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MONTE CARLO ESTIMATORS FOR THE SCHATTEN p-NORM OF
SYMMETRIC POSITIVE SEMIDEFINITE MATRICES∗

ETHAN DUDLEY‡, ARVIND K. SAIBABA†, AND ALEN ALEXANDERIAN†

Abstract. We present numerical methods for computing the Schatten p-norm of positive semi-definite matrices.
Our motivation stems from uncertainty quantification and optimal experimental design for inverse problems, where
the Schatten p-norm defines a measure of uncertainty. Computing the Schatten p-norm of high-dimensional matrices
is computationally expensive. We propose a matrix-free method to estimate the Schatten p-norm using a Monte Carlo
estimator and derive convergence results and error estimates for the estimator. To efficiently compute the Schatten
p-norm for non-integer and large values of p, we use an estimator using Chebyshev polynomial approximations and
extend our convergence and error analysis to this setting as well. We demonstrate the performance of our proposed
estimators on several test matrices and in an application to optimal experimental design for a model inverse problem.
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1. Introduction. The Schatten p-norm of a matrix A ∈ Rm×n is defined as

|||A|||p =

min{m,n}∑
j=1

σpj

1/p

,

where p ≥ 1 and σj is the jth singular value of A for 1 ≤ j ≤ min{m,n}. If A ∈ Rn×n
is a symmetric positive semi-definite (SPSD) matrix, then the singular values of A are its
eigenvalues, and the Schatten p-norm takes the form

(1.1) |||A|||p =

(
n∑
j=1

λpj

)1/p

=
(
tr(Ap)

)1/p
,

where the λj’s are the eigenvalues of A. There are several notable special cases of the Schatten
p-norm, including the nuclear norm (p = 1), the Frobenius norm (p = 2) and the spectral
norm (p→∞). Since it encapsulates many well-known norms as special cases, the Schatten
p-norm is frequently used in linear algebra and analysis [4].

Our motivation for computing the Schatten p-norm arises from uncertainty quantification
and optimal experimental design (OED) for Bayesian inverse problems. An inverse problem
seeks to estimate parameters of interest using experimental measurements. The goal of OED
is to identify an optimal set of experiments by optimizing certain design criteria that measure
the uncertainty in the estimated parameters, subject to budgetary or physical constraints.
A well-known design criterion, known as the P-optimal design criterion, can be expressed
in terms of the Schatten p-norm. Since optimization algorithms for OED require repeated
evaluations of the design criterion for large matrices, efficient algorithms for estimating the
Schatten p-norm are desirable.

In this article, we focus on computing the Schatten p-norm for large SPSD matrices.
Computing the Schatten p-norm for such matrices is computationally challenging, because it
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requires computing either the matrix pth power or all of its eigenvalues. However, if the matrix
is large and its entries are not available explicitly, then the Schatten p-norm cannot be easily
computed from its definition (1.1) and specialized numerical methods are necessary. Therefore,
we consider computing the Schatten p-norm using matrix-free Monte Carlo methods. In a
matrix-free method for computing |||A|||p we only require matrix-vector products involving A.

Related work. Hutchinson [12] developed a matrix-free Monte Carlo estimator using
samples from the Rademacher distribution for computing tr(A), i.e., the Schatten 1-norm.
Avron and Toledo [3] extended this idea to random variables from other distributions such as
Gaussian and uniformly selected vectors from an orthogonal matrix. They devised several
metrics for comparing the various trace estimators, including a single sample variance metric
and a Chernoff-style lower bound on the minimum number of samples required to meet a given
error tolerance with a given confidence level. This is made precise in the following definition:

DEFINITION 1.1. Given ε > 0, δ ∈ (0, 1), and an appropriate distribution for random
samples wj ∈ Rn, j = 1, . . . ,M , we say

ZM =
1

M

M∑
j=1

wT
j Awj

is an (ε, δ) estimator for tr(A) if

P
(∣∣ZM − tr(A)

∣∣ ≤ ε|tr(A)|
)
≥ 1− δ.

This definition alternatively says that ZM is an (ε, δ) estimator if it has a relative error at most
ε with probability at least 1− δ. Avron and Toledo [3] provided a lower bound on the number
of samples so that ZM is (ε, δ) estimator for tr(A) when wj are drawn from the Gaussian,
Rademacher and Uniform distributions. Roosta-Khorasani and Ascher [25] further reduced
the lower bound on the number of samples needed for an (ε, δ) estimator for tr(A) when the
estimators use random vectors from the Rademacher and Gaussian distributions. This Monte
Carlo estimator has been extended to Schatten p-norm using Chebyshev polynomials [9] and
Lanczos approach [29].

A recent survey paper by Martinsson and Tropp [19] reviews estimators for the Schatten
p-norms, which avoid working with Ap directly. Let X = ΩTAΩ, where the entries of
Ω ∈ Rn×M have zero mean and unit variance. The estimator Vp in Kong and Valiant [16] is

Vp =

(
M
p

)−1
tr(T (X)p−1X),

where T (X) is a matrix that contains the strictly upper triangular part of X and zeroes out the
rest of the entries. Note that Vp is an unbiased estimator for |||A|||p. A related estimator is

Wp =
(M − p)!
M !

∑
1≤i1,...,ip≤M

Xi1,i2Xi2,i3 . . .Xip,i1 ,

where the summation is only over distinct indices. Similar to Vp, Wp is an unbiased estimator
for |||A|||p. For both estimators, the recommended number of samples is M & n1−2/p. This
lower bound was established by [17]. Stronger results have been developed in [18], where the
authors studied the computation of the Schatten p-norm in the streaming setting. They showed
the upper bound required was O(n2−4/p), where p ≥ 4 is an even integer; the corresponding
lower bound is Ω(n2−4/p). Both of these estimators are expensive for large p; however, the
algorithm only requires M matrix-vector products involving A. Theoretical analysis suggests
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that the variance of these estimators is large, which makes their use for large-scale applications
impractical [19].

The issue of estimating Schatten p-norms has also received considerable attention in the
Theoretical Computer Science community; see [20] and references therein. In that paper, the
authors estimate the Schatten p-norm and other spectral sums by estimating the histogram of
the spectrum of the matrix. This is obtained by splitting the spectrum of A into small slices
and using trace estimators to determine the number of singular values in each slice of the
spectrum. In contrast, our approach builds a single global polynomial approximation of Ap

over the spectrum of A. Another interesting approach considered in [14] involves estimating
the Schatten p-norm using only a limited number of entries of the matrix.

Our approach and contributions. We focus on the analysis and the development of
efficient computational methods for the following estimator of |||A|||p

|||A|||p ≈

 1

M

M∑
j=1

wT
j Apwj

1/p

,

where wj are random vectors from an appropriate distribution. To our knowledge, an anal-
ysis of the convergence of this (biased) estimator has not been performed in the literature.
Computing the Monte Carlo estimator involves repeated applications of Ap to a vector, which
is computationally expensive for large or non-integer values of p. To reduce this cost, two
different approaches were proposed based on Chebyshev polynomial approximation [9] and
on a Lanczos approach [29]. In this article, building on the work [9], we consider approximate
Monte Carlo estimators based on Chebyshev polynomials.

The following are the main contributions of this article.
1. In our analysis of the new estimator we derive bounds on the expectation, bias, and

variance (Section 3.2), and we show that the estimator converges almost surely both
in L1 and L2 (Sections 3.1 and 3.3). In Section 3.4, we analyze the impact of p on
the number of samples required to form an (ε, δ) estimator.

2. In Section 4, we consider a variation of the Chebyshev-Monte Carlo method proposed
in [9]. This approach is applicable to non-integer values as well as large values of
p. We extend our results from the standard Monte Carlo approach to the Chebyshev-
Monte Carlo approach. Using results from polynomial approximation theory, we
show that the degree of the polynomial approximation we use is optimal in an
asymptotic sense.

