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ON MULTIDIMENSIONAL SINC-GAUSS SAMPLING FORMULAS
FOR ANALYTIC FUNCTIONS∗

RASHAD M. ASHARABI† AND FELWAH H. AL-HADDAD†

Abstract. Using complex analysis, we present new error estimates for multidimensional sinc-Gauss sampling
formulas for multivariate analytic functions and their partial derivatives, which are valid for wide classes of functions.
The first class consists of all n-variate entire functions of exponential type satisfying a decay condition, while the
second is the class of n-variate analytic functions defined on a multidimensional horizontal strip. We show that the
approximation error decays exponentially with respect to the localization parameter N . This work extends former
results of the first author and J. Prestin, [IMA J. Numer. Anal., 36 (2016), pp. 851–871] and [Numer. Algorithms, 86
(2021), pp. 1421–1441], on two-dimensional sinc-Gauss sampling formulas to the general multidimensional case.
Some numerical experiments are presented to confirm the theoretical analysis.
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1. Introduction. During the past two decades, the modification of various types of uni-
variate and bivariate sampling series using Gaussian multipliers has attracted many researchers
due to the slow convergence rate of these types of sampling. The modification of univariate
sampling with Gaussian multipliers was studied using a Fourier-analytic approach by Qian
and his collaborators; see, e.g., [12, 13, 14, 15]. Schmeisser and Stenger in [18], Tanaka et
al. in [19], Asharabi in [2], and Asharabi and Prestin in [6] have studied the modification
of various types of univariate sampling series based on a complex-analytic approach. The
modification of bivariate classical and Hermite sampling with bivariate Gaussian multipliers is
introduced in [3, 6] based on a complex-analytic approach. Furthermore, these modifications
are employed for approximating the ordinary and partial derivatives of analytic functions
with high accuracy; cf. [4, 7]. To the best of our knowledge, there is no single study on the
modification of the general multivariate sampling series with Gaussian multipliers, the work
of Lin and Zhang in [10] being an exception. They have studied their modification based on a
Fourier-analytic approach.

Now let us briefly review the general multivariate Whittaker-Kotelnikov-Shannon (WKS)
sampling series and the modification of Lin and Zhang. The Bernstein space Bpσ(Rn), σ > 0,
1 ≤ p <∞, is the set of all functions from Lp(Rn) that can be extended to n-variate entire
functions of exponential type σ, where Lp(Rn) denotes the Banach space of all complex-
valued Lebesgue-measurable n-variate functions with the standard norm

(1.1) ‖f‖p =


(∫

Rn |f(x)|p dx
)1/p

1 ≤ p <∞,
ess. sup

x∈Rn
|f(x)| p =∞.

According to Schwartz’s theorem [11, p. 109], the Bernstein space is defined by

Bpσ(Rn) =
{
f ∈ Lp(Rn) : supp f̂ ⊂ [−σ, σ]n

}
,
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where f̂ is the Fourier transform of f in the sense of generalized functions. The general
multivariate WKS sampling theorem states that if f belongs to the Bernstein space Bpσ(Rn),
1 ≤ p <∞, then f can be represented as

(1.2) f(z) =
∑
k∈Zn

f

(
kπ

σ

) n∏
j=1

sinc(σzj − kjπ),

where k = (k1, . . . , kn) ∈ Zn, z := (z1, . . . , zn) ∈ Cn, and the sinc function is defined as

(1.3) sinc(t) :=


sin t

t
t 6= 0,

1 t = 0.

The series (1.2) converges absolutely and uniformly on Rn and uniformly on any compact
subset of Cn; see, e.g., [22]. The convergence rate for this series is slow unless |f(x)| decays
rapidly as |xj | → ∞ for all 1 ≤ j ≤ n, and it is of order O(N−1/p), p > 1; cf. [23]. Here,
N denotes the number of samples of f in the truncated series. The slow convergence rate is
due to the slow decay of the sinc function. Asharabi and Al-Abbas in [5] have incorporated
a convergence factor from the Bernstein space Bpa (Rn) into the sampling series (1.2), and
they have established a regularized multivariate sampling expansion. Let f ∈ Bp(1−θ)σ(Rn),
0 < θ < 1, 1 ≤ p <∞, and

∏n
j=1 ψj ∈ B

p
θσ(Rn). Then, for x ∈ Rn, we have [5]

(1.4) f(x) =
∑
k∈Zn

f(kh)

n∏
j=1

ψj(h
−1xj − kj) sinc(πh−1xj − kjπ),

where ψj(0) = 1, j = 1, . . . , n, and h ∈ (0, π/σ]. The series (1.4) converges absolutely
and uniformly on Rn and on any compact subset of Cn. Its convergence rate depends on
the convergence factor {ψj}nj=1. According to Nikol’skii, the decay of Bpσ (Rn)-functions is
limited. It is well-known that the function in the space Bpσ (Rn) cannot decay faster in Rn than∏n
i=1 e

−ai|xi|mi for |xi| → ∞, where x := (x1, . . . , xn),mj ∈]0, 1[, ai are positive numbers,
and j = 1, . . . , n. Here we would like to mention that the modification of the multivariate
WKS sampling series (1.2) with a bandlimited multiplier can reconstruct the functions exactly;
see (1.4). If we modify the sampling series with a non-bandlimited multiplier, like a Gaussian
multiplier, then the modification formula cannot reconstruct the function exactly.

Lin and Zhang have defined their modification for the multivariate WKS sampling (1.2)
as, cf. [10],

(1.5) Sσ,N [f ](x) =
∑
k∈JN

f(k)

n∏
j=1

sinc(πxj − kjπ) exp

(
−δ(xj − j)2

N − 2

)
,

where N ≥ 2, δ = (π − σ)/2, σ ∈ (0, π), and JN := {k ∈ Zn : k ∈ (−N,N ]n}. The
formula (1.5) is used to reconstruct a multivariate function f that belongs to the Paley-Wiener
space B2

σ (Rn) from its finite samples f(k), k ∈ JN . Based on a Fourier-analytic approach,
they have estimated the error |f(x)− Sσ,N [f ](x)| for f ∈ B2

σ (Rn) by a bound of exponential
order. In other word, if f ∈ B2

σ (Rn), then for x ∈ (0, 1)n, Lin and Zhang have shown
in [10, Theorem 2.5] that

(1.6) |f(x)− Sσ,N [f ](x)| = O

(
e−δ(N−1)

√
N − 1

)
.
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The bound in (1.6) is valid only for real-valued functions from the Paley-Wiener space
B2
σ (Rn) and needs an adaptation when we approximate the function f outside the region

(0, 1)n. Here we would like to point out that the modification of the sampling series with
Gaussian multipliers, which uses samples only from the function itself, is called sinc-Gauss
formula; cf., e.g., [4, 19, 21].

