
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 55, pp. 285–309, 2022.
Copyright © 2022, Kent State University.
ISSN 1068–9613.
DOI: 10.1553/etna_vol55s285

ONE-STEP CONVERGENCE OF INEXACT ANDERSON ACCELERATION FOR
CONTRACTIVE AND NON-CONTRACTIVE MAPPINGS∗

FEI XUE†

Abstract. We give a one-step convergence analysis of inexact Anderson acceleration for the fixed point iteration
xk+1 = g(xk) with a potentially non-contractive mapping g, where g(xk) is evaluated approximately and the
minimization of the nonlinear residual norms is performed in the vector 2-norm by the linear least-squares method. If
g is non-contractive, then the original fixed point iteration does not converge, but a recent analysis by S. Pollock and
L. Rebholz [IMA J. Numer. Anal., 41 (2021), pp. 2841–2872] shows that Anderson acceleration may still converge
provided that the minimization at each step has a sufficient gain. In this paper, we show that inexact Anderson
acceleration exhibits essentially the same convergence behavior as the exact algorithm if each g(xk) is evaluated with
an error proportional to the nonlinear residual norm ‖wk‖ = ‖g(xk)− xk‖, regardless of whether g is contractive
or not. This means that the existing relationship between exact and inexact Anderson acceleration can be generalized
in a unified framework for both contractive and non-contractive mappings. Numerical experiments show that the
inexact algorithm can converge as rapidly as the exact counterpart while it can lower the computational cost.

Key words. fixed point iteration, inexact Anderson acceleration, non-contractive mapping, one-step convergence

AMS subject classifications. 65N22, 65H10, 65F50

1. Introduction. Anderson acceleration is a computational technique designed for ac-
celerating the convergence of fixed point iterations [1, 2]. Variants of this strategy are also
referred to as nonlinear GMRES [28, 29] or Anderson mixing, Pulay mixing [19, 20], and
direct inversion in the iterative subspace (DIIS) [21] in the community of quantum mechan-
ics. The idea of this approach is to find a proper linear combination of successive previous
iterates with coefficients obtained from a constrained minimization to obtain a new iterate
that potentially yields a smaller nonlinear residual norm than the new iterate computed from
the original fixed point iteration. Since the solution of systems of nonlinear equations by
fixed point iterations is ubiquitous in science and engineering, Anderson acceleration has been
widely used in a variety of applications; see, e.g., [13, 17, 28] and the references therein.

To better understand the behavior of Anderson acceleration, the connections between this
method and other algorithms for solving nonlinear systems of equations have been explored.
In particular, it is shown in [10, 11, 21] that Anderson acceleration is equivalent to a special
variant of the generalized Broyden’s method, and in particular, the approximate inverse
Jacobian is obtained implicitly from an optimization subject to secant equations involving the
most recent iterates [11]. Such an equivalence naturally prompts one to consider exploring
the convergence of Anderson acceleration from the large volume of existing literature on the
convergence of quasi-Newton’s methods; see, e.g., [5, 13] and the references therein. On the
other hand, if the underlying fixed point iteration exhibits linear convergence, then extensive
numerical evidence suggest that the minimization step adopted by Anderson acceleration
usually helps to improve the robustness as well as the rate of convergence. Such a favorable
property makes it reasonable to study the convergence of Anderson acceleration within its own
framework based on minimization. An early major convergence result was given in [27] for
contractive mappings, and this was later improved in [17] for contractive and non-contractive
mappings. However, it is shown [9] that Anderson acceleration may not speed up quadratically
convergent iterations.

∗Received February 8, 2021. Accepted December 15, 2021. Published online on January 26, 2022. Recommended
by Quiang Ye. This research was supported by the U.S. National Science Foundation under grants DMS-1719461 and
DMS-1819097.

†School of Mathematical and Statistical Sciences, Clemson University, O-203 Martin Hall, Box 340975, Clemson,
SC 29634 (fxue@clemson.edu).

285

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol55s285

ETNA
Kent State University and

Johann Radon Institute (RICAM)

286 F. XUE

To save costs for iterative methods for solving large nonlinear systems, an economic
strategy is to use inexact methods, which follow the process of their exact counterpart but
evaluate each iterate only approximately. For instance, inexact Newton’s method in the generic
nonlinear system setting is a well-known example [5, 6]; for eigenvalue computations, inexact
Newton-like methods have also been explored [12, 24, 25]. Inexact Anderson acceleration
is another example in this line of research, explored both numerically [15, 26] and theoreti-
cally [26] for contractive mappings. The results show that inexact Anderson acceleration may
converge as rapidly as the exact method, provided that the error introduced in the evaluation of
each new iterate is proportional to the current nonlinear residual norm; also, the final accuracy
of the approximate solution obtained from the inexact method is at worst proportional to the
uniform upper bound for the errors in the evaluation of all iterates.