3. We provide extensive numerical tests on synthetic matrices, matrices arising from
real-world problems, and a model problem from OED, which illustrate the theo-
retical results. We also provide numerical evidence that a small degree Chebyshev
approximation ψN (A) to Ap/2 is sufficient for an accurate estimator.

2. Background. In this section, we review known results for the two largest contributing
ideas in this article: Monte Carlo Trace Estimators (Section 2.1) and Chebyshev Polynomials
(Section 2.2).

2.1. Monte Carlo trace estimators. In what follows we let (Ω,F ,P) be a probability
space.

DEFINITION 2.1. Let w : Ω → Rn be a random n-vector with mean 0 and identity
covariance matrix, and let B be a symmetric matrix. Then, the Monte Carlo trace estimator of
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B is given by

(2.1) ZM =
1

M

M∑
j=1

wT
j Bwj ,

where the wj , j = 1, . . . ,M , are independent and distributed according to the law of w.
We call ZM a trace estimator of B because E(wTBw) = tr(B) and therefore by the

linearity of expectation E(ZM ) = tr(B) [12, 3]. Furthermore, since wT
j Bwj ∈ L1(Ω,F ,P),

by the strong law of large numbers [13], we have

P
(

lim
M→∞

ZM = tr(B)
)

= 1.

That is, ZM converges to tr(B) almost surely (a.s.). Lastly, we can formulate a Chernoff-style
lower bound on M to guarantee that ZM is an (ε, δ) estimator. This means that M is the
least number of samples to guarantee ZM is an (ε, δ) estimator for tr(B), i.e., ZM satisfies
Definition 1.1. Note that the (ε, δ) bound on M depends on the distribution from which the
wj are chosen. This is summarized in Table 2.1.

TABLE 2.1
Variance and number of samples required for an (ε, δ) bound for tr(B). Here, the wj vectors are chosen from

the Gaussian and Rademacher distributions [3, 25].

Var(ZM ) (ε, δ) bound

Gaussian 2‖B‖2F
M M ≥ 8ε−2 ln

(
2
δ

)
Rademacher 2(‖B‖2F−

∑n
i=1 B2

ii)

M M ≥ 6ε−2 ln
(
2
δ

)
2.2. Chebyshev polynomials. Throughout this article, we will use Chebyshev polyno-

mials of the first kind, which are defined as

Tj(x) = cos(j arccos(x)), x ∈ [−1, 1], j = 0, 1, 2, . . .

As is well-known, these polynomials are orthogonal with respect to the inner product 〈u, v〉w =∫ 1

−1 u(x)v(x)w(x)dx, with the weight function w(x) = 1/
√

1− x2. In particular,

〈Ti, Tj〉w =


π, i = j = 0,
π
2 , i = j 6= 0,

0, i 6= j.

Moreover, any continuous function g on the interval [−1, 1] can be expressed as [5]

g(x) = c0T0(x) +

∞∑
j=1

cjTj(x),

where the series converges uniformly. The coefficients can be computed by

(2.2) cj =
2

π

∫ 1

−1

g(x)Tj(x)√
1− x2

dx =
2

π

∫ π

0

g(cos(θ)) cos(jθ) dθ,

and c0 carries an additional factor of a half. Note that the Chebyshev polynomial approximation
to a function is equivalent to the Fourier cosine series approximation of g [5]. Therefore the
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coefficients cj can be computed using the real part of the Fast Fourier Transform (FFT) of g;
see [28] for details, as well as computer code for doing so.

Let ψN (x) be the N th degree Chebyshev approximation to g. The error in ψN (x) is
bounded tightly by [5]

|g(x)− ψN (x)| ≤
∞∑

j=N+1

|cj |.

Trefethen [28] presented a method for approximating this error without computing the remain-
ing coefficients for both analytic functions and functions with singularities in the complex
plane. Here we present the analytic version:

|g(x)− ψN (x)| ≤ 4U

ρN (ρ− 1)
,

where g is analytic in the interior of an ellipse E in the complex plane with foci at ±1,
U = sup

z∈E
g(z), and ρ is the sum of the major and minor semi-axes of E with ρ > 1.

Finally, we recall that Chebyshev polynomials satisfy a three term recurrence relation [5]:

Tj+1(x) = 2xTj(x)− Tj−1(x), x ∈ [−1, 1],

with T0(x) = 1 and T1(x) = x. This ensures that matrix-vector products using the Chebyshev
matrix polynomials can be computed in a matrix-free manner, which is useful in constructing
a Monte Carlo approximation to |||A|||p.

3. Monte Carlo Estimators and their analysis. In this section, we construct a Monte
Carlo estimator for the Schatten p-norm (Section 3.1) and present a detailed analysis of
convergence of the estimator (Section 3.3).

3.1. Building a Schatten p-norm estimator. Recall that if A is SPSD and w : Ω→ Rn
is an n-vector with mean 0 and identity covariance matrix, then

|||A|||pp = tr(Ap) = E(wTApw).

Therefore, consider the following Monte Carlo estimator for |||A|||p.
DEFINITION 3.1. Let A be an SPSD matrix. We define the Monte Carlo estimator for

|||A|||p as

XM =

 1

M

M∑
j=1

wT
j Apwj

1/p

, M ≥ 1,

where the wj are realizations of a random variable w : Ω → Rn with E(w) = 0 and
E(wwT ) = I.

Note that Xp
M is an unbiased estimator for |||A|||pp. Furthermore, if p = 1, then XM is just

the Monte Carlo trace estimator (2.1).
In Algorithm 1, we provide a pseudo-code for efficiently computing XM for positive

integer values of p. First, note that by using the symmetry of A, computing XM using
Algorithm 1 requires

⌈
p
2

⌉
M matrix-vector products with A. Let the cost of a matrix-vector

product with A be denoted by TA. If A is dense, then TA = 2n2; on the other hand, if A
is sparse, then TA = nnz(A), where nnz is the number of nonzeros of A. Therefore the
computational cost of Algorithm 1 is TAM

⌈
p
2

⌉
+O(Mp). Second, this algorithm can scale
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Algorithm 1: Constructing the Monte Carlo Estimator XM .
Input: a SPSD matrix A ∈ Rn×n, positive integers M (number of samples) and p
(Schatten p degree)
Initialize: XM ← 0

K ←
⌊p

2

⌋
for j = 1 to M do

wj ← random vector with mean 0 and covariance I
y← AKwj

if p is odd then
XM ← XM + yTAy/M

else
XM ← XM + yTy/M

end if
end for
XM ← (XM )1/p

easily to large matrices, as one does not need to form or store A explicitly to compute the
matrix-vector products. If we compute Ap explicitly, the cost is O(blog2 pcn3); see [11,
Section 4.1]. On the other hand, if we compute the eigenvalues of A explicitly, the cost is
also O(n3). Lastly, the algorithm is general in the sense that any distribution for the random
vectors wj can be used as long as the wj are independent and drawn from a distribution that
has mean zero and the identity matrix as its covariance. However, in our analysis we assume
that the entries of the wj are independent standard normal random variables. If a different
distribution is used, then the number of samples required for an (ε, δ) estimator for |||A|||p will
have to be changed appropriately.

We first collect a series of results for the estimator Xp
M in Proposition 3.2. Then, in the

rest of this section, we appropriately adapt these results to the estimator XM .

PROPOSITION 3.2. The estimator XM satisfies the following properties:

1. (Expectation): E(Xp
M ) = |||A|||pp.

2. (Variance): Var(Xp
M ) =

2‖Ap‖2F
M

.

3. (Almost Sure Convergence): lim
M→∞

Xp
M = |||A|||pp a.s.

4. ((ε, δ) Estimator): If M ≥ 8 ‖A
p‖2

tr(Ap)ε
−2 ln

(
2

δ

)
, then Xp

M is an (ε, δ) estimator for

|||A|||pp.
5. (Non-negative): Xp

M ≥ 0 for all M .