In this paper, based on the complex-analytic approach, we modify the general multivariate
WKS sampling (1.2) with the help of a Gaussian multiplier. This modification will be valid for
wide classes of functions. The first class consists of all n-variate entire functions of exponential
type satisfying a decay condition, while the second is the class of n-variate analytic functions
defined on a multidimensional horizontal strip. Also, this modification extends the results in
[6, 7] to multidimensional sinc-Gaussian sampling formulas. Asharabi and Prestin, cf. [6, 7],
have established only the bivariate sinc-Gauss sampling formula and left the extension of their
results to the general multidimensional case as an open problem. They have shown that a
straightforward generalization to the general multivariate case for their kernel does not lead to
the desired estimate, cf. [7, Remark 2.2.]. Here we have found a meaningful way to transfer
the bivariate kernel to the general multivariate case. All the results in [6, 7] will be extended
to the general multivariate case.

The rest of the paper is organized as follows: In Section 2, we establish the multivariate
sinc-Gauss sampling formula and estimate the error for entire and holomorphic functions
on an infinite multivariate horizontal strip domain. Section 3 is devoted to applying the
multivariate sinc-Gauss formula to approximate the partial derivatives of analytic function of
several variables of any order using only finitely many samples of the function itself. Section 4
deals with numerical illustrations.

2. Multivariate sinc-Gauss sampling. Let Enσ (ϕ), σ > 0, be the class of entire func-
tions of several variables satisfying the following growth condition

(2.1) | f(z) |≤ ϕ(| <z1 |, . . . , | <zn |) exp

σ n∑
j=1

| =zj |

 , z := (z1, . . . , zn) ∈ Cn,

where ϕ is a non-negative function on Rn+ that is nondecreasing for all variables |<zj |,
j = 1, . . . , n. The authors of [6] have introduced the space E2

σ(ϕ) and showed the inclusion
Bpσ(Rn) ⊂ Enσ (ϕ), n = 2. This inclusion is still true for all n > 2. For h ∈ (0, π/σ], set
β := (π − hσ)/2, and let En be the class of all entire functions on Cn. In the class Enσ (ϕ),
we define the multivariate localization operator Gn,h,N : Enσ (ϕ)→ En ∩Lp(Rn) as follows:

(2.2) Gn,h,N [f ](z) :=
∑

k∈ZnN (z)

f(kh)

n∏
j=1

sinc(πh−1zj − kjπ) exp

(
−β(zj − kjh)2

Nh2

)
,

where N is a positive integer, z ∈ Cn, k = (k1, . . . , kn), and

(2.3) ZnN (z) :=
{
k ∈ Zn : |bh−1<zj + 1/2c − kj | ≤ N, j = 1, . . . , n

}
.

The univariate and bivariate case of the operator Gn,h,N are introduced in [18] and [6],
respectively. For establishing the operator Gn,h,N , we need to consider the kernel function

(2.4) Kz(w) := ρz(w)

n∏
j=1

exp
(
−β(zj − wj)2/Nh2

)
(wj − zj) sin(πh−1wj)

,
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where w := (w1, . . . , wn), z = (z1, . . . , zn), and

(2.5) ρz(w) := −
n∏
j=1

(
sin(πh−1wj)− sin(πh−1zj)

)
+

n∏
j=1

sin(πh−1wj).

The bivariate form of this kernel function is considered in [6]. As we have mentioned in
the introduction, the authors of [7] have shown that a straightforward generalization for
their bivariate kernel does not lead to the multivariate operator Gn,h,N ; cf. [7, Remark 2.2.].
In (2.4) and (2.5), we found a meaningful way to transfer their bivariate kernel to the general
multivariate case. On the wj-plane, let Rj be the positively oriented rectangle with vertices
at ±h

(
N + 1

2

)
+ hbh−1<zj + 1

2c + i(=zj ± N), for all j = 1, . . . , n. This kernel has a
singularity of order 1 at all the points of the sets

{w ∈ Cn : wj = zj for some j} ∪ {w ∈ Cn : wj = kjh for some j} .

In the following result, we show that the error of the approximation by the operator Gn,h,N
for functions from Enσ (ϕ) can be written as the integral of the kernel Kz over the rectangles
R1, . . . , Rn.

LEMMA 2.1. Let f ∈ Enσ (ϕ). Then we have for all z ∈ Cn

(2.6) f(z)− Gn,h,N [f ](z) =
1

(2πi)n

∮
Rn

. . .

∮
R1

Kz(w)f(w) dw1 . . . dwn,

where Rj , j = 1, . . . , n, is the positively oriented rectangle defined above.
Proof. For convenience, we define F (w) := Kz(w)f(w). Let Res1F (λ1;w2, . . . , wn)

be the residue of the univariate function w1 7→ F (w1, . . . , wn) at the point w1 = λ1 ∈ C with
w2, . . . , wn considered complex parameters. Assume that

Res`−1F (λ1, . . . , λ`−1;w`, . . . , wn)

has already been defined. Then Res`F (λ1, . . . , λ`;w`+1, . . . , wn) is defined as the residue of
the univariate function w` 7→ Res`−1F (λ1, . . . , λ`−1;w`, . . . , wn) at the point w` = λ` ∈ C
with w`+1, . . . , wn considered complex parameters. By the special form of the function F , it
can be verified that

Res`F (λ1, . . . , λ`;w`+1, . . . , wn) ≡ 0 unless (λ1, . . . , λ`) ∈ {(z1, . . . , z`)} ∪ hZ`,

where 2 ≤ ` ≤ n. Furthermore, we have for all z ∈ Cn

(2.7) ResnF (z1, . . . , zn) = f(z),

and

ResnF (k1h, . . . , knh) = −f(kh)

n∏
j=1

sinc(πh−1zj − kjπ) exp

(
−β(zj − kjh)2

Nh2

)
,(2.8)

for all (k1, . . . , kn) ∈ Zn. Calculating the integrals on the right-hand side of (2.6) one after
the other with the help of the residue theorem, we get

1

(2πi)n

∮
Rn

. . .

∮
R1

Kz(w)f(w) dw1 . . . dwn = ResnF (z1, . . . , zn)

+
∑

k∈ZnN (z)

ResnF (k1h, . . . , knh).
(2.9)
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Combining (2.7), (2.8), and (2.9) implies (2.6).
In the following result, we rewrite the function ρz(w), which is defined by (2.5), as a

finite sum of products. This formula will be used in the proof of Theorem 2.3.
LEMMA 2.2. The function ρz(w) can be written in the form

(2.10) ρz(w) =

n∑
m=1

(−1)m+1
∑

Nm∈P (I)

∏
j∈Nm

sin(πh−1zj)
∏
l∈Mm

sin(πh−1wl),

whereNm is a subset of I = {1, 2, . . . , n} such that it contains anym elements,Mm = I\Nm,
and P (I) is the set of all subsets of I . Note that Mn is the empty set.

Proof. The proof can be easily established by mathematical induction, so we leave it to
the reader.

In the following theorem, we estimate the integral in (2.6) to find an error bound for
|f(z)− Gn,h,N [f ](z)|.