In this paper, we give a one-step convergence analysis of inexact Anderson acceleration
for both contractive and non-contractive mappings. Note that the existing results in [26, 27]
assumed that the mapping g is contractive and the coefficients obtained in the minimization
step of Anderson acceleration are uniformly bounded. By contrast, we show that inexact
Anderson acceleration may converge to the desired solution even if the mapping g is non-
contractive near the solution, as long as the minimization at each step has sufficient gain
and the least-squares problem that determine the coefficients of the linear combination of
the previous iterates is not ill-conditioned. Assuming that each new iterate is evaluated
with increasing accuracy as the iteration proceeds, we show that the inexact method closely
follows the behavior of the exact variant. Note that unlike [26], we have no theories about
the convergence for multiple iteration steps due to the non-contractiveness of the mapping g,
though such a behavior is usually observed in numerical experiments.

Our work is motivated by a recent one-step convergence analysis of (exact) Anderson
acceleration [17]. To understand the inexact method, we first develop a similar analysis of
the exact variant. Our analysis is primarily based on linear algebra and on properties of
orthogonal and oblique projectors in particular, to gain insight into the effect of the least-
squares minimization in Anderson acceleration. Compared to the main conclusion in [17,
Theorem 5.5], our result gives the same convergence factor for the linear term of the nonlinear
residual, but we have a simpler upper bound for the higher-order terms that does not exhibit an
explicit exponential growth with the acceleration depth and does not involve the squares of
the most recent nonlinear residual norm if the minimization at the current step has the largest
possible gain. More importantly, our analysis can be extended without difficulty to study the
effects of an approximate evaluation of the fixed point mapping for the inexact method by
exploring the impact of small perturbations in the relevant projectors, whereas it seems less
clear how this idea could be realized based on the analysis in [17].

The rest of the paper is structured as follows: In Section 2, we consider the fixed point
iteration xk+1 = g(xk) and state assumptions on the mapping g; we also outline Anderson
acceleration and then present a few preliminary results for the subsequent analysis. In Section 3,
we give a one-step convergence analysis of (exact) Anderson acceleration based on projectors
and angles between subspaces, showing a result similar to that in [17] with a new bound for
the higher-order terms. In Section 4, we provide an analysis of inexact Anderson acceleration,
where each update g(xk) is allowed to be evaluated with an error proportional to the residual
norm ‖wk‖ = ‖g(xk)−xk‖ without obviously affecting the convergence rate of the algorithm.
Numerical results are shown in Section 5 to support our analysis. Finally, Section 6 gives
conclusions.

Throughout the paper, the norm ‖ · ‖ refers to the 2-norm of matrices and vectors unless
stated otherwise. The range (column space) of a matrix C is denoted as col(A) = range(A),
and null(C) refers to the null space of C.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

INEXACT ANDERSON ACCELERATION 287

2. Problem settings and preliminaries. Consider the numerical iterative solution of the
nonlinear system of equations

x = g(x).

We make the following assumptions on g and its derivative g′ throughout the paper:

ASSUMPTION 1. Let g : X → X be Fréchet differentiable, where X ⊂ Rn is convex,
equipped with the inner product (·, ·) and the induced 2-norm ‖ · ‖. The corresponding matrix
2-norm is defined as ‖A‖ = supu∈Rn\{0}

‖Au‖
‖u‖ . Assume that there exists a unique fixed point

x∗ ∈ X such that x∗ = g(x∗) and there are positive constants κg , Lg , and σg such that

1. ‖g′(x)‖ ≤ κg for all x ∈ X;

2. ‖g′(x)− g′(y)‖ ≤ Lg‖x− y‖ for all x, y ∈ X;

3. minu∈Rn\{0}
‖(∫ 1

0
g′(z(t))dt−I)u‖
‖u‖ ≥ σg, i.e.,

∥∥∥(∫ 1

0
g′ (z(t)) dt − I

)−1
∥∥∥ ≤ 1

σg
,

where z(t) = (1− t)x+ ty (0 ≤ t ≤ 1), for all x, y ∈ X .

The outline of Anderson acceleration is given in Algorithm 1.

Algorithm 1 Anderson acceleration for solving the nonlinear system x = g(x).
Input: function g : X → X , x0 ∈ X , integer m > 0, β ∈ (0, 1], and tolerance δ > 0.
Output: an approximate solution xk such that xk ≈ g(xk).

1: Compute x1 = g(x0), and w0 = g(x0)− x0.
2: for k = 1, 2, . . . , do
3: Compute g(xk) and wk = g(xk)− xk.
4: if ‖wk‖ ≤ δ then
5: terminate the algorithm and return xk.
6: end if
7: Let ` = max{0, k −m}, and solve min∑k

i=` α
(k)
i =1

∥∥∑k
i=` α

(k)
i wi

∥∥ for {α(k)
i }.

8: Evaluate the new iterate xk+1 = (1− β)
∑k
j=` α

(k)
j xj + β

∑k
j=` α

(k)
j g(xj).