Proof. The proof collects well-known results from the literature. The expressions for the
expectation and variance of Xp

M follow from [3, Lemma 5]. To see the third statement, note
that since Xp

M ∈ L2(Ω,F ,P), by the strong law of large numbers [13] we have

lim
M→∞

Xp
M = E(Xp

M ) = |||A|||pp a.s.

Regarding the fourth statement, Roosta-Khorasani and Ascher [25, Theorem 3] showed that if
ε > 0, δ ∈ (0, 1), and the number of samples M satisfies the bound given in the statement of
the theorem, then Xp

M is an (ε, δ) estimator of |||A|||pp. Finally, since A is SPSD, then so is
Ap. Thus, wT

j Apwj ≥ 0 for all j. Hence, Xp
M ≥ 0 for all M .
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Since the quantity of interest is |||A|||p, we have to analyze its estimator XM . While
Proposition 3.2 states several properties of Xp

M , a natural question is to what extent these
properties apply to XM . We investigate this in the rest of this section.

3.2. Expectation and variance ofXM . In this section we will provide a bound for the
first two moments of XM . Specifically we show that XM is biased for all finite values of M ,
and we provide an upper bound for the variance of XM .

PROPOSITION 3.3 (Expectation). For all M ≥ 1, E (XM ) ≤ |||A|||p. Moreover, if p > 1
then the inequality is strict.

Proof. LetM be any natural number. SinceXM = (Xp
M )1/p and f(x) = x1/p is concave,

by Jensen’s inequality [13], we have

E(XM ) = E
(

(Xp
M )1/p

)
≤ (E(Xp

M ))
1/p

= |||A|||p.

Furthermore, recall that Jensen’s inequality yields a strict inequality as long as Xp
M is a

non-degenerate (i.e., non-constant) random variable and f(x) is nonlinear. Note that Xp
M

will be non-degenerate as the wj are drawn from a non-degenerate distribution and f(x) is
nonlinear for all p > 1.

EXAMPLE 3.4. To illustrate that Jensen’s inequality becomes strict for p > 1, consider
the following example: let a > 0 and define

A =

[
a 0
0 0

]
.

Notice that, for all p ≥ 1, |||A|||p = a. Let wj =

[
w1,j

w2,j

]
, j = 1, . . . ,M be independent

standard normal random vectors. Then,

E(XM ) = E

(( 1

M

M∑
j=1

apw2
1,j

)1/p)
=

a

M1/p
E

(( M∑
j=1

w2
1,j

)1/p)
=

a

M1/p
E(z1/p),

where z =
∑M
j=1 w

2
1,j , which is a Chi-squared random variable with M degrees of freedom.

The expected value of XM can be computed analytically and is given by

(3.1) E(XM ) =

21/pΓ

(
M

2
+

1

p

)
M1/pΓ

(
M

2

) a.

Note that, when p = 1, E(XM ) = a. Now consider p > 1. As Γ is a strict logarithmically
convex function,

Γ

(
M

2
+

1

p

)
= Γ

(
1

p

M + 2

2
+

(
1− 1

p

)
M

2

)
< Γ

(
M + 2

2

)1/p

Γ

(
M

2

)1−1/p

=

(
M

2
Γ

(
M

2

))1/p

Γ

(
M

2

)1−1/p

=
M1/pΓ

(
M
2

)
21/p

.

Substituting this inequality into (3.1), we get E(XM ) < a = |||A|||p, for all p > 1.
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Similarly to the first moment, we will derive an upper bound for the variance of XM .
PROPOSITION 3.5 (Variance). If A is nonzero, then the variance in XM is finite and

satisfies

Var (XM ) ≤ 2‖Ap‖2F
M |||A|||2p−2p

.

Proof. Without loss of generality, assume that p > 1; otherwise the variance bound
holds trivially. By [23, Theorem 1, Corollary 1], if Y is a non-negative random variable with
positive mean and finite variance, then for α ∈ [0, 1]

(3.2) Var(Y α) ≤ E|Y α − (EY )α|2 ≤ Var(Y )

(EY )2−2α
.

We let Y = Xp
M and α = 1/p. Note that Y is non-negative, E(Y ) = |||A|||pp > 0 since A is

nonzero, and from Table 2.1 Var(Y ) = 2‖Ap‖2F /M <∞. Therefore, (3.2) applies and

Var(XM ) = Var
(

(Xp
M )1/p

)
≤ 2‖Ap‖2F
M |||A|||p(2−2/p)p

=
2‖Ap‖2F

M |||A|||2p−2p

.

3.3. Convergence of estimators. In this section, we show that XM converges almost
surely in L1 and in L2 as M →∞.

PROPOSITION 3.6 (Almost sure convergence). We have lim
M→∞

XM = |||A|||p a. s.

Proof. Let f(x) = x1/p. Note that f is continuous for x ≥ 0. Since A is SPSD, from
Proposition 3.2, Xp

M is non-negative and converges almost surely to |||A|||pp. Thus, we can
apply the Continuous Mapping Theorem [13, Theorem 17.5] to obtain

lim
M→∞

XM = lim
M→∞

(Xp
M )

1/p
=
(
|||A|||pp

)1/p
= |||A|||p a.s.

Recall that, by Proposition 3.3, E(XM ) ≤ |||A|||p. Now, we form a bound on the bias in
XM . This will also be useful for establishing convergence in L1 and in L2.

PROPOSITION 3.7 (Bias). The bias in XM is bounded as

|E(XM )− |||A|||p| ≤ |||A|||p

(
2

M

)1/2

.

Proof. Without any loss of generality, assume that A is nonzero so that |||A|||p 6= 0.
Assume that p > 1, otherwise the bias is zero and the bound holds trivially. As A is SPSD, by
Proposition 3.2, XM ≥ 0 and E(XM ) is the L1 norm of XM . Then, by the reverse triangle
inequality and the Cauchy-Schwarz inequality,

(3.3)

∣∣∣E(|XM |)− |||A|||p
∣∣∣ ≤ E

(∣∣∣XM − |||A|||p
∣∣∣) ≤ (E ∣∣∣XM − |||A|||p

∣∣∣2)1/2

≤

(
2‖Ap‖2F

M |||A|||2p−2p

)1/2

.

The last inequality follows from (3.2) with Y = Xp
M and α = 1/p.
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Now, using the fact that A is SPSD

|||A|||2pp =
( n∑
j=1

λpj

)2
≥

n∑
j=1

λ2pj = ‖Ap‖2F .

Therefore, we have

‖Ap‖2F
|||A|||2p−2p

= |||A|||2p
‖Ap‖2F
|||A|||2pp

≤ |||A|||2p.

Substitute this into (3.3) and simplify to obtain the desired inequality.
Proposition 3.7 can be readily used to establish L1 convergence. For a fixed p, XM

converges in L1(Ω,F ,P) to |||A|||p since

lim
M→∞

∣∣∣E(XM )− |||A|||p
∣∣∣ ≤ lim

M→∞
|||A|||p

(
2

M

)1/2

= 0.

Similarly, convergence in L2(Ω,F ,P) follows from the proof of Proposition 3.7.

3.4. Number of samples for an (ε, δ)-estimator of |||A|||p. In this section we deter-
mine the minimum number of samples required to form an (ε, δ) estimator for |||A|||p.

THEOREM 3.8 ((ε, δ) estimator). For all ε > 0 and δ ∈ (0, 1), the number of samples
required for XM to be an (ε, δ) estimator for |||A|||p satisfies

(3.4) M ≥ 8‖Ap‖2
tr(Ap)

ε−2 ln

(
2

δ

)
.