THEOREM 2.3. Let f ∈ Enσ (ϕ). Then we have for all |=zj | < N , j = 1, . . . , n,

(2.11) |f(z)− Gn,h,N [f ](z)| ≤ 2ϕ (η(z))BN (z)
e−βN√
πβN

,

where the function ϕ is given in (2.1) and η is defined as

(2.12) η(z) := (b(z1), . . . , b(zn))

such that b(zj) := |<zj |+ h(N + 1), for all j = 1, . . . , n. The function BN is defined by

BN (z) :=

n∑
m=1

∏
l∈Mm

eσ|=zl|
(

2 e−βN√
πβN

)m−1 ∑
Nm∈P (I)

∏
j∈Nm

| sin(πh−1zj)|θN (h−1=zj),

(2.13)

where

θN (t) := cosh(2β t) +
2 eβ t

2/N

√
πβ N

(
1− (t/N)

2
) +

1

2

[
e2β t

e2π(N−t) − 1
+

e−2β t

e2π(N+t) − 1

]
= cosh(2β t) +O

(
N−1/2

)
as N →∞.(2.14)

Proof. Substituting (2.4) and (2.10) into (2.6), the integral in (2.6) can be written in the
form

f(z)− Gn,h,N [f ](z)

=
1

(2πi)n

[
n∑

m=1

(−1)m+1
∑

Nm∈P (I)

∏
j∈Nm

sin(πh−1zj)

×
∮
Rn

. . .

∮
R1

f(w)
∏

j∈Nm
e−β(zj−wj)2/Nh2 ∏

l∈Mm

e−β(zl−wl)2/Nh2

∏
j∈Nm

sin(πh−1wj)(wj − zj)
∏

l∈Mm

(wl − zl)
dw1 . . . dwn

]
,

(2.15)

where Rj , j = 1, . . . , n, is the positively oriented rectangle defined above. Applying the
multidimensional version of the Cauchy integral formula, cf., e.g., [9, p. 26], we get for a
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fixed m,

{|f(w)|wl=zl}l∈Mm

=
1

(2πi)n−m

∮
∏

l∈Mm
Rl

f(w)
∏

l∈Mm

exp(−β(zl − wl)2/Nh2)∏
l∈Mm

(wl − zl)
∏
l∈Mm

dwl,
(2.16)

where z` ∈ C, ` ∈Mm, are arbitrary but fixed complex parameters, whereasw` ∈ C, ` ∈Mm,
are complex variables. Combining (2.16), (2.15), and in view of the definition of the sets Mm

and Nm, we obtain

|f(z)− Gn,h,N [f ](z)|

≤
n∑

m=1

[
1

(2π)m

∑
Nm∈P (I)

∏
j∈Nm

| sin(πh−1zj)|

×
∮

∏
j∈NmRj

∣∣∣∣∣
{f(w)|wl=zl}l∈Mm

∏
j∈Nm

exp(−β(zj − wj)2/Nh2)∏
j∈Nm

sin(πh−1wj)(wj − zj)

∣∣∣∣∣ ∏
j∈Nm

| dwj |

]
.

(2.17)

Since f ∈ Enσ (ϕ) for all points w ∈
n∏
j=1

Rj , we have

(2.18) |f(w)| ≤ ϕ(η(z))

n∏
j=1

eσ|=wj |,

where the function η is defined in (2.12). Aside from that, it is easy to verify that for all
wj ∈ Rj , we have

(2.19) |{f(w)|wl=zl}l∈Mm | ≤ ϕ(η(z))
∏
j∈Nm

eσ|=wj |
∏
l∈Mm

eσ|=zl|,

for all Mm ⊂ I . This results from the assumption that the function ϕ is nondecreasing for all
variables |<zj |, j = 1, . . . , n. Substituting (2.18) and (2.19) into (2.17), we obtain

|f(z)− Gn,h,N [f ](z)|

≤ ϕ(η(z))

n∑
m=1

[
1

(2π)m

∑
Nm∈P (I)

∏
j∈Nm

| sin(πh−1zj)|
∏
l∈Mm

eσ|=zl|

×
∏
j∈Nm

∮
Rj

∣∣∣∣∣exp
(
σ|=wj | − β(zj − wj)2/Nh2

)
sin(πh−1wj)(wj − zj)

∣∣∣∣∣ |dwj |
]
.

(2.20)

By splitting the contour integral over Rj into four integrals along line segments and transform-
ing the latter into ordinary integrals, one can imitate the estimates in [18, pp. 203–205] to
obtain

(2.21)
∮
Rj

∣∣∣∣exp(σ|=wj | − β(zj − wj)2/Nh2)

sin(πh−1wj)(wj − zj)

∣∣∣∣ |dwj | ≤ 4πθN (h−1=zj)
e−βN√
πβN

.

Combining (2.21) and (2.20), we finally get (2.11).
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REMARK 2.4. The special cases of Theorem 2.3 for n = 1 and n = 2 were stated by
Schmeisser and Stenger in [18, Theorem 2.1] and by Asharabi and Prestin in [6, Theorem 3.3],
respectively.

On the complex domain, the bound in (2.11) depends on the growth of the functions ϕ
and BN , while on the real domain, the bound (2.11) depends only on the growth of ϕ. This
holds because the function BN is a bounded function on the real domain. Precisely, for all
x ∈ Rn, we have

|BN (x)| ≤
n∑

m=1

(
n
m

)(
2e−βN√
πβN

)m−1

θmN (0).

Since the function ϕ is nondecreasing, we can take one of familiar growth: constant,
polynomial, and exponential growth. In the following results, we investigate the cases of
slower and faster growth, which will be advantageous special cases of Theorem 2.3.

COROLLARY 2.5. Assume that f ∈ B∞σ (Rn). Then for all z ∈ Cn we have

(2.22) |f(z)− Gn,h,N [f ](z)| ≤ 2||f ||∞BN (z)
e−βN√
πβN

.

If f belongs to the Paley-Wiener space B2
σ(Rn), then we get for all z ∈ Cn that

(2.23) |f(z)− Gn,h,N [f ](z)| ≤ 2 (σ/π)
n
2 ||f ||2BN (z)

e−βN√
πβN

,

where the norm ‖f‖p, 1 ≤ p ≤ ∞, is defined by (1.1) and BN is given in (2.13).
Proof. Since f ∈ B∞σ (Rn), it satisfies the growth condition

(2.24) |f(z)| ≤ ||f ||∞
n∏
j=1

eσ|=zj | ,

and the decay condition in (2.1) is valid with the constant growth ϕ := ||f ||∞. Note that the
norm ||f ||∞ is defined by (1.1). Therefore, we get (2.22). For f ∈ B2

σ(Rn), we have

f(x) =
1

(2π)n/2

∫
[−σ,σ]n

f̂(w)ei〈 x,w〉dw,

where f̂ is the Fourier transform of f and 〈x,w〉 is the inner product on Rn. Applying n-times
the CauchyâĂŞSchwarz inequality yields

(2.25) ||f ||∞ ≤
1

(2π)n/2

∫
[−σ,σ]n

|f̂(w)|dw ≤ (σ/π)
n
2 ||f̂ ||2.

Since f ∈ L2(Rn), the Parseval equality holds, cf., e.g., [20, p. 292],

(2.26) ||f̂ ||2 = ||f ||2.

The proof is completed by combining (2.26), (2.25), and (2.22) and using the fact that
B2
σ(Rn) ⊂ B∞σ (Rn).