9: end for

REMARK 2.1. We note that at each step, Algorithm 1 performs only one function
evaluation (namely in line 3). At each step k ≥ m, the algorithm keeps a record of the recent
iterates xk−m, xk−m+1, . . . , xk, their function evaluations g(xk−m), g(xk−m+1), . . . , g(xk),
and their nonlinear residuals wk−m, wk−m+1, . . . , wk, all of which have been computed from
step k −m to k. At the end of step k, the old vectors xk−m, g(xk−m), and wk−m will not
be used in the future and should be discarded, and the most recent vectors xk, g(xk), and wk
should be added to the three sets of vectors to prepare for the new step k + 1.

2.1. Preliminaries.

(a) The connection between iterates and residuals. Note that each iterate xi can be
connected with its residual wi = g(xi)− xi, and a similar relation holds for xi − xj . In fact,
let z∗i(t) = x∗ + (xi − x∗)t and zji(t) = xj + (xi − xj)t. We have∫ 1

0

(g′(z∗i(t))− I) dz∗i(t) =

∫ 1

0

(g′(z∗i(t))− I) (xi − x∗)dt

= g(xi)− g(x∗)− (xi − x∗) = g(xi)− xi = wi,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

288 F. XUE

from which we obtain

xi − x∗ =
(∫ 1

0

g′(z∗i(t))dt− I
)−1

wi.(2.1)

Also, let zj∗(t) = xj + (x∗ − xj)t. Since g′ satisfies a Lipschitz condition, by (2.1),∥∥∥∥∫ 1

0

(g′(zji(t))− g′(zj∗(t))) dt
∥∥∥∥

≤
∫ 1

0

‖g′(zji(t))− g′(zj∗(t))‖ dt

≤
∫ 1

0

Lg‖zji(t)− zj∗(t)‖dt =

∫ 1

0

tLg‖xi − x∗‖dt

≤ Lg
2

∥∥∥∥(∫ 1

0

g′(zi∗(t))dt− I
)−1
∥∥∥∥ ‖wi‖ ≤ Lg

2σg
‖wi‖.

(2.2)

Similarly, note that

wi − wj = (g(xi)− xi)− (g(xj)− xj) = g(xi)− g(xj)− (xi − xj)

=

∫ 1

0

g′(zji(t)) (xi − xj)dt− (xi − xj) =

∫ 1

0

(g′(zji(t))− I) (xi − xj)dt,

which leads to

(2.3) xi − xj =
(∫ 1

0

g′(zji(t)) dt− I
)−1

(wi − wj).

(b) Bounding the difference in the residuals. Next we explore, for each fixed index j
(k −m ≤ j ≤ k) and each running index i (k −m ≤ i ≤ k, i 6= j), a connection between∥∥α(k)

i (wj −wi)
∥∥ and ‖wj‖. To this end, recall that the coefficients α(k)

i (k−m ≤ i ≤ k) are
defined as the solution to

(2.4) min∑k
i=k−m α

(k)
i =1

∥∥∥∥∥
k∑

i=k−m

α
(k)
i wi

∥∥∥∥∥ = min

∥∥∥∥∥∥wj −
k∑

i=k−m,i 6=j

α
(k)
i (wj − wi)

∥∥∥∥∥∥ ,
for each j (k −m ≤ j ≤ k). The right-hand side of (2.4) indicates that this minimization can
be done by the linear least-squares approach.

To study the least-squares problem, we define two blocks of vectors and their column
spaces,

U
(k)
j = [wj − wk, . . . , wj − wj+1, wj − wj−1, . . . , wj − wk−m] ∈ Rn×m,

U
(k)
j[i] = [wj − wk, . . . , wj − wi+1, wj − wi−1, . . . ,

wj − wj+1, wj − wj−1, . . . , wj − wk−m] ∈ Rn×(m−1),

U (k)
j = col

(
U

(k)
j

)
= span {wj − w`}k−m≤`≤k,` 6=j , and

U (k)
j[i] = col

(
U

(k)
j[i]

)
= span {wj − w`}k−m≤`≤k,` 6=j,i ,(2.5)

where k −m ≤ i, j ≤ k and i 6= j, such that

(2.6) U (k)
j = U (k)

j[i] ∪ span {wj − wi} .

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

INEXACT ANDERSON ACCELERATION 289

We furthermore define U (k)
j[i] = {0} and U (k)

k = span {wk − wk−1} if m = 1.

Assume that U (k)
j and U (k)

j[i] have full column rank, and define ϕ(k)
j = ∠(wj , U (k)

j). It
then follows from (2.4) and the properties of the linear least-squares problem that∥∥∥∥∥∥

k∑
i=k−m,i6=j

α
(k)
i (wj − wi)

∥∥∥∥∥∥ =

∥∥∥∥U (k)
j

(
U

(k)T
j U

(k)
j

)−1

U
(k)T
j wj

∥∥∥∥ = cosϕ
(k)
j ‖wj‖.