Proof. Consider the measurable sets

D =
{
ω ∈ Ω :

∣∣XM (ω)− |||A|||p
∣∣ ≤ ε|||A|||p} and

E =
{
ω ∈ Ω :

∣∣Xp
M (ω)− |||A|||pp

∣∣ ≤ ε|||A|||pp}.
Note that if A is the zero matrix, then both of these events are equivalent and have probability 1.
Now consider the case when A is a non-zero SPSD matrix. Roosta-Khorasani and Ascher [25,
Theorem 3] showed that for ε, δ as in the statement of the theorem, P(E) ≥ 1 − δ if (3.4)
holds. Thus, it is sufficient to show that E ⊂ D. Therefore, let ω ∈ E . One can show, using
the difference of powers formula, that f(x) = x1/p satisfies∣∣∣(x+ h)1/p − x1/p

∣∣∣ ≤ |h|
x1−1/p

for all x > 0 and h ≥ −x. Since A is nonzero we let x = |||A|||pp and h = Xp
M (ω)− |||A|||pp.

Then, ∣∣∣XM (ω)− |||A|||p
∣∣∣ ≤ |Xp

M (ω)− |||A|||pp|
|||A|||p−1p

≤
ε|||A|||pp
|||A|||p−1p

= ε|||A|||p.

Thus, ω ∈ D and E ⊂ D. Therefore,

1− δ ≤ P(E) ≤ P(D).
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To understand the dependence of p and the spectrum of A on the number of samples
for an (ε, δ) estimator, we consider the ratio tr(Ap)/‖Ap‖2, which is known as the intrinsic
dimension of Ap and denoted by intdim(Ap). Since 1 ≤ intdim(Ap) ≤ rank(A), the
minimum number of samples are 8ε−2 ln (2/δ) / rank(A). Let λ1 ≥ · · · ≥ λn be the
eigenvalues of A. If λ1 > λ2, then it is easy to see that intdim(Ap) = 1 + O(|λ2/λ1|p).
If the largest eigenvalue has multiplicity k < n, then intdim(Ap) = k + O(|λk+1/λ1|p).
These results suggest that the number of samples for an (ε, δ) estimator would increase as
p increases. Additionally, a large number of samples will be required if λ2/λ1 � 1 (or
λk+1/λ1 � 1). On the other hand, if we want the number of samples to be independent of
p and the spectrum of A, we can take the number of samples to be M ≥ 8ε−2 ln (2/δ). In
contrast, in Section 5 we show that the variance of the estimator decreases when p increases.
Note that these two observations regarding the impact of increasing p are not contradictory,
because we are analyzing different statistical properties of the estimator.

4. The Chebyshev Monte Carlo estimator and its analysis. Recall that Algorithm 1
requires O

(⌈
p
2

⌉
M
)

matrix-vector products and can be computationally expensive for large p.
Also, the Algorithm is not applicable to non-integer values of p. To address these issues, we
use a Chebyshev polynomial approximation to approximate Ap by a lower degree Chebyshev
polynomial ψN (A). A similar approach was used in [9] in the context of estimating the trace
of matrix functions of which the computation of the Schatten p-norms was a special case. In
this section, we propose a new estimator for the Schatten p-norm and extend our analysis
of convergence for the standard Monte Carlo estimator to the estimator using Chebyshev
polynomial approximation. In contrast to the previous section, where it was sufficient for A to
be SPSD, in this section, we require A to be symmetric positive definite (SPD).

4.1. The Chebyshev polynomial approximation method. Recall that the N th degree
Chebyshev polynomial approximation of a continuous function g(x) with x ∈ [λmin, λmax],
with 0 < a ≤ λmin ≤ λmax ≤ b, is given by

g(x) ≈ ψN (x) = c0 +

N∑
j=1

cjTj

(
2

λmax − λmin
x+

λmax + λmin

λmax − λmin

)
,

where Tj(x) = cos(j arccos(x)) is the jth Chebyshev polynomial, and the coefficient cj is
defined in (2.2). In this article, since we are computing the Schatten p-norm, the function
of interest is g(x) = xp/2 ≈ ψN (x). Based on this polynomial approximation, we can
construct the Chebyshev polynomial approximation to Ap ≈ [ψN (A)]2. This ensures that the
Chebyshev polynomial approximation to Ap is symmetric positive semidefinite. This is an
important point since approximating Ap ≈ ψN ′(A) using Chebyshev polynomials does not
automatically guarantee semidefiniteness, unless N ′ is taken to be sufficiently large; see [9,
Lemma 2.4].

In Algorithm 2 we present an efficient algorithm for approximating |||A|||p using the
Chebyshev-Monte Carlo method, based on the discussion in [9, 28]. The method combines
the Chebyshev polynomial approximation for xp/2 in [λmin, λmax] along with the three-term
recurrence formula of the Chebyshev polynomials. For Algorithm 2 to be cost effective
compared to Algorithm 1, the degree of the Chebyshev approximation should satisfy N < p

2 .
Furthermore, observe that Algorithm 1 requires at least a crude estimate [a, b] of the range
for the spectrum of A. This can be accomplished using matrix free methods such as Krylov
subspace methods [26]. In our implementation, we use the MATLAB command eigs.
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Algorithm 2: Constructing the Monte Carlo Estimator YM,N .

Input: a SPD matrix A ∈ Rn×n with eigenvalues in [a, b], sample number M , Chebyshev
polynomial degree N , and Schatten p-norm degree p
Initialize: YM,N ← 0
c← N + 1 vector of Chebyshev Coefficients for xp/2 (see (2.2))
for j = 1 to M do

wj ← random vector with mean 0 and covariance I

y
(j)
0 ← wj and y

(j)
1 ← 2

b− a
Awj −

b+ a

b− a
wj

z← c0y
(j)
0 + c1y

(j)
1

for k = 2 to N do
y
(j)
2 ← 4

b− a
Ay

(j)
1 −

2(b+ a)

b− a
y
(j)
1 − y

(j)
0

z← z + cky
(j)
2

y
(j)
0 ← y

(j)
1 and y

(j)
1 ← y

(j)
2

end for
YM,N ← YM,N + zT z/M

end for
YM,N ← (YM,N )1/p

With the notation introduced in Section 3, the computational cost of Algorithm 2 is
TAMN +O(MNn) flops. To obtain the eigenvalue estimates, we use a few iterations (say
K) of a Krylov subspace method which costs KTA +O(nK) flops.

4.2. Error analysis. Given a Chebyshev polynomial approximation ψN (x) of xp/2 over
the spectrum of A, we define the following estimator

(4.1) YM,N =

(
1

M

M∑
j=1

wT
j φN (A)wj

)1/p

,

where φN (A) = [ψN (A)]2. Note that, by construction, φN (A) is SPSD matrix. We now
extend the analysis in Section 3.

PROPOSITION 4.1. Let YM,N be defined as in (4.1). For a fixed N , we have

1. (Non-negative): YM,N ≥ 0 for all M ;
2. (Almost Sure Convergence:) lim

M→∞
YM,N = (tr (φN (A)))

1/p a.s.;

3. (Expectation): E(YM,N ) ≤ (tr (φN (A)))
1/p, with a strict inequality for all p > 1;

4. (Variance): Var(YM,N ) ≤ 2‖φN (A)‖2F
M (tr (φN (A)))

2−2/p .

Proof. Note that, since φN (A) is SPSD, the non-negativity of YM,N is immediate.
Furthermore, applying the results of Propositions 3.6, 3.3, and 3.5 to φN (A), one can derive
properties (2), (3), and (4) respectively. We omit the details.

In the next result, we derive a bound for the smallest degree of the Chebyshev polynomial
to ensure a user-defined relative error in the Schatten p-norm estimator.
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PROPOSITION 4.2. Let 0 < ε ≤ 1, p ≥ 1, q = p/2, and κ =
√

b
a . If the degree of the

Chebyshev polynomial, N , satisfies

(4.2) N ≥
log

(
4

ε
(κ2 + 1)q(κ− 1)

(
κp +

√
ε

2
+ κ2p

))
log

(
κ+ 1

κ− 1

) ,

then |tr(φN (A))− |||A|||pp| ≤
ε

2
|||A|||pp.

Proof. The proof follows a similar strategy to [9, Theorem 3.1] and has several steps.
Error in terms of Chebyshev polynomials. The absolute error in |||A|||p can be bounded

using the approximation properties of the Chebyshev polynomials.