COROLLARY 2.6. Assume that f is an entire function satisfying the exponential growth
condition

(2.27) |f(z)| ≤M
n∏
j=1

eκ|<zj |+σ|=zj |, z ∈ Cn,M > 0,
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where σ, κ are non-negative numbers and σ + κ > 0. Then, we have for |=zj | < N that

(2.28) |f(z)− Gn,h,N [f ](z)| ≤ 2Me
κ(h+

n∑
j=1
|<zj |)

BN (z)
e−(β−κh)N

√
πβN

,

where h ∈ (0, π/(σ + 2κ)) and BN is defined in (2.13).
Proof. By assumption, f is an entire function satisfying (2.27). In this case, we get

(2.29) |{f(w)|wl=zl}l∈Mm | ≤M [eκh(N+1)]me
κ(

n∑
j=1
|<zj |) ∏

l∈Mm

eσ|=zl|
∏
j∈Nm

eσ|=wj |.

Using the estimate in the proof of Theorem 2.3, we get (2.28) after restricting h to the interval
(0, π/(σ + 2κ)).

In the rest of this section, we investigate the operator Gn,h,N for n-variate analytic
functions defined on the multidimensional horizontal strip

Snd := {z ∈ Cn : |=zj | < d for all j = 1, . . . , n} .

Denote by And (ϕ) the class of n-variate analytic functions f : Snd → Cn which satisfy the
following condition:

| f(z) |≤ ϕ(| <z1 |, . . . , | <zn |), z := (z1, . . . , zn) ∈ Snd ,

where ϕ is defined after (2.1). For functions from the class And (ϕ), we study the operator
Gn,h,N in the special case h := d/N and β = π/2. In the following theorem, we establish a

bound for the error
∣∣∣f(z)− Gn, dN ,N [f ](z)

∣∣∣, where f ∈ And (ϕ) and β = π/2.
THEOREM 2.7. Assume that f ∈ And (ϕ). Then for z ∈ Snd/4, we have∣∣∣f(z)− Gn, dN ,N [f ](z)

∣∣∣
≤ ϕ(η(z))

n∑
m=1

[(
2
√

2

π

)m
∑

Nm∈P (I)

∏
j∈Nm

∣∣∣∣sin(πNzjd

)∣∣∣∣ϑN (=zjd
)
e
−πN2

(
1−

2|=zj |
d

)
√
N

]
,

(2.30)

where the functions ϕ and η are given in (2.1) and (2.12) (with h = d/N ), respectively. The
function ϑN is defined by

ϑN (t) :=
1

1− t

(
1

1− e−2πN
+

2
√

2

π
√
N(1 + t)

)

=
1

1− t
(1 +O(N−1/2)) as N →∞.

(2.31)

Proof. LetRj to be the positive oriented rectangle with vertices at

±h(N +
1

2
) + hNh−1zj + id and ± h(N +

1

2
) + hNh−1zj − i(d−=zj) if =zj > 0,

where Nzj = b<zj + 1
2c and h = d/N . When =zj < 0, the vertices are

±h(N +
1

2
) + hNh−1zj − id and ± h(N +

1

2
) + hNh−1zj + i(d−=zj).
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Since f ∈ And (ϕ), it is easy to see that the integral representation in (2.6) is also valid for
the special operator Gn, dN ,N with the multivariate rectangle

∏n
j=1Rj . Applying the triangle

inequality for (2.15) after replacing the rectangle Rj by Rj with taking h = d
N and β = π

2
and using (2.16), we obtain

|f(z)− Gn, dN ,N [f ](z)|

≤ 1

(2π)m

n∑
m=1

[ ∑
Nm∈P (I)

∏
j∈Nm

∣∣∣∣sin(πNzjd

)∣∣∣∣
×
∮
Rj

∣∣∣∣∣∣e
−Nπ(zj−wj)2/2d2 {f(w)|wl=zl}l∈Mm

sin
(
πNwj
d

)
(wj − zj)

∣∣∣∣∣∣ | dwj |
]
.

(2.32)

Since f ∈ And (ϕ), for all points w on the multivariate rectangle
n∏
j=1

Rj , we have

(2.33) |f(w)| ≤ ϕ(η(z)),

where the function η is defined in (2.12). Similarly for all w ∈
n∏
j=1

Rj , we obtain that

(2.34)
∣∣{f(w)|wl=zl}l∈Mm

∣∣ ≤ ϕ(η(z))

for all Mm ⊂ I . This is a consequence of the assumption that the function ϕ is nondecreasing
for all variables |<zj |, j = 1, . . . , n, and b(zj) = |<zj | + h(N + 1). Applying the same
technique as in Theorem 2.3 with the use of (2.33) and (2.34), we obtain∣∣∣f(z)− Gn, dN ,N [f ](z)

∣∣∣
≤ ϕ(η(z))

n∑
m=1

[
1

(2π)m

∑
Nm∈P (I)

∏
j∈Nm

∣∣∣∣sin(πNzjd

)∣∣∣∣
×
∮
Rj

∣∣∣∣∣∣ e
−Nπ(zj−wj)

2

2d2

sin
(
πNwj
d

)
(wj − zj)

∣∣∣∣∣∣ |dwj |
]
.

(2.35)

By splitting the contour integral over Rj into four integrals along line segments and trans-
forming the latter into ordinary integrals, one can imitate the estimates in [18, pp. 209–211] to
obtain

(2.36)
∮
Rj

∣∣∣∣∣∣ e
−Nπ(zj−wj)

2

2d2

sin
(
πNwj
d

)
(wj − zj)

∣∣∣∣∣∣ |dwj | ≤ 4
√

2ϑN

(
=zj
d

)
e
−πN

2

(
1−

2|=zj |
d

)
√
N

.

The proof is completed by combining (2.36) and (2.35).
The bound in (2.30) depends on the growth of the functions ϕ and the behavior of the

term

n∑
m=1

(
2
√

2

π

)m ∑
Nm∈P (I)

∏
j∈Nm

∣∣∣∣sin(πNzjd

)∣∣∣∣ϑN (=zjd
)
e
−πN2

(
1−

2|=zj |
d

)
√
N

.
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On the real domain, the bound (2.35) will be of exponential order and depends only on the
growth of the functions ϕ. Indeed, for all f ∈ And (ϕ) and for x ∈ Rn, we have

(2.37)
∣∣∣f(x)− Gn, dN ,N [f ](x)

∣∣∣ ≤ ϕ(η(x))

n∑
m=1

(
n
m

)(
2
√

2

π

)m
ϑmN (0)

(
e−

πN
2

√
N

)m
.

3. Approximation of partial derivatives. In this section, we extend our work in the
last section to the approximation of the partial derivatives of any order of a function f of
several variables that belongs to the class Enσ (ϕ) or And (ϕ). Let, here and throughout the
paper, α := (α1, . . . , αn), αj ∈ N0, j = 1, . . . , n and Dα

z := ∂α1+...+αn

∂z
α1
1 ...∂zαnn

. We define the
partial derivatives of the operator Gn,h,N as

Dα
z Gn,h,N [f ](z) :=

∑
k∈ZnN (z)

f(kh)Dα
z

 n∏
j=1

sinc
(
πh−1zj−kjπ

)
exp

(
−β (zj − kjh)

2

Nh2

) .
(3.1)

In the following result, we show that the approximation error for the partial derivatives of
functions from Enσ (ϕ) using the operator DαGn,h,N can be written as an integral of the partial

derivatives of the kernel Kz over the multivariate rectangle
n∏
j=1

Rj .