To quantify
∥∥∥α(k)

i (wj − wi)
∥∥∥, we define the following orthogonal projectors:

Q
(k)
j = U

(k)
j

(
U

(k)T
j U

(k)
j

)−1
U

(k)T
j (m ≥ 1),(2.7)

Q
(k)
j[i] = U

(k)
j[i]

(
U

(k)T
j[i] U

(k)
j[i]

)−1
U

(k)T
j[i] (m ≥ 2),

Q
(k)⊥
j[i] = I (m = 1),

Q
(k)⊥
j[i] = I −Q(k)

j[i] = I − U (k)
j[i]

(
U

(k)T
j[i] U

(k)
j[i]

)−1
U

(k)T
j[i] (m ≥ 2),

and the rank-1 projector (typically oblique for m ≥ 2),

(2.8) P
(k)
j[i] =

(wj − wi) (wj − wi)T Q(k)⊥
j[i]

(wj − wi)T Q(k)⊥
j[i] (wj − wi)

,

which projects any vector u ∈ U (k)
j along U (k)

j[i] onto span {wj − wi}; see (2.6). Therefore,

U (k)
j[i] ⊂ null

(
P

(k)
j[i]

)
and range

(
P

(k)
j[i]

)
= span {wj − wi} .

Moreover, by (2.7), it is not hard to see that

cos∠
(
wj − wi, Q(k)⊥

j[i] (wj − wi)
)

=

{
1 (m = 1),

sin∠
(
wj − wi, U (k)

j[i]

)
(m ≥ 2),

and it follows from (2.8) that

(2.9) P
(k)
j[i] =

(wj−wi)(wj−wi)

T

‖wj−wi‖2 (m = 1),

1

sin∠
(
wj−wi,U(k)

j[i]

) wj−wi

‖wj−wi‖
(wj−wi)

TQ
(k)⊥
j[i]∥∥(wj−wi)

TQk⊥
j[i]

∥∥ (m ≥ 2).

The orthogonal projection of wj onto U (k)
j is u =

∑k
i=k−m,i6=j α

(k)
i (wj − wi), and the

projection of u along U (k)
j[i] onto span {wj − wi} is α(k)

i (wj − wi). This means that

(2.10) α
(k)
i (wj − wi) = P

(k)
j[i]Q

(k)
j wj .

Here, note that
∥∥Q(k)

j wj
∥∥ = cosϕ

(k)
j ‖wj‖ as a result of the linear least-squares problem.

For m = 1, it follows from (2.9) that α(k)
i (wj − wi) = P

(k)
j[i]Q

(k)
j wj = Q

(k)
j wj . Taking

the norm of both sides of (2.10), we have∥∥α(k)
i (wj − wi)

∥∥ =
∥∥P (k)

j[i]Q
(k)
j wj

∥∥ =
∥∥Q(k)

j wj
∥∥ = cosϕ

(k)
j ‖wj‖.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

290 F. XUE

For m ≥ 2, we have cos∠
(
Q

(k)
j wj , Q

(k)⊥
j[i] (wj−wi)

)
= sin∠

(
Q

(k)
j wj , Q

(k)
j[i](wj−wi)

)
due to (2.7). Therefore, by (2.9),∥∥α(k)

i (wj − wi)
∥∥ =

∥∥P (k)
j[i]Q

(k)
j wj

∥∥
=

∥∥∥∥∥∥ 1

sin∠
(
wj − wi, U (k)

j[i]

) wj − wi
‖wj − wi‖

(wj − wi)TQ(k)⊥
j[i]∥∥Q(k)⊥

j[i] (wj − wi)
∥∥Q(k)

j wj

∥∥∥∥∥∥
=

1

sin∠
(
wj − wi, U (k)

j[i]

)
∣∣∣∣∣∣ (wj − wi)TQ(k)⊥

j[i]∥∥Q(k)⊥
j[i] (wj − wi)

∥∥Q(k)
j wj

∣∣∣∣∣∣
∥∥∥∥ wj − wi
‖wj − wi‖

∥∥∥∥
=

1

sin∠
(
wj − wi, U (k)

j[i]

)
∥∥∥∥∥∥ (wj − wi)TQ(k)⊥

j[i]∥∥Q(k)⊥
j[i] (wj − wi)

∥∥
∥∥∥∥∥∥

×
∥∥Q(k)

j wj
∥∥ cos∠

(
Q

(k)
j wj , Q

(k)⊥
j[i] (wj − wi)

)
=

sin∠
(
Q

(k)
j wj , Q

(k)
j[i](wj − wi)

)
sin∠

(
wj − wi, U (k)

j[i]

) cosϕ
(k)
j ‖wj‖.

Thus, if we define

(2.11) η
(k)
ij =

1 (m = 1),

sin∠
(
Q

(k)
j wj , Q

(k)

j[i]
(wj−wi)

)
sin∠

(
wj−wi,U(k)

j[i]

) (m ≥ 2),

then

(2.12)
∥∥α(k)

i (wj − wi)
∥∥ = η

(k)
ij cosϕ

(k)
j ‖wj‖.