∣∣∣|||A|||pp − tr(φN (A))
∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

λpj −
n∑
j=1

φN (λj)

∣∣∣∣∣∣ ≤
n∑
j=1

∣∣λpj − φN (λj)
∣∣

≤ max
1≤j≤n

n
∣∣λpj − φN (λj)

∣∣ ≤ n max
x∈[a,b]

|xp − φN (x)| .

Since φN (x) = ψ2
N (x), by repeated use of the triangle inequality,∣∣xp − ψ2

N (x)
∣∣ =

∣∣x2q + xqψN (x)− xqψN (x) + ψ2
N (x)

∣∣
≤ |xq| |xq − ψN (x)|+ |ψN (x)| |xq − ψN (x)|
≤ 2 |xq| |xq − ψN (x)|+ |xq − ψN (x)|2 .

In the second step, we wrote |ψN (x)| = |ψN (x)−xq +xq| and applied the triangle inequality.
Chebyshev polynomial approximation. Let E be the ellipse in the complex plane with

foci at ±1 and passing through the point
(
b+ a

b− a
, 0

)
. The sum of major and minor semi-axes,

denoted by ρ > 1, can be computed as

ρ =
b+ a

b− a
+

√(
b+ a

b− a

)2

− 1 =

√
b+
√
a√

b−
√
a

=
κ+ 1

κ− 1
,

where κ =
√

b
a was defined in the statement of the proposition.

From [9, Corollary 2.2], since g(x) = xq is analytic in the interior of the ellipse E, we
have

max
x∈[a,b]

|xq − ψN (x)| ≤ 4U

(ρ− 1)ρN
,

where the scalar U satisfies

U = max
z∈E

∣∣∣∣g(b− a2
z +

b+ a

2

)∣∣∣∣ = (b+ a)q.

Converting absolute error into relative error. Therefore, by the first two steps,

max
x∈[a,b]

|xp − φN (x)| ≤
(

2bq +
4U

(ρ− 1)ρN

)
4U

(ρ− 1)ρN
.
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We want to find N such that max
x∈[a,b]

|xp − φN (x)| ≤ εap/2. If such an N can be found, then

|tr(φN (A))− |||A|||pp| ≤ n max
x∈[a,b]

|xp − φN (x)| ≤ nεap

2
≤ ε

2
|||A|||pp,

as desired. We now show that such an N can be found.
Solving for N . To this end, consider

εap

2
≥
(

2bq +
4U

(ρ− 1)ρN

)
4U

(ρ− 1)ρN

=

(
4U

(ρ− 1)ρN

)2

+ 2bq
4U

(ρ− 1)ρN
+ b2q − b2q

=

(
4U

(ρ− 1)ρN
+ bq

)2

− b2q.

Simplifying this expression, we get

ρN ≥ 4U

(ρ− 1)

(√
εap

2
+ bp − bq

) .

We have the elementary identity

1√
x+ d−

√
x
·
√
x+ d+

√
x√

x+ d+
√
x

=

√
x+ d+

√
x

d
,

for all x, d ≥ 0. Applying this inequality with x = bq and d = εap/2, we obtain

ρN ≥ 4U

(ρ− 1)
(√

εap

2 + bp − bq
) =

8U
(
bq +

√
εap

2 + bp
)

(ρ− 1) (εap)
.

Since ρ > 1, N is bounded from below as

(4.3) N ≥ 1

log(ρ)
log

8U
(
bq +

√
εap

2 + bp
)

(ρ− 1)(εap)

 .

Substitute the expressions for U and ρ into (4.3) and simplify to get (4.2).
In Figure 4.1, the bound in (4.2) is plotted for various values of p, κ ∈ [1, 2], and ε = 0.1.

Here, a dot is placed when the value of N is larger than q = p/2, suggesting that the bound is
pessimistic for condition numbers larger than 2.

From Proposition 4.2, we can see that the degree of the polynomial N should be O(p).
A natural question to ask is if there is a better polynomial approximation. Newman and
Rivlin [22] showed that we can approximate a monomial ξp (with an integer value of p) by the
best polynomial approximation r∗N (x) so that

max
ξ∈[0,1]

|ξp − r∗N (ξ)| ≤ EN,p =
1

2p−1

∑
j>(p+N)/2

(
p

j

)
.
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As suggested in [22], the termEN,p has a probabilistic interpretation in terms of an experiment
in which we toss p fair coins. Let Bi be independent Bernoulli(1/2) random variables that
model the coin tosses. The sum B =

∑p
i=1Bi has a binomial distribution, Binomial(p, 1/2).

Therefore, we can write EN,p = 2P((N + p)/2 < B ≤ p). Since E[B] = p/2, using
Hoeffding’s inequality [30, Theorem 2.2.6], we can bound

P((N + p)/2 < B ≤ p) ≤ P(B ≥ (N + p)/2) ≤ exp

(
−N

2

2p

)
,

so that EN,p ≤ 2 exp
(
−N2/2p

)
.

To estimate the trace of Ap, we need to approximate xp over [a, b]. We can do this by
using the change of variables x = ξb, so that the polynomial approximation takes the form
bpr∗N (x/b). The error in the resulting approximation is given by

max
x∈[a,b]

|xp − bpr∗N (x/b)| ≤ max
x∈[0,b]

|xp − bpr∗N (x/b)| = max
ξ∈[0,1]

bp|ξp − r∗N (ξ)| ≤ bpEN,p.

Since we require a relative error of εap/2, we need 2bp exp(−N2/2p) ≤ εap/2. Solving for

N , we get the bound N ≥
√

2p log
(
4κ2p

ε

)
. Although Newman and Rivlin’s analysis predicts

that a polynomial of degree N = O(
√
p) is sufficient for a small absolute error over [0, 1],

the above analysis suggests that a polynomial of degree N = O(p) is necessary for a small
relative error over [a, b]. Note that this is asymptotically the same degree as that obtained
in Proposition 4.2. Beyond polynomial approximations, one can use a low-degree rational
approximation to accurately approximate the monomial xp; see [21] for additional details.

FIG. 4.1. Plotting the values of (4.2) for p = 25, 50, 75, 100, 125, and 150, with κ ∈ [1, 2] and ε = 0.1. This
corresponds to approximating Aq , where p = 2q and A has a condition number between 1 and 4. A black dot has
been placed to mark the first instance that N > q.

Although Proposition 4.2 guarantees that tr(φN (A)) has a small relative error, it is
computationally challenging to implement, since it involves constructing φN (A) explicitly.
Therefore, we approximate its trace using the Monte Carlo estimator YM,N . Using this
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proposition, we derive bounds for the absolute error in the L1 sense (i.e., the bias) and the
number of samples required for an (ε, δ)-estimator for |||A|||p.

THEOREM 4.3. Consider the same setup as in Proposition 4.2. Let YM,N be defined as
in (4.1) and let N satisfy (4.2). Then

1. (L1 bound):
∣∣∣E (YM,N )− |||A|||p

∣∣∣ ≤ (1 + ε
2 )|||A|||p

(
2

M

)1/2

+ ε
2 |||A|||p;

2. ((ε, δ) estimator): if M ≥ 72ε−2 ln
(
2
δ

)
, then YM,N is an (ε, δ) estimator for |||A|||p.

Proof. First consider the L1 bound on YM,N . From Proposition 4.2, we have(
1− ε

2

)
|||A|||pp ≤ tr(φN (A)) ≤

(
1 +

ε

2

)
|||A|||pp.

From the simple identity (1−x)p ≤ (1−x) ≤ (1 +x) ≤ (1 +x)p, for 0 ≤ x ≤ 1 and p ≥ 1,
we get (

1− ε

2

)
|||A|||p ≤ (tr(φN (A))1/p ≤

(
1 +

ε

2

)
|||A|||p,

or |(tr(φN (A))1/p − |||A|||p| ≤
ε
2 |||A|||p.