LEMMA 3.1. Let f ∈ Enσ (ϕ) and α := (α1, . . . , αn) ∈ Nn0 . Then we have for all z ∈ Cn,

(3.2) Dα
z f(z)−Dα

z Gn,h,N [f ](z) =
1

(2πi)n

∮
Rn

. . .

∮
R1

Dα
zKz(w)f(w) dw1 . . . dwn,

whereKz is the kernel function defined in (2.4) andRj , j = 1, . . . , n, is the positively oriented
rectangle defined above.

Proof. Since f ∈ Enσ (ϕ), the identity (2.6) is valid. Taking the partial derivatives of order
α on both sides of (2.6) and observing that differentiation under the integral sign is allowed,
we get (3.2).

For all f ∈ Enσ (ϕ), we define the following function Sm of several variables wl, l ∈Mm:

Sm([wl]l∈Mm
) :=

∮
∏

j∈Nm
Rj

f(w)
∏
j∈Nm ∂

δj
zj

{
exp(−β(zj − wj)2/Nh2)

}∏
j∈Nm

(wj − zj)γj+1

∏
j∈Nm

dwj ,

(3.3)

such that zj lies inside the rectangle Rj and δj ∈ N0, j ∈ Nm. Here ∂δjzj f denotes the partial
derivatives of order δj with respect to zj , j = 1, . . . , n.

The double factorial of a number n, denoted by n!!, is the product of all the integers from
1 up to n that have the same parity (odd or even) as n. That is,

n!! =

dn2 e−1∏
k=0

(n− 2k),

where dxe denotes the least integer greater than or equal to x. The following lemma is devoted
to estimates of the integral on the right-hand side of (3.3), and it will be used in the proof of
the main results of this section.
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LEMMA 3.2. Assume that f ∈ Enσ (ϕ). Let γNm = (γ1, . . . , γn) be given such that
γj = 0 if j /∈ Nm, νj ∈ N0, for all j = 1, . . . , n, and δj ∈ N0, j ∈ Nm. Then, we have

|Sm([wl]l∈Mm)|

≤ (2π)
m
ϕ(η(z))

∑
νNm≤γNm

∏
j∈Nm

eσ(|=zj |+h)
( √

β√
Nh

)δj+γj−νj
|Hδj+γj−νj |

∏
l∈Mm

eσ|=wl|∏
j∈Nm

hνj (γj − νj)!
,

(3.4)

where Sm and η are defined by (3.3) and (2.12), respectively. The constantHn is the Hermite
number

(3.5) Hn :=

{
0, if n is odd,
(−1)

n
2 2

n
2 (n− 1)!!, if n is even,

where n!! is the double factorial of n. The sum in (3.4) is taken over all multiindices
νNm ≤ αNm , i.e., νj ≤ αj , for all j ∈ Nm. Here νNm = (ν1, . . . , νn) such that νj = 0 if
j /∈ Nm and νj ∈ N0, for all j = 1, . . . , n.

Proof. Applying CauchyâĂŹs integral formula, cf., e.g., [17, p. 18], for the right-hand
side of (3.3), we obtain

Sm([wl]l∈Mm)

=
(2πi)m∏
j∈Nm γj !

DγNm
w

f(w)
∏
j∈Nm

∂δjzj
{

exp(−β(zj − wj)2/Nh2)
}

wj=zj,

j∈Nm

,
(3.6)

where Dα
w is defined as above. The multivariate version of the Leibniz rule is given by, cf.,

e.g., [8, p. 13],

(3.7) Dα
w(f(w)g(w)) =

∑
ν≤α

n∏
j=1

αj !

n∏
j=1

νj !(αj − νj)!
Dν
wf(w)Dα−ν

w g(w),

where f, g are analytic functions of several variables, w := (w1, . . . , wn), α := (α1, . . . , αn),
and ν := (ν1, . . . , νn). The sum in (3.7) is taken over all multiindices ν := (ν1, . . . , νn), and
here ν ≤ α means that νj ≤ αj (j = 1, . . . , n). Applying formula (3.7) for the right-hand
side of (3.6), we obtain

SNm ([wl]l∈Mm
)

= (2πi)m
∑

νNm≤γNm

[
1∏

j∈Nm
νj !(γj − νj)!

×

DνNm
w f(w)

∏
j∈Nm

∂δj ,γj−νjzj ,wj

{
e
−β(zj−wj)

2

Nh2

}
wj=zj,

j∈Nm

]
,

(3.8)

where νNm is defined above and ∂δi,γjzi,wjf are the higher-order partial and mixed derivatives,
i.e., ∂δi,γjzi,wjf := ∂δizi∂

γj
wjf . From [7], we have

(3.9) ∂τ1,τ2ζ,ξ

{
e
−β(ζ−ξ)2

Nh2

}
= (−1)τ1+τ2

( √
β√
Nh

)τ1+τ2

Hτ1+τ2

(√
β(ζ − ξ)√
Nh

)
e
−β(ζ−ξ)2

Nh2 ,
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where ζ, ξ ∈ C, τ1, τ2 are integer numbers and Hn is the nth degree Hermite polynomial
defined by Hn(x) := (−1)nex

2 dn

dxn e
−x2

. Using (3.9), we have

(3.10)
{
∂τ1,τ2ζ,ξ

{
e
−β(ζ−ξ)2

Nh2

}}
ξ=ζ

= (−1)τ1+τ2

( √
β√
Nh

)τ1+τ2

Hτ1+τ2 ,

where the last step results from the monomial representation of the nth degree Hermite polyno-
mial andHτ1+τ2 is the Hermite number given in (3.5). The derivatives {DνNm f(w)}wj=zj,

j∈Nm

can be represented using CauchyâĂŹs integral formula [17, p. 18] as follows:

{
D
νNm
w f(w)

}
wjzj ,j∈Nm

=

∏
j∈Nm

νj !

(2πi)m

∮
Ωm(zj ,h)

f(w)∏
j∈Nm

(wj − zj)νj+1

∏
j∈Nm

dwj ,(3.11)

where Ωm(zj , h) := {zj ∈ C : |wj − zj | = h, j ∈ Nm} is the m-dimensional sphere.
Since f ∈ Enσ (ϕ), inequality (2.1) holds. Applying Cauchy estimates to (3.11) and using
inequality (2.1), we obtain

{∣∣DνNm
w f(w)

∣∣}
wj=zj ,j∈Nm

≤
∏
j∈Nm νj !∏

j∈Nm
hνj

ϕ (η(z))
∏
j∈Nm

eσ(|=zj |+h)
∏
l∈Mm

eσ|=wl|,(3.12)

where η(z) is defined in (2.12). Combining (3.12) and (3.10) with (3.8) implies (3.4).
LEMMA 3.3. Let α := (α1, . . . , αn), µ := (µ1, . . . , µn), and υ := (υ1, . . . , υn) in Nn0 .