(c) The inverse of a matrix sum and a norm inequality. Consider A,B ∈ Rn×n,
where A is nonsingular and ‖B‖ is sufficiently small such that ‖BA−1‖ ≤ ‖A−1‖‖B‖ < 1.
Then

(A+B)−1 =
(
(I +BA−1)A

)−1
= A−1(I +BA−1)−1

= A−1
(
I −BA−1(I +BA−1)−1

)
= A−1 −A−1BA−1(I +BA−1)−1,

(2.13)

where

‖A−1BA−1(I +BA−1)−1‖ ≤ ‖A−1‖2‖B‖
∥∥(I +BA−1)−1

∥∥
≤ ‖A−1‖2‖B‖

1− ‖A−1‖‖B‖
.

(2.14)

The last inequality is based on ‖(I + C)−1‖ ≤ 1
1−‖C‖ provided that ‖C‖ < 1; this can be

derived without difficulty by the singular values of these matrices.

(d) The continuous dependence for least-squares problems. Finally, we highlight the
fact that the result of a well-posed linear least-squares problem depends continuously on its
data. Specifically, assume thatU ∈ Rn×m (m < n) is of full column rankm andw ∈ Rn\{0}.
Then,

f(U,w) = min
y
‖w − Uy‖ =

∥∥(I − U(UTU)−1UT)w
∥∥

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

INEXACT ANDERSON ACCELERATION 291

is a continuous (in fact, differentiable) function of U and w. Therefore, there exist some
positive constant Cu and Cw (which depend on U and w) such that

(2.15) |f(U + ∆U,w + ∆w)− f(U,w)| ≤ Cu‖∆U‖+ Cw‖∆w‖

for all ∆U and ∆w sufficiently small in the norm.
In fact, one can obtain such Cu and Cw by evaluating |f(U + ∆U,w + ∆w)− f(U,w)|.

For a given small constant ε ∈ (0, 1), let us assume that ‖∆U‖ is sufficiently small such that

(2‖U‖‖∆U‖+ ‖∆U‖2)‖(UTU)−1‖ ≤ ε.

Using (2.13) and (2.14), with some algebraic work, we can show that

|f(U+∆U,w + ∆w)− f(U,w)|

≤
∥∥(I − (U + ∆U)

(
(U + ∆U)T (U + ∆U)

)−1
(U + ∆U)T

)
(w + ∆w)

− (I − U(UTU)−1UT)w
∥∥

≤ 2

(
1 +
‖(UTU)−1‖‖U‖2

1− ε

)
‖U(UTU)−1‖‖w‖‖∆U‖

+ ‖(I − U(UTU)−1UT)‖‖∆w‖+O(‖∆U‖2) +O(‖∆U‖‖∆w‖).

Here, we only need a rough estimate of Cu and Cw. Let ε = 1
2 , and adopt larger values for Cu

and Cw to absorb the quadratic terms of ‖∆U‖ and ‖∆w‖ into the linear terms:

Cu = 3
(
1 + 2‖(UTU)−1‖‖U‖2

)
‖U(UTU)−1‖‖w‖, and(2.16)

Cw = 2‖(I − U(UTU)−1UT)‖ = 2.

Note that Cu is proportional to ‖w‖ and could be large if U is ill-conditioned, whereas Cw is
bounded independent of U . Then (2.15) holds for all sufficiently small ‖∆U‖ and ‖∆w‖.

3. A new analysis of (exact) Anderson acceleration. In this section, we derive a one-
step convergence analysis of Algorithm 1 under Assumption 1. This section serves as a basis to
derive our subsequent analysis of the inexact Anderson acceleration under these assumptions,
which are more relaxed than those adopted in [26, 27].

3.1. Linear convergence. With the above preliminaries, we can give our convergence
analysis of Algorithm 1. We shall show that this algorithm typically converges linearly with
a factor that could be significantly smaller than κg (see Assumption 1). We start with the
expression of xk+1 defined by Algorithm 1:

xk+1 = (1− β)

k∑
j=k−m

α
(k)
j xj + β

k∑
j=k−m

α
(k)
j g(xj)

=

k∑
j=k−m

α
(k)
j xj + β

k∑
j=k−m

α
(k)
j (g(xj)− xj) .

(3.1)

We subtract on both sides xk =
∑k
j=k−m α

(k)
j xk (since

∑k
j=k−m α

(k)
j = 1) to obtain

(3.2) xk+1 − xk =

k−1∑
j=k−m

α
(k)
j (xj − xk) + β

k∑
j=k−m

α
(k)
j wj .

