented in Figure 7.1. Table 7.4 compares the CPU-time, the relative errors, and the SNR of
the computed restorations for a fixed number of iterations.

7.2.2. Example 2. In this example, we illustrate the effectiveness of our approach applied
to the restoration of gray-scale and color videos, seen as third-order and fourth-order tensors,
respectively. Table 7.5 gives the results obtained after 20 iterations of Algorithm 1. For
completeness, Figure 7.3 reports the results obtained from the restoration of a video of size
360× 640× 30 using Algorithm 1-HOSVD.

Note that in the last three experiments displayed in Table 7.5, we present only the results
associated to the restoration obtained with algorithm 1-HOSVD, due to the time needed to
build the approximate solution tensor.
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(a) (b)

FIG. 7.2. Example 1. Restored images for R=m=150. (a) Approach based on CP decomposition. (b) Approach
based on HOSVD decomposition.

TABLE 7.5
Comparison of the performance of the two approaches for videos restoration of different sizes.

Size R = m Method Relative error CPU-time(sec)

200× 200× 30
150 Alg. 1-CP 2.79× 10−2 1.15
150 Alg. 1-HOSVD 3.12× 10−2 0.25

360× 640× 30
200 Alg. 1-CP 7.79× 10−2 4.56
200 Alg. 1-HOSVD 3.13× 10−2 1.19

360× 640× 100 200 Alg. 1-HOSVD 5.75× 10−2 3.49
200× 200× 3× 20 150 Alg. 1-HOSVD 3.13× 10−2 0.68
360× 640× 3× 30 200 Alg. 1-HOSVD 3.17× 10−2 6.82

FIG. 7.3. Example 2. First row: original frames. Second row: blurred frames. Third row: restored frames.

8. Conclusion. In this work, we proposed a new approach to solve the tensor least-
squares minimization problem (1.3). We worked under the assumption that the right-hand
side tensor is written (or approximated) using either a CP or a higher-order singular value
decomposition (HOSVD) format. Our goal was to solve problem (1.3) for higher dimensions
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by applying a Golub-Kahan bidiagonalization process to each coefficient matrix A(i), for
i = 1, . . . , N , and using an LSQR-like method to construct the approximate solution. The
presented numerical examples show the effectiveness of the proposed approach.
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