The partial derivatives of the kernel Kz can be written as

Dα
zKz(w)

=

n∑
m=1

(−1)m+1
∑

Nm∈P (I)

∑
µ≤α

∑
µ+υ≤α

[
Cα,µ,υ

∏
j∈Nm

(π
h

)µj sin(πh−1zj +
πµj

2 )

sin(πh−1wj)

×
n∏
τ=1

∂υτzτ

{
exp

(
−β(zτ−wτ )2

Nh2

)}
(wτ − zτ )ατ−µτ−υτ+1

]
,

(3.13)

where the symbol Dα
z is defined above, the kernel Kz is given in (2.4), and the constants

Cα,µ,υ are defined as

(3.14) Cα,µ,υ :=

n∏
j=1

αj !

µj !υj !
.

The sum
∑
µ≤α is taken over all multiindices µ ≤ α, i.e., µj ≤ αj , for all j = 1, . . . , n.

Proof. Taking the partial derivative of order α on both sides of (2.4) and using (2.10), we
obtain

Dα
zKz(w) =

n∑
m=1

(−1)m+1
∑

Nm∈P (I)

Dα
z

[ ∏
j∈Nm

sin(πh−1zj)

sin(πh−1wj)

n∏
τ=1

e−β(zτ−wτ )2/Nh2

(wτ − zτ )

]
.(3.15)
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Applying the multivariate version of the Leibniz rule (3.7) for the right-hand side of (3.15)

with f(z) :=
∏
j∈Nm

sin(πh−1zj)
sin(πh−1wj)

and g(z) :=
n∏
τ=1

e−β(zτ−wτ )2/Nh2

(wτ−zτ ) , we obtain

Dα
zKz(w)

=

n∑
m=1

(−1)m+1
∑

Nm∈P (I)

∑
µ≤α

[(
α
µ

) ∏
j∈Nm

(π
h

)µj sin(πh−1zj +
πµj

2 )

sin(πh−1wj)

×Dα−µ
z

[ n∏
τ=1

e−β(zτ−wτ )2/Nh2

(wτ − zτ )

]]
.

(3.16)

Applying the multivariate version of the Leibniz rule (3.7) again with

f(z) :=
n∏
τ=1

e−β(zτ−wτ )2/Nh2

and g(z) :=

n∏
τ=1

1

wτ − zτ
,

we get (3.13).
In the following theorem, we extend the bound for the error |f(z)− Gn,h,N [f ](z)| given

in Theorem 2.3 to a bound for the error |Dα
z f(z)−Dα

z Gn,h,N [f ](z)|, where f ∈ Enσ (ϕ).
THEOREM 3.4. Let f ∈ Enσ (ϕ) and α := (α1, . . . , αn) ∈ Nn0 . Then, we have for all

z ∈ Cn with |=zj | < N , j = 1, . . . , n, that

(3.17) |Dα
z f(z)−Dα

z Gn,h,N [f ](z)| ≤ 2ϕ (η(z))Bh,N,α(=z) e
−βN
√
πβN

,

where η(z) is defined in (2.12) and Bh,N,α is given by

Bh,N,α(=z)

=

n∏
τ=1

eπh
−1|=zτ |

∑
µ≤α

∑
µ+υ≤α

Cα,µ,υ

[
n∑

m=1

(
2e−βN√
πβN

)m−1

×
∑

Nm∈P (I)

∏
l∈Mm

eσhLh,N (υl, γl)
∏
j∈Nm

(π
h

)µj Mh,N (υj)θN (
=zj
h )

Nαj−µj−υj

]
.

(3.18)

Here θN , Cα,µ,υ are defined in (2.14), (3.14), respectively, and

Lh,N (υ, γ) :=
∑

νMm≤γMm

( √
β√
Nh

)υ−γ−ν
|Hυ+γ−ν |

hν(α− ν)!
= O

(
N−υ/2

)
as N →∞,(3.19)

where γMm
:= αMm

− µMm
− υMm

such that γMm
= 0 if l /∈Mm and

Mh,N (υ) :=
β
υ
2

hυ

bυ/2c∑
m=0

υ!(6
√
β)υ−2m

m!(υ − 2m)!Nm
= (6βh−1)υ +O

(
N−1

)
as N →∞.(3.20)

The constantHτ is defined in (3.5).
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Proof. Since f ∈ Enσ (ϕ), equality (3.2) holds. Using (3.13), the integral in (3.2) can be
represented in the form

Dα
z f(z)−Dα

z Gn,h,N [f ](z)

=
1

(2πi)n

n∑
m=1

(−1)m+1
∑
µ≤α

∑
µ+υ≤α

[
Cα,µ,υ

∏
j∈Nm

(π
h

)µj
sin
(πzj
h

+
πµj

2

)

×
∮
Rn

. . .

∮
R1

f(w)
n∏
τ=1

∂υτzτ

{
exp

(
−β(zτ−wτ )2

Nh2

)}
∏

j∈Nm
sin(πh−1wj)

n∏
τ=1

(wτ − zτ )ατ−µτ−υτ+1

dw1 . . . dwn

]
.

(3.21)

Using (3.3), replacing the sets Nm by Mm, we obtain

Dα
z f(z)−Dα

z Gn,h,N [f ](z)

=
1

(2πi)n

n∑
m=1

(−1)m+1
∑

Nm∈P (I)

∑
µ≤α

∑
µ+υ≤α

[
Cα,µ,υ

∏
j∈Nm

(π
h

)µj
sin
(πzj
h

+
πµj

2

)

×
∮
∏
τ∈Nm Rτ

Sm([wl]l∈Nm)
∏

τ∈Nm
∂υτzτ

{
exp

(
−β(zτ−wτ )2

Nh2

)}
∏

τ∈Nm
sin(πh−1wτ )(wτ − zτ )ατ−µτ−υτ+1

∏
τ∈Nm

dwτ

]
,

(3.22)

where the function SMm
is defined by (3.3) and the constants Cα,µ,υ are given in (3.14). Since

f ∈ Enσ (ϕ), the estimate in (2.18) holds for all points in the multivariate rectangle
n∏
τ=1

Rτ . In

the following step, we use the standard estimate

(3.23) | sin(πh−1z)| ≤ eπh
−1|=z|, z ∈ C,

and Asharabi-Prestin’s estimate, cf. [7, Eqs. (3.8)–(3.9)],

(3.24)
∣∣∣∣∂υτzτ e−β(zτ−wτ )2

Nh2

∣∣∣∣ ≤ ( √β√Nh
)υτ b υτ2 c∑

m=0

υτ !(6
√
β)υτ−2m

m!(υτ − 2m)!
N

υτ
2 −m

∣∣∣∣e−β(zτ−wτ )2

Nh2

∣∣∣∣ ,
for all wτ ∈ Rτ . Applying the triangle inequality for (3.22) and using the estimates (2.18),
(3.4), (3.23), and (3.24), we obtain

|Dα
z f(z)−Dα

z Gn,h,N [f ](z)|

≤ ϕ (η(z))

n∑
m=1

1

(2π)m

∑
Nm∈P (I)

∑
µ≤α

∑
µ+υ≤α

[
Cα,µ,υ

∏
l∈Mm

eσ(|=zl|+h)

× Lh,N (υl, γl)
∏
j∈Nm

(π
h

)µj
eπh

−1|=zj |Mh,N (υj)

×
∮
Rj

∣∣∣∣∣∣
exp

(
σ|=wj | − β(zj−wj)2

Nh2

)
sin(πh−1wj)(wj − zj)αj−µj−υj+1

∣∣∣∣∣∣ |dwj |
]
,

(3.25)
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where the functions Lh,N andMh,N are defined in (3.19) and (3.20), respectively. The integral
in (3.25) can be estimated according to Asharabi and Prestin in [7, p. 1429] as follows:

(3.26)
∮
Rτ

∣∣∣∣∣∣
exp

(
σ|=wτ | − β(zτ−wτ )2

Nh2

)
sin(πh−1wτ )(wτ − zτ )lτ+1

∣∣∣∣∣∣ |dwτ | ≤ 4πθN (h−1=zτ )
e−βN

N `τ
√
πβN

,

where `τ ∈ N0. The rest of the proof can be established by combining (3.26) and (3.25).
As we have done in Section 2, we introduce two useful special cases of Theorem 3.4. The

proofs will be omitted because they are similar to those of Corollary 2.5 and Corollary 2.6,
respectively.