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

292 F. XUE

Then we multiply both sides of (3.2) with
∫ 1

0
g′
(
zk(k+1)(t)

)
dt from the right and get

(3.3)

g(xk+1)− g(xk) =

∫ 1

0

g′
(
zk(k+1)(t)

)
(xk+1 − xk) dt

=

k−1∑
j=k−m

α
(k)
j

∫ 1

0

g′
(
zk(k+1)(t)

)
(xj − xk)dt

+ β

∫ 1

0

g′
(
zk(k+1)(t)

) k∑
j=k−m

α
(k)
j wj

 dt

=

k−1∑
j=k−m

α
(k)
j

∫ 1

0

g′(zkj(t)) (xj − xk)dt

+ β

∫ 1

0

g′
(
zk(k+1)(t)

) k∑
j=k−m

α
(k)
j wj

 dt

+

k−1∑
j=k−m

α
(k)
j

∫ 1

0

(
g′
(
zk(k+1)(t)

)
− g′(zkj(t))

)
(xj − xk)dt

=

k−1∑
j=k−m

α
(k)
j (g(xj)− g(xk))

+ β

∫ 1

0

g′
(
zk(k+1)(t)

) k∑
j=k−m

α
(k)
j wj

 dt+ qk,

where the quadratic term is

(3.4) qk =

k−1∑
j=k−m

α
(k)
j

∫ 1

0

(
g′
(
zk(k+1)(t)

)
− g′(zkj(t))

)
(xj − xk)dt.

Adding g(xk) on both sides of (3.3) and using 1−
∑k−1
j=k−m α

(k)
j = α

(k)
k , we have

(3.5) g(xk+1) =

k∑
j=k−m

α
(k)
j g(xj) + β

∫ 1

0

g′
(
zk(k+1)(t)

) k∑
j=k−m

α
(k)
j wj

 dt+ qk.

Then we subtract (3.5) from (3.1) and obtain

g(xk+1)− xk+1 = (1− β)

k∑
j=k−m

α
(k)
j wj

+ β

∫ 1

0

g′
(
zk(k+1)(t)

) k∑
j=k−m

α
(k)
j wj

 dt+ qk,

(3.6)

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

INEXACT ANDERSON ACCELERATION 293

where the first two (linear) terms on the right-hand side satisfy∥∥∥∥∥∥(1− β)

k∑
j=k−m

α
(k)
j wj + β

∫ 1

0

g′
(
zk(k+1)(t)

) k∑
j=k−m

α
(k)
j wj

 dt

∥∥∥∥∥∥
≤
∥∥∥∥(1− β)I + β

∫ 1

0

g′
(
zk(k+1)(t)

)
dt

∥∥∥∥
∥∥∥∥∥∥

k∑
j=k−m

α
(k)
j wj

∥∥∥∥∥∥
≤ ((1− β) + βκg) sinϕ

(k)
k ‖wk‖.

To sum up, the above derivation shows that

(3.7) ‖wk+1‖ ≤ ((1− β) + βκg) sinϕ
(k)
k ‖wk‖+ ‖qk‖.

Suppose that the quadratic term ‖qk‖ is much smaller than the linear term involving ‖wk‖.
Then this means that Algorithm 1 converges at least linearly with a factor not larger than

κ̂(k,m)
g := ((1− β) + βκg) sinϕ

(k)
k ≤ (1− β) + βκg.

Note that κg is an upper bound for the factor of convergence of the simple fixed point iteration
xk+1 = g(xk). Since min{1, κg} ≤ (1 − β) + βκg ≤ max{1, κg}, the “acceleration”
capability comes from the factor θk = sinϕ

(k)
k , which could be much smaller than 1.

3.2. The quadratic term. Let us now investigate the quadratic term qk. The expres-
sion (3.4) for qk shows that we need to bound g′(zk(k+1)(t))− g′(zkj(t)) and α(k)

j (xj − xk)
(k −m ≤ j ≤ k − 1) in the norm. Since g′ satisfies a Lipschitz condition, we obtain

(3.8)
∥∥g′(zk(k+1)(t)

)
− g′(zkj(t))

∥∥ ≤ Lg ∥∥zk(k+1)(t)− zkj(t)
∥∥ = tLg‖xk+1 − xj‖,

where

(3.9) xk+1 − xj =

k∑
i=k−m,i6=j

α
(k)
i (xi − xj) + β

k∑
i=k−m

α
(k)
i wi

by (3.1) for each j (k −m ≤ j ≤ k).
It then follows from (3.9), (2.3), and (2.12) that

(3.10)

‖xk+1 − xj‖ =
∥∥∥ k∑
i=k−m,i 6=j

α
(k)
i (xi − xj) + β

k∑
i=k−m

α
(k)
i wi

∥∥∥
≤
∥∥∥ k∑
i=k−m,i6=j

(∫ 1

0

g′(zji(t))dt− I
)−1(

α
(k)
i (wi − wj)

)∥∥∥+ β
∥∥∥ k∑
i=k−m

α
(k)
i wi

∥∥∥
≤

k∑
i=k−m,i6=j

∥∥∥(∫ 1

0

g′(zji(t))dt− I
)−1
∥∥∥∥∥α(k)

i (wi − wj)
∥∥+ β sinϕ

(k)
k ‖wk‖

≤ 1

σg

k∑
i=k−m,i6=j

η
(k)
ij cosϕ

(k)
j ‖wj‖+ β sinϕ

(k)
k ‖wk‖.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

294 F. XUE

We then substitute the above relations into (3.8) and then into (3.4) to obtain

‖qk‖ ≤
k−1∑

j=k−m

∥∥∫ 1

0

(
g′(zk(k+1)(t))− g′(zkj(t))