By the triangle inequality and by applying Proposition 3.7 to φN (A), we find∣∣∣E (YM,N )− |||A|||p
∣∣∣ ≤ ∣∣∣E (YM,N )− (tr (φN (A)))

1/p
∣∣∣+
∣∣∣(tr (φN (A)))

1/p − |||A|||p
∣∣∣

≤
(

2

M

)1/2

(tr (φN (A)))
1/p

+
∣∣∣(tr (φN (A)))

1/p − |||A|||p
∣∣∣

≤
(

1 +
ε

2

)
|||A|||p

(
2

M

)1/2

+
ε

2
|||A|||p.

If M ≥ 72ε2 ln

(
2

δ

)
then, by [25, Theorem 3],

Pr
(∣∣∣Y pM,N − tr(φN (A))

∣∣∣ ≤ ε

3
tr(φN (A))

)
≥ 1− δ.

Furthermore, as ε ∈ (0, 1), we have tr(φN (A)) ≤
(
1 + ε

2

)
|||A|||pp ≤

3
2 |||A|||

p
p. Then, with

probability at least 1− δ, ∣∣∣Y pM,N − tr(φN (A))
∣∣∣ ≤ ε

2
|||A|||pp.

Using the triangle inequality, with the same probability∣∣∣Y pM,N − |||A|||
p
p

∣∣∣ ≤ ∣∣∣Y pM,N − tr(φN (A))
∣∣∣+ |tr(φN (A))− |||A|||pp|

≤ ε

2
|||A|||pp +

ε

2
|||A|||pp = ε|||A|||pp.

Now consider the measurable sets

E =
{
ω ∈ Ω

∣∣∣|Y pM,N (ω)− |||A|||pp| ≤ ε|||A|||
p
p

}
,

D =
{
ω ∈ Ω

∣∣∣|YM,N (ω)− |||A|||p| ≤ ε|||A|||p
}
.

Using a similar argument as in Proposition 3.8 we can show 1− δ ≤ Pr(E) ≤ Pr(D). Thus
YM,N is an (ε, δ) estimator for |||A|||p.

We point out that the number of samples required for an (ε, δ) estimator for |||A|||p is
independent of the degree p, provided N is sufficiently large.
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5. Numerical experiments. In this section, we will present numerical experiments
demonstrating the performance of the estimators and the convergence analysis for several test
matrices. The first set of test matrices are synthetically generated, the second set is extracted
from the SuiteSparse collection, and the final test matrix arises in an application to Optimal
Experimental Design (OED). In our numerical experiments, we will be using matrices of
relatively small size for which we can estimate errors by computing the Schatten p-norms
exactly using the eigendecomposition of A. However, the methods in this article can be scaled
up to arbitrarily large matrices that do not need to be stored.

5.1. Choice of matrices.

5.1.1. Synthetic test matrices. Here we construct several 100× 100 test matrices with
prespecified sets of eigenvalues. The test matrices are of the form A = QDQT , where
D is a diagonal matrix with the eigenvalues on its diagonal and Q is an orthogonal matrix.
The orthogonal matrix Q ∈ R100×100 is constructed by first generating a standard Gaussian
random matrix and then computing its QR factorization.

1. Linear Decay: The first test matrix Alinear = QDlinQ
T ∈ R100×100 has eigenvalues

Dlin = diag(6, 7, . . . , 105).

2. Clustered: The second test matrix takes the form Aclustered = QDclusQ
T , where

Dclus = diag(100, . . . 100︸ ︷︷ ︸
20

, 1, . . . , 1︸ ︷︷ ︸
80

).

3. Quadratic Decay: The test matrix takes the form Aquad = QDquadQ
T , with

Dquad = diag(1, 2−2, . . . , 100−2).

4. Exponential Decay: The test matrix takes the form Aexp = QDexpQ
T , with

Aexp = diag(0.91, . . . , 0.9100).

The test matrices simulate different scenarios of eigenvalue distributions for an SPSD ma-
trix. We have plotted the eigenvalue distributions in Figure 5.1 to illustrate these distributions.

5.1.2. Test matrices from the SuiteSparse collection. In addition to the test matrices
described above, we also consider two relatively large matrices from the SuiteSparse matrix
collection [15]. In particular, we consider

1. Trefethen_700 matrix, a 700× 700 SPD matrix from an application in combinatorics
with a condition number of approximately 4.71× 103;

2. mhd4800b matrix, a 4800× 4800 SPD matrix from an application in electrohydrody-
namics with a condition number of approximately 8.16× 1013.

5.1.3. Application to optimal experimental design. For the last test matrix, we return
to our motivating problem from Optimal Experimental Design (OED). Our goal is to compute
the Schatten p-norm of the posterior covariance operator, arising from a Bayesian linear inverse
problem.

We consider the inverse problem of estimating the initial state in the following 1D heat
equation:

(5.1)


ut = kuxx, x ∈ [0, 1], t ∈ (0, tf ],

u(x, 0) = φ(x), x ∈ [0, 1],

u(0, t) = u(1, t) = 0, t ∈ (0, tf ].
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FIG. 5.1. Semi-log plots of the eigenvalue distributions for the test matrices, each of size 100× 100.

Here φ(x) is an unknown initial state, which we seek to estimate using sensor measurements
of the temperature at a few observation times. In (5.1), k is the diffusion coefficient, which we
choose to be k = 2× 10−4.

After discretization, the goal is to estimate the discretized parameter φ from

(5.2) Fφ+ η = d.

Here F is the parameter-to-observable map, which maps the (discretized) initial state φ to
spatio-temporal observations, φ is the discretized inversion parameter (the initial state), η is a
random variable modeling measurement noise, and d is measurement data.

We discretize the problem (5.1) using finite-differences in space and implicit Euler in time.
Thus, an application of F to a vector requires solving (5.1), and extracting solution values at
the measurement points and at measurement times. Here we take measurements at 17 equally
spaced sensors in the spatial domain [0, 1] and at observation times {0.25, 0.5, 0.75, 1}. We
assume that η in (5.2) is multivariate Gaussian distributed with mean zero and covariance
given by σI with σ = 0.002 (corresponding to 0.1% noise).

We consider a Bayesian formulation [27] of this inverse problem. Assuming a Gaussian
prior, since the forward operator is linear, we also have a Gaussian posterior. One possible
measure of the posterior uncertainty is given by the Schatten p-norm of the posterior covariance
operator

Γpost = (σ−2FTF + Γ−1prior)
−1.

Here Γprior is the covariance operator of the Gaussian prior. For this example, we choose
Γprior = (γK)−1 where γ = 10−4 is a regularization parameter and K is the discretized
Laplacian operator, with homogeneous Dirichlet boundary conditions.

As mentioned in the introduction, the Schatten p-norm of Γpost is related to the P-optimal
experimental design criterion and provides a measure of uncertainty. Alternative approaches
involve computing the trace and determinant of the posterior covariance matrix, which are
related to the A- and D-optimal design criteria, respectively. Since repeated evaluations of
the P-optimal criterion are needed to compute a P-optimal design, we focus on addressing the
computational cost of computing |||Γpost|||p.

In our application, the matrix Γpost need not be computed explicitly and is handled using
matrix-free techniques. This is a common approach in large-scale Bayesian inverse problems
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in general; see, e.g., [6, 2, 10]. To see this, first note that the matrix F is not available, and a
matrix-vector product (denoted as matvec) using F involves one time-dependent PDE solve,
with cost TF; similarly the action of FT requires one adjoint time-dependent PDE solve [1, 7].
Applying Γ−1prior to a vector involves a sparse matvec, so is relatively cheap; denote this cost
as Tprior. Therefore, forming H = σ−2FTF + Γ−1prior involves computing 2n time-dependent
PDE solves where n is the size of H. Computing Γpost = H−1 and its Schatten p-norm (using
the eigendecomposition of Γpost) both require O(n3) flops. Therefore, the total cost of this
approach is n(2TF + Tprior) +O(n3). When the domain is discretized using fine-scale grids,
the number of degrees of freedom n can be as high as 106. For these problem sizes, forming
Γpost is neither feasible nor advisable. It is important to note that even forming H is often
infeasible in such large-scale problems, due to the associated computational expense—2n
PDE solves—and storage requirements.