COROLLARY 3.5. Let f ∈ B∞σ (Rn) and α ∈ Nn0 be given. Then we have for all z ∈ Cn
with |=zτ | < N ,τ = 1, . . . , n, that

(3.27) |Dα
z f(z)−Dα

z Gn,h,N [f ](z)| ≤ 2||f ||∞Bh,N,α(=z) e
−βN
√
πβN

,

where the function Bh,N,α is given in (3.18) and the norm ‖f‖∞ is given in (1.1).
COROLLARY 3.6. Let f be an entire function satisfying the exponential growth condi-

tion (2.27). Then we have for all z ∈ Cn with |=zτ | < N ,τ = 1, . . . , n, that

(3.28) |Dα
z f(z)−Dα

z Gn,h,N [f ](z)| ≤ 2Me
κ(h+

n∑
j=1
|<zj |)

Bh,N,α(=z)e
−(β−κh)N

√
πβN

,

where h ∈ (0, π/(σ + 2κ)) and σ, κ are non-negative numbers that satisfy σ + κ > 0. The
function Bh,N,α is given in (3.18).

The last result in this section is devoted to estimating the error |Dα
z f(z)−Dα

z Gn,h,N [f ](z)|
when the function f belongs to the space And (ϕ) (with h := d

N and β := π
2 ).

THEOREM 3.7. Let f ∈ And (ϕ). Then, for z ∈ Snd/4 we have

∣∣∣Dα
z f(z)−Dα

z Gn, dN ,N [f ](z)
∣∣∣

≤ 2
√

2ϕ (η(z))
∑
µ≤α

∑
µ+υ≤α

Cα,µ,υ

[
n∑

m=1

(
2
√

2
)m−1 ∑

Nm∈P (I)

∏
l∈Mm

L d
N ,N

(υl, γl)

×
∏
j∈Nm

(
Nπ
d

)µj
e
Nπ|=zj |

d M d
N ,N

(υj)

πNαj−µj−υj
√
N

ϑN

(
=zj
d

)
e
−πN2

(
1−

2|=zj |
d

)]
,

(3.29)

where the functions η, L d
N ,N

, M d
N ,N

, and ϑN are defined in (2.12), (3.19), (3.20), and (2.31),
respectively. The constants Cα,µ,υ are given in (3.14).

Proof. As in the proof of Theorem 2.7, let Rj be the positive oriented rectangle with
vertices at ±h(N + 1

2 ) + hNh−1zj + id and ±h(N + 1
2 ) + hNh−1zj − ih(d−=zj), where

Nzj = b<zj + 1
2c and h = d/N . Since f ∈ And (ϕ), it is easy to see that Lemma 3.1 is also

valid for the special operator Gn, dN ,N with the multivariate rectangle
n∏
j=1

Rj . Combining (3.2),
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(3.3), and (3.13) with h := d
N , β := π

2 , Rτ := Rτ , we obtain

Dα
z f(z)−Dα

z Gn, dN ,N [f ](z)

=
1

(2πi)n

n∑
m=1

(−1)m+1
∑

Nm∈P (I)

∑
µ≤α

∑
µ+υ≤α

[
Cα,µ,υ

∏
j∈Nm

(π
h

)µj
sin
(πzj
h

+
πµj

2

)

×
∮

∏
τ∈Nm

Rτ

Sm([wl]l∈Nm)
∏

τ∈Nm
∂υτzτ

{
exp

(
−β(zτ−wτ )2

Nh2

)}
∏

τ∈Nm
sin(πh−1wτ )(wτ − zτ )ατ−µτ−υτ+1

∏
τ∈Nm

dwτ

]
,

(3.30)

where the function SMm
is defined in (3.3) and the constants Cα,µ,υ are given in (3.14).

Applying the triangle inequality to (3.30) and using the estimates (3.23), (3.24), and (3.4), this
implies∣∣∣Dα

z f(z)−Dα
z Gn, dN ,N [f ](z)

∣∣∣
≤ ϕ (η(z))

n∑
m=1

1

(2π)m

∑
Nm∈P (I)

∑
µ≤α

∑
µ+υ≤α

[
Cα,µ,υ

×
∏
l∈Mm

L d
N ,N

(υl, γl)
∏
j∈Nm

(
πN

d

)µj
e
πN|=zj |

d M d
N ,N

(υj)

×
∮
Rj

∣∣∣∣∣∣ e
−Nπ(zj−wj)

2

2d2

sin(
πNwj
d )(wj − zj)αj−µj−υj+1

∣∣∣∣∣∣ |dwj |
]
,

(3.31)

where the functions η, L d
N ,N

, and M d
N ,N

are defined in (2.12), (3.19), and (3.20), respectively.
The integral in (3.25) can be estimated according to Asharabi and Prestin in [7, p. 1432] as∮

Rτ

∣∣∣∣∣∣ e
−Nπ(zτ−wτ )2

2d2

sin(πNwτd )(wτ − zτ )`τ+1

∣∣∣∣∣∣ |dwτ |
≤ 4
√

2ϑN

(
=zτ
d

)
exp (−(πN/2)(1− (2|=zτ |/d)))

N `τ
√
N

,

(3.32)

where `τ ∈ N0 and the function ϑN is given in (2.31). The proof of (3.29) is completed by
combining (3.32) and (3.31).

In the following result, we state a special case of Theorem 3.7 on the real domain.
COROLLARY 3.8. Let f ∈ And (ϕ). Then, for x ∈ Rn we have

(3.33)
∣∣∣Dα

xf(x)−Dα
xGn, dN ,N [f ](x)

∣∣∣ ≤ 2
√

2 ϕ (η(x))Bd,N,α
e−πN/2√

N
,

where η is defined by (2.12). The constant Bd,N,α is defined as

Bd,N,α =
∑
µ≤α

∑
µ+υ≤α

[
Cα,µ,υ

n∑
m=1

(
2
√

2
)m−1

(
e−πN/2√

N

)m−1

ϑmN (0)

×
∑

Nm∈P (I)

∏
l∈Mm

L d
N ,N

(υl, γl)
∏
j∈Nm

(
Nπ
d

)µj
M d

N ,N
(υj)

πNαj−µj−υj

]
,

(3.34)
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where ϑN is given by (2.31).