)
dt
∥∥∥∥α(k)

j (xj − xk)
∥∥

≤
k−1∑

j=k−m

(∫ 1

0

tLg‖xk+1 − xj‖dt
)

1

σg

∥∥α(k)
j (wj − wk)

∥∥ (see (2.3) and Ass. 1)

≤
k−1∑

j=k−m

(∫ 1

0

tLg‖xk+1 − xj‖dt
)
η

(k)
jk

σg
cosϕ

(k)
k ‖wk‖

≤
k−1∑

j=k−m

Lgη
(k)
jk cosϕ

(k)
k

2σg

(
1

σg

k∑
i=k−m,i6=j

η
(k)
ij cosϕ

(k)
j ‖wj‖

+ β sinϕ
(k)
k ‖wk‖

)
‖wk‖.

For m ≥ 2, by (2.11), if sin∠
(
wj − wi, U (k)

j[i]

)
is small for any pair of indices

(i, j) (k − m ≤ j ≤ k − 1 and k − m ≤ i ≤ k, i 6= j), then η
(k)
ij is large, and the

quadratic term ‖qk‖ will contain a large quadratic term O
(
‖wj‖‖wk‖

)
for this index j, unless

η
(k)
jk is very small.

Fortunately, if all wi (k −m ≤ i ≤ k) are sufficiently small in the norm, such a potential
issue can be alleviated. To show this, let us define

Aj =

∫ 1

0

g′(zj∗(t))dt− I, Bij =

∫ 1

0

(g′(zji(t))− g′(zj∗(t))) dt, and

Cij = A−1
j BijA

−1
j (I +BijA

−1
j)−1,

such that, by (2.13),

(∫ 1

0

g′(zji(t))dt− I
)−1

= (Aj +Bij)
−1

= A−1
j −A

−1
j BijA

−1
j (I +BijA

−1
j)−1 = A−1

j − Cij .
(3.11)

Let us assume that ‖wi‖ <
2σ2

g

Lg
. Then by (2.2),

‖Bij‖ =
∥∥∫ 1

0

(
g′(zji(t))− g′(zj∗(t))

)
dt
∥∥ ≤ Lg

2σg
‖wi‖, and

∥∥BijA−1
j

∥∥ ≤ ‖Bij‖∥∥A−1
j

∥∥ ≤ Lg
2σg
‖wi‖ ·

1

σg
< 1.

Consequently, by (2.14),

(3.12)

‖Cij‖ =
∥∥A−1

j BijA
−1
j (I +BijA

−1
j)−1

∥∥
≤

∥∥A−1
j

∥∥2 ‖Bij‖
1−

∥∥A−1
j

∥∥ ‖Bij‖ ≤
1
σ2
g
· Lg

2σg
‖wi‖

1− 1
σg
· Lg

2σg
‖wi‖

=
1

σg

Lg‖wi‖
2σ2

g − Lg‖wi‖
.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

INEXACT ANDERSON ACCELERATION 295

To simplify the notation, we define ν(k)
β = β

∥∥∥∑k
i=k−m α

(k)
i wi

∥∥∥ = β sinϕ
(k)
k ‖wk‖.

From the first two lines in (3.10), by (3.11), (3.12), and (2.12), we have

‖xk+1 − xj‖ ≤
∥∥∥ k∑
i=k−m,i 6=j

(∫ 1

0

g′(zji(t))dt− I
)−1(

α
(k)
i (wi − wj)

)∥∥∥+ ν
(k)
β

=
∥∥∥A−1

j

k∑
i=k−m,i 6=j

(
α

(k)
i (wi − wj)

)
−

k∑
i=k−m,i6=j

Cijα
(k)
i (wi − wj)

∥∥∥+ ν
(k)
β

≤
∥∥A−1

j

∥∥∥∥ k∑
i=k−m,i6=j

(
α

(k)
i (wi − wj)

)∥∥
+

k∑
i=k−m,i6=j

‖Cij‖
∥∥α(k)

i (wi − wj)
∥∥+ ν

(k)
β

≤ 1

σg
cosϕ

(k)
j ‖wj‖+

k∑
i=k−m,i6=j

1

σg

Lg‖wi‖
2σ2

g − Lg‖wi‖
∥∥α(k)

i (wi − wj)
∥∥+ ν

(k)
β

≤ 1

σg

1 +

k∑
i=k−m,i 6=j

Lgη
(k)
ij ‖wi‖

2σ2
g − Lg‖wi‖

 cosϕ
(k)
j ‖wj‖+ ν

(k)
β .