Following [6], we use an iterative solver to compute the action of Γpost. Consider Γpostw,
which can be computed as the solution to Hx = w. Assuming Γprior is positive definite, H is
positive definite; thus, we can use a preconditioned Conjugate Gradient (CG) solver [8]. Each
application of H to a vector requires one forward and adjoint solve and a multiplication times a
sparse matrix. If we use the Cholesky factor of Γ−1prior as the preconditioner, numerical evidence
suggests that the number of required CG iterations, say m, is independent of the size of the
problem. Therefore, the cost of applying Γpost to a vector involves m(2TF + Tprior). Here we
have assumed that the cost of forming and applying the preconditioner is negligible compared
to the other costs. We can then use either Algorithm 1 or 2, which are both matrix-free, to
compute the Schatten p-norm of Γpost.

In the numerical experiments in Sections 5.2 and 5.3, we examine the effectiveness of
our proposed estimators for computing |||Γpost|||p. We take the number of degrees of freedom
n = 254; note that we choose a relatively small problem size to study the accuracy of the
method, but the estimators that we propose are scalable to larger problem sizes.

5.2. Monte Carlo estimator results. For each test matrix described in the previous
subsection, we apply Algorithm 1 and compute the error statistics as a function of the sample
size M . For each fixed sample size M , we generated 500 different realizations of XM using
Algorithm 1 and then computed the average, the 97.5th quantile, and the 2.5th quantile of the
relative errors. Note that the interval between the 2.5th and 97.5th quantiles is the same as the
central 95th confidence interval for the error.

Synthetic Test Matrices. In Figures 5.2 and 5.3, we display the mean and central 95th
confidence interval for each of the four synthetic test matrices, using a value of p = 5 and
p = 120, respectively. We call the shaded region within the 95th confidence interval the error
envelope for XM . First, we observe that the error statistics for the Monte Carlo estimator XM

does not depend significantly on the eigenvalue distributions. Second, we observe that for
p = 120 the average relative error is lower, compared to the average relative error for p = 5,
for all four eigenvalue distributions; see Figure 5.4. Furthermore, the error envelopes appear
tighter, suggesting smaller empirical variance with increasing p. A partial explanation of these
observations is as follows:

1. Bias: from Proposition 3.7, we see for the bias

|E(XM )− |||A|||p| ≤ |||A|||p(2/M)1/2.

For a fixed sample size, as p→∞ the bias is decreasing.
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2. Variance: combining the statement of Proposition 3.5 with the proof of Proposition 3.7,
we have

Var(XM ) ≤ 2‖Ap‖2F
M |||A|||2p−2p

≤
2|||A|||2p
M

.

As p → ∞ the upper bound
2|||A|||2p
M decreases, suggesting that the estimators are

more “concentrated” about their mean.
A more precise statement can be derived by using Chebyshev’s inequality, from which we
obtain for ζ > 0

P

{
|ZM − E[ZM ]| ≥ ζ

√
2

M
|||A|||p

}
≤ 1

ζ2
.

FIG. 5.2. Relative error in the Monte Carlo Estimator XM for the 100 × 100 synthetic test matrices with
p = 5. The error statistics were generated based on 500 realizations, each for a fixed sample size M .

SuiteSparse Matrices. We consider the two test matrices from the SuiteSparse matrix
collection. In Figure 5.5 we display the error envelope when p = 5 and in Figure 5.6 we plot
the error envelope when p = 80. Once again, as p increases the mean relative error decreases
(see Figure 5.7) and the error envelope appears to tighten. This further provides evidence that
the relative error does not show strong dependency on the eigenvalue distribution.

Posterior Covariance Matrix. In Figure 5.8 and 5.9, we display the relative error for the
posterior covariance matrix generated using the setup in Section 5.1.3. The main conclusions
from this plot are essentially the same as from the other two sets of test matrices.
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FIG. 5.3. Relative error in XM for the 100 × 100 test matrices with p = 120. The error statistics were
generated based on 500 realizations each for a fixed sample size M .
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FIG. 5.4. Comparing the mean relative error in XM for the 100 × 100 test matrices for p = 10, 20, 50, 100.
The error statistics were generated based on 500 realizations each for a fixed sample size M .
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FIG. 5.5. Relative error of XM , with p = 5, for each of the matrices from the SuiteSparse matrix collection.
The error statistics were generated based on 500 realizations each for a fixed sample size M .

FIG. 5.6. Relative error of XM , with p = 80, for each of the matrices from the SuiteSparse matrix collection.
The error statistics were generated based on 500 realizations each for a fixed sample size M .
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FIG. 5.7. Comparing the mean relative error in XM for the SuiteSparse matrices for p = 10, 20, 50, 80. The
error statistics were generated based on 500 realizations each for a fixed sample size M .

5.3. Chebyshev Monte Carlo estimator. We recall that the bound on N derived in
Proposition 4.2 was pessimistic. In this section, we present numerical evidence that a relatively
small N is sufficient for accurately estimating |||A|||p. For the synthetic test matrices and the
posterior covariance matrix, we choose p = 120 and N = 5, 10, 20, 60, whereas for the test
matrices from the SuiteSparse collection, we use p = 80 and N = 5, 10, 20, 40. For all the
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FIG. 5.8. Relative error of XM for a 254 × 254 matrix Γpost with p = 5 and p = 120. Similar to the test
matrices, we ran 500 different simulations for a fixed sample size M and we computed the mean error and the 97.5th
quantile and 2.5th quantile in the errors.
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FIG. 5.9. Comparing the mean relative error in XM for the OED posterior covariance matrix when p =
10, 20, 50, 80. The error statistics were generated based on 500 realizations each for a fixed sample size M .

test matrices, we compute the error using Algorithm 2. Similarly to the “standard” Monte
Carlo method in Section 5.2, we compute the average error by using 500 realizations for a
fixed sample size and value of N .

Synthetic Test Matrices. In Figure 5.10, we display the mean relative error in YM,N for
N = 5, 10, 20, 30, for each of the synthetic test matrices, when p = 120. Notice that withN =
20 and N = 30 the average relative error behaves similarly as in Figures 5.3. Next, we observe
that the estimator YM,N is accurate for all the test matrices here. However, if N is small,
i.e., 5–10, then we see that increasing the number of samples does not decrease the average
relative error due to the bias, i.e., the error due to Chebyshev polynomial approximation. On
the other hand, if N is sufficiently large, we see that increasing the sample size M can reduce
the average relative error.

SuiteSparse Matrices. In Figure 5.11 we display the mean relative error when using
Chebyshev approximation to accelerate the computation of |||A|||p for the the Trefethen_700
and the mhd4800b matrices when p = 80. Here we used N = 5, 10, 20, 30, and notice similar
trends as in the numerical experiments using synthetic matrices. For example, once again we
observe that if N is too small, then increasing the sample size does not reduce the error in the
Chebyshev approximation. Also we find that, for both test matrices, N = 20 is sufficient for
accurately approximating the Schatten p-norm.
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FIG. 5.10. Average relative error of YM,N for each of the 100× 100 test matrices with p = 120. We used 500
different realizations for a fixed sample size M and degree N .
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FIG. 5.11. Average relative error of YM,N for each of the SuiteSparse matrices with p = 80. We used 500
different realizations for a fixed sample size M and degree N .

Posterior Covariance Matrix. In Figure 5.12 we display the mean relative error in YM,N

for the Posterior Covariance Matrix from our OED example problem with p = 120. Here we
use N = 5, 10, 20, 30 and, similar to the Test matrices, we find that N = 20 is sufficient to
approximate |||Γpost|||p, which is a speedup of a factor of 3 in terms on number of matrix-vector
products.
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FIG. 5.12. Average relative error of YM,N for a 254 × 254 matrix Γpost with p = 120. We used 500 different
realizations for a fixed sample size M and degree N .