4. Numerical illustrations. In this section, we introduce three illustrative examples. The
function in the first example is chosen from the space B∞σ (R) and in the second example from
the space E2

σ(ϕ), while in the last example f ∈ A3
d(ϕ). We summarize the approximations

results in tables and illustrate the absolute and relative errors by figures. Denote by Tαn,h,N the
absolute error, i.e.,

Tαn,h,N [f ](x) := Dα
xf(x)−Dα

xGn,h,N [f ](x), x ∈ Rn, α ∈ Nn0 ,

and by Tαn,h,N the relative error, i.e.,

Tαn,h,N [f ](x) := (Dα
xf(x)−Dα

xGn,h,N [f ](x)) /Dα
xf(x), x ∈ Rn, α ∈ Nn0 .

This notation will be used in the following examples.
EXAMPLE 4.1. The function f(z) = sinc(

√
1 + z2), z ∈ C, belongs to the Bernstein

space B∞1 (R). We apply Corollary 3.5 with n = 1, N = 15, h = 1/2, and α = 0, 1. The
function ϕ is chosen to be the constant function ϕ := ‖f‖∞ = 1, and the bound in (3.17) will
be uniform on the real domain. Let Bh,N,α be the uniform bound on R, i.e.,

Bαh,N := 2‖f‖∞Bh,N,α(0)
e−βN√
πβN

,

where α ∈ N0 and Bh,N,α are defined in (3.18). Table 4.1 and Figures 4.1 and 4.2 summarize
the approximations of the function f and its first derivative on the interval I = [0, 10].

TABLE 4.1
Approximation of function f and its first derivative.

Absolute error for DαGn,h,N with n = 1, N = 15 and h = 1/2
α = 0 α = 1

max
x∈I

∣∣∣Tα1, 12 ,15[f ](x)
∣∣∣ Bα1

2 ,15
max
x∈I

∣∣∣Tα1, 12 ,15[f ](x)
∣∣∣ Bα1

2 ,15

3.52155×10−11 7.90497×10−10 2.2692×10−10 1.75486×10−8

EXAMPLE 4.2. Consider the function f(z) = cosh(z1 + z2), z ∈ C2, which belongs to
the space E2

0(ϕ) and satisfying the exponential growth condition (2.27) on R2 with M = 1,
κ = 1, σ = 0, and ϕ(x) = ex1+x2 . Therefore, we can apply Corollary 3.6 with n = 2,
N = 15, and h = 1/3 for some values of α. In this example, we use the relative errors instead
of the absolute errors because f has an exponential growth and the samples are exponentially
increasing with respect to the real axes <z1 and <z2. Denote by Rαh,N the relative bound
associated with the real-valued bound in (3.28), i.e.,

Rαh,N (x) := 2eκ(h+|x1|+|x2|)Bh,N,α(0)
e−N(β−κh)

√
πβN

/Dα
xf(x),

where α ∈ N2
0, x = (x1, x2) ∈ R2, κ is a non-negative number, and Bh,N,α is given in (3.18).

In Table 4.2, we present the approximations of the function f and its mixed derivative on the
domain J = (0, 3]2 with the relative errors. The graphs of the relative errors are given in
Figure 4.3 for α = (0, 0) and Figure 4.4 for α = (1, 1). Note that Tαn,h,N does not have any
poles in the region (0,∞)× (0,∞) because Dα

xf(x) is either sinh(x1 + x2) when α1 + α2

is odd or cosh(x1 + x2) when α1 + α2 is even. Note that f(z) = D
(0,0)
z f(z).
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0 2 4 6 8 10

-3.×10-11

-2.×10-11

-1.×10-11

0

1.×10-11

2.×10-11

3.×10-11

FIG. 4.1. T 0
1, 1

2
,15

[f ](x).

0 2 4 6 8 10

-2.×10-10

-1.×10-10

0

1.×10-10

2.×10-10

FIG. 4.2. T 1
1, 1

2
,15

[f ](x).

TABLE 4.2
Approximation of function f and its mixed partial derivative.

Relative error for DαGn,h,N with n = 2, N = 15 and h = 0.3
α = (0, 0) α = (1, 1)

max
x∈J

∣∣Tα2,0.3,15[f ](x)
∣∣ max

x∈J

∣∣Rα0.3,15(x)
∣∣ max

x∈J

∣∣Tα2,0.3,15[f ](x)
∣∣ max

x∈J

∣∣Rα0.3,15(x)
∣∣

4.42269×10−11 1.09931×10−8 4.82781×10−10 8.55546×10−7

EXAMPLE 4.3. In this example, we approximate the function

f(z) =
sin(z1 + z2 + z3)

(z2
1 + 9)(z2

2 + 9)(z2
3 + 9)

, z ∈ C3,

which belongs to the space A3
3(ϕ). Here, we can apply Corollary 3.8 with n = 3, d = 3,

N = 15, and ϕ(x) = 1/93 for some values of α ∈ N3
0. Let Rα

h,N be the relative bound
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FIG. 4.3. T(0,0)
2,0.3,15[f ](x).

associated with the real-valued bound in (3.33), i.e.,

Rα
h,N (x) := 2

√
2 ϕ (η(x))Bd,N,α

e−πN/2√
N

/Dα
xf(x), x ∈ R3, α ∈ N3

0,

where Bd,N,α is defined in (3.34). In Table 4.3, we summarize the approximations of the
function f and its mixed derivative on the domain J = (0, 2]3. Note that f(z) = D

(0,0,0)
z f(z).

TABLE 4.3
Approximation of function f and its mixed partial derivative.

Relative error for DαGn, dN ,N with n = 3, N = 15 and d = 3

α = (0, 0, 0) α = (1, 1, 1)

max
x∈J

∣∣∣Tα3, 15 ,15[f ](x)
∣∣∣ max

x∈J

∣∣∣Rα
1
5 ,15(x)

∣∣∣ max
x∈J

∣∣∣Tα3, 15 ,15[f ](x)
∣∣∣ max

x∈J

∣∣∣Rα
1
5 ,15(x)

∣∣∣
2.9525×10−8 9.92971×10−7 1.44569×10−6 1.27192×10−4

5. Conclusion. In this paper, we extend the two-dimensional sinc-Gauss sampling for-
mula, which is introduced in [6, 7], to the general multidimensional case. We use the
multidimensional sinc-Gauss sampling formula to approximate multivariate analytic functions
belonging to some wide classes of functions and their partial derivatives of any order using
only finitely many samples of the function itself. This formula is valid for the class of entire
functions of several complex variables satisfying a decay condition. It includes unbounded
functions on Rn and a class of multivariate functions analytic in a multidimensional horizontal
strip. The theoretical error analysis is established via a complex analytic approach, and the
convergence rate is of exponential order. Furthermore, this paper extends the work of Lin
and Zhang in [10] to the complex domains. We can use the multivariate kernel function (2.4)
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FIG. 4.4. T(1,1)
2,0.3,15[f ](x).

to extend the two-dimensional Hermite-Gauss sampling formula, introduced in [3, 6], to the
general multidimensional case. We recommend this for future studies.
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