We return to the question of the degree of Chebyshev polynomials. Numerical evidence
suggested that N = 20 was sufficient for p = 120 and N = 10 is sufficient for p = 80 even
with condition numbers as large as 8× 1013. This suggests that the bound in Proposition 4.2
is pessimistic and that there is potential room for improvement.

Another point worth mentioning here is the trade-off between the degree of the polynomial
and the number of samples used. If the degree of the polynomial is small, then even with a
large number of samples the error may be dominated by the bias in the Chebyshev polynomial
approximation. On the other hand, if the degree of the polynomial is sufficiently high, then
the error may be determined by the sample size. Suppose we are given a fixed computational
budget for a certain number of matrix-vector products. For a given relative error, and a
certain user defined probability, one can use Theorem 4.3 to give insight into apportioning the
computational budget between the degree of the polynomial and the number of Monte Carlo
samples.

5.4. Comparison with SLQ methods. An alternative approach for computing the Schat-
ten p-norms is provided by the Stochastic Lanczos Quadrature (SLQ) method proposed in [29].
In contrast to our approach which uses Chebyshev polynomial approximations, the SLQ
method also uses the Monte Carlo estimators, but approximates quadratic forms of the type
wT f(A)w using the Lanczos process along with Gauss quadrature. The Lanczos process has
the advantage of not requiring estimates of the extreme eigenvalues of the matrix, and theoreti-
cal results suggest that the SLQ method is more accurate than the Chebyshev approach [29].
However, while the Lanczos method is also based on a three-term recurrence, due to round-off
errors the Lanczos basis vectors lose orthogonality. To fix this issue one can use full or partial
reorthogonalization of the basis vectors [24]. In the next set of numerical experiments, we
compare the accuracy of the Chebyshev approach with the SLQ approach. We use the imple-
mentation of SLQ provided by the authors of [29], in which full reorthogonalization is used.
This makes the computational cost of computing the Schatten p-norm TAMN +O(MN2n).
If the degree of the polynomial N is large, the cost of a full reorthogonalization may dominate
the computational cost. Note that the SLQ approach approximates tr(Ap); however, since this
approximation preserves the non-negativity of Ap when A is SPSD, we can take the p-root of
this approximation to estimate |||A|||p.

Synthetic Test Matrices. To compare the mean relative error of the SLQ method to
the mean relative error in the Chebyshev method for each of the synthetic test matrices,
we conducted two different numerical tests. First, in Figure 5.13 we fix the degree of the
approximation N = 20 and vary p = 10, 20, 50, 100. Note that for the Chebyshev approach
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FIG. 5.13. Mean relative error in SLQ method compared to the Chebyshev approach when fixing the degree of
approximation N = 20 and varying p = 10, 20, 50, 100.

N is the maximum polynomial degree, whereas in SLQ it is the number of Lanczos steps.
Next, in Figure 5.14 we fix p = 100 and vary the degree of approximation N = 5, 10, 15, 20.
Notice that when fixing N and varying p the two methods perform similarly on all cases,
whereas when p is fixed SLQ performs better for low order approximations, except in the
linear distribution case. Despite this, the Chebyshev method provides good approximations
for the p = 100 case with a polynomial of degree 20, while being easier to implement in the
sense that no reorthogonalization cost has to be incurred.

SuiteSparse Matrices. Similar to the test matrices we have plotted the mean relative error
for both the Chebyshev and SLQ methods for each of our SuiteSparse matrices. First, in
Figure 5.15, we fixed N = 20 and found the the relative error when p = 10, 20, 40, 80, Then,
in Figure 5.16, we fixed p = 80 and varied N = 5, 10, 15, 20. Once again we notice that when
N is fixed, both the SLQ and Chebyshev methods perform roughly equally well when p varies
for the mhd4800b matrix. Furthermore, the relative error appears to decrease as p increases. In
the case of the Trefethen_700 matrix, the Chebyshev method works well for a fixed N . This is
most likely due to the fact that the highest order eigenvalues decay roughly linearly.

If p is fixed andN is varied instead, we see that SLQ method does not perform significantly
better with the Trefethen_700 matrix, as the relative errors are around 10−3, but the Chebyshev
method works well for low to medium values of N relative to p. This is again most likely due
to the linear decay relationship between the highest order eigenvalues for the Trefethen_700
matrix. On the other hand, the mhd4800b matrix does not exhibit these issues. In fact, low
order SLQ methods work quite well, as there is no significant decrease in the relative error by
increasing the number of Lanczos steps. However, the Chebyshev method does not perform
well if the degree of the approximation is not sufficiently high and the total relative error is
dominated by the error in the approximation.
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FIG. 5.14. Mean relative error in SLQ method compared to the Chebyshev approach when fixing p = 100 and
varying the degree of approximation N = 5, 10, 15, 20.
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FIG. 5.15. Mean relative error in SLQ method compared to the Chebyshev approach when fixing the degree of
approximation N = 20 and varying p = 10, 20, 50, 80.

Posterior Covariance Matrix. Lastly, in Figures 5.17 and 5.18 we compare the SLQ
and Chebyshev approaches for approximating the Schatten p-norm for our OED problem. In
Figure 5.17, we fix N = 20 and vary the degree p = 10, 20, 50, 100, whereas in Figure 5.18
we fix p = 100 and vary N = 5, 10, 15, 20. As seen before, fixing N and varying p causes
both methods to work roughly equivalently in terms of relative error. Moreover, as the OED
matrix does not have a linear eigenvalue decay, we notice that the error in the SLQ method
is minimal even at low order approximations (say N = 5), while the Chebyshev method
accomplishes the same objective with a slightly higher order, N = 15 in our example.

In conclusion, we found that both the SLQ method and our Chebyshev polynomial
approximation are competitive in terms of computing time and accuracy. SLQ has the
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FIG. 5.16. Mean relative error in SLQ method compared to the Chebyshev approach when fixing p = 80 and
varying the degree of approximation N = 5, 10, 15, 20.
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FIG. 5.17. Mean relative error in SLQ method compared to the Chebyshev approach when fixing the degree of
approximation N = 20 and varying p = 10, 20, 50, 100.
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FIG. 5.18. Mean relative error in SLQ method compared to the Chebyshev approach when fixing p = 100 and
varying the degree of approximation N = 5, 10, 15, 20.

advantage that it does not require estimates of the extreme eigenvalues, but it demands for a
careful implementation that pays attention to reorthogonalization.
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6. Conclusion. Computation of the Schatten p-norm is frequently used in linear algebra
and analysis. However, its computation by a straightforward application of the definition
can be computationally difficult for large matrices. We propose two different estimators and
present a probabilistic analysis of their convergence and accuracy. The numerical results
show that our estimators are efficient and accurate. They also illustrate the main theoretical
analysis developed in this paper, but show room for improvement. Specifically, we would
like to show that the number of samples for an (ε, δ) estimator for |||A|||p decreases with p.
Similarly, we would like to show that a small degree N is sufficient for accurately estimating
|||A|||p using YM,N . Other possible future directions involve further exploring the stochastic
Lanczos quadrature approach presented in [29], which has the advantage that it does not
require estimates of the extreme points of the spectrum and promises to be more accurate
compared to the Chebyshev polynomial approximation. Another possible approach is to use
a rational approximation to xp [29]; while a rational function of relatively small degree is
sufficient, computing a rational matrix function can be computationally expensive.

Acknowledgements. We are grateful to Eric Hallman for his suggestion of using the
symmetry of A to half the computational cost in Algorithm 1. We are also grateful to
Shashanka Ubaru for sharing his implementation of the SLQ method with us. The authors
would like to acknowledge support from the National Science Foundation through the grant
“RTG: Randomized Numerical Analysis” DMS - 1745654.

REFERENCES
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