Let us define γ(k)
ij =

Lgη
(k)
ij ‖wi‖

2σ2
g−Lg‖wi‖ , and substitute the above inequality into (3.8) and (3.4) to

obtain

‖qk‖ ≤
k−1∑

j=k−m

∥∥∫ 1

0

(
g′(zk(k+1)(t))− g′(zkj(t))

)
dt
∥∥∥∥α(k)

j (wj − wk)
∥∥

≤
k−1∑

j=k−m

(∫ 1

0

tLg‖xk+1 − xj‖dt
)
η

(k)
jk cosϕ

(k)
k ‖wk‖

≤
k−1∑

j=k−m

Lgη
(k)
jk cosϕ

(k)
k

2

 1

σg

1 +

k∑
i=k−m,i 6=j

γ
(k)
ij

 cosϕ
(k)
j ‖wj‖+ ν

(k)
β

 ‖wk‖.
The above results can be summarized in the following main theorem.
THEOREM 3.1. Under Assumption 1, consider Algorithm 1, which generates the approxi-

mate solutions x0, x1, . . . and the residuals wk = g(xk)− xk. With the subspaces U (k)
j and

U (k)
j[i] defined in (2.5), the orthogonal projectors Q(k)

j and Q(k)
j[i] defined in (2.7), η(k)

ij defined
in (2.11),

ϕ
(k)
j = ∠

(
wj , U (k)

j

)
, γ

(k)
ij =

Lgη
(k)
ij ‖wi‖

2σ2
g − Lg‖wi‖

, and ν
(k)
β = β sinϕ

(k)
k ‖wk‖,

we have

‖wk+1‖ ≤ ((1− β) + βκg) sinϕ
(k)
k ‖wk‖+ ‖qk‖,

where

(3.13) ‖qk‖ ≤
k−1∑

j=k−m

Lgη
(k)
jk cosϕ

(k)
k

2

 1

σg

k∑
i=k−m,i 6=j

η
(k)
ij cosϕ

(k)
j ‖wj‖+ ν

(k)
β

 ‖wk‖.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

296 F. XUE

In addition, if ‖wi‖ <
2σ2

g

Lg
for all k −m ≤ i ≤ k, then

‖qk‖ ≤
k−1∑

j=k−m

Lgη
(k)
jk cosϕ

(k)
k

2

 1

σg

1 +

k∑
i=k−m,i6=j

γ
(k)
ij

 cosϕ
(k)
j ‖wj‖+ ν

(k)
β

 ‖wk‖.
REMARK 3.2. Compared to the classical fixed point iteration xk+1 = g(xk) with

the convergence factor bounded by κg, Algorithm 1 has the smaller convergence factor(
(1 − β) + βκg

)
sinϕ

(k)
k (disregarding the high-order term qk), which has been obtained

in [17]. Our new insight here concerns the factors that influence qk in the upper bound for
‖wk+1‖.

• From the discussion about the least-squares problem in Section 2.1 part (b), namely,
(2.5), (2.6), and (2.11), we see that the condition number of U (k)

j (k −m ≤ j ≤ k)

has an impact on the one-step convergence of Anderson acceleration. If U (k)
j is

well-conditioned, then all angles ∠(wj − wi,U (k)
j[i]) (k −m ≤ i ≤ k, i 6= j) cannot

be small, and hence all η(k)
ij in (2.11) will not be large, which guarantees that the

bound on qk (3.13) is modest. As a result, it is more likely to have ‖wk+1‖ < ‖wk‖
if ((1− β) + βκg) sinϕ

(k)
k < 1 than in the case of an ill-conditioned U (k)

j .
• The upper bound for the higher-order term qk given in [17] grows exponentially with

the acceleration depth m, whereas there is no reason to assume that such a rapid
growth is the common case for our bound (3.13). In practice, the condition number
of U (k)

j does grow with m but apparently not as rapidly as the exponential pattern.
• Generally, a smaller Lg and a larger σg in Assumption 1 lead to a smaller ‖qk‖,

which is of the form O(‖wk−m‖‖wk‖) + . . .+O(‖wk−1‖‖wk‖) +O(‖wk‖2).
• An optimization with no gain at step k (cosϕ

(k)
k = 0) sets qk = 0, and one with

maximum gain (sinϕ(k)
k = 0) eliminates O

(
‖wk‖2

)
but not the O (‖wj‖‖wk‖)-

terms in qk (the latter point regarding sinϕ
(k)
k = 0 is not seen in [17]).

• Suppose that Algorithm 1 converges so that γ(k)
ij =

Lgη
(k)
ij ‖wi‖

2σ2
g−Lg‖wi‖ → 0. Then, in the

asymptotic phase of convergence, if sinϕ
(k)
k cosϕ

(k)
k is not close to 0,

– for m = 1, the quadratic terms are moderate since η(k)
jk = 1;

– for m ≥ 2, if sin∠(wk − wj ,U (k)
k[j]) is small for some index j (k − m ≤

j ≤ k − 1) and sin∠(Qkwk, Q
(k)
k[j](wk − wj)) is not small, then η(k)

jk is large,
and consequently the O(‖wj‖‖wk‖)- and O(‖wk‖2)-terms will be large in qk.
Whether this happens depends primarily on the direction of the vectors involved
in the linear least-squares problem at step k, not so much on the previous steps

because γ(k)
ij =

Lgη
(k)
ij ‖wi‖

2σ2
g−Lg‖wi‖ → 0, assuming convergence.

We shall see in the next section that our above framework from the linear algebra perspec-
tives based on projectors and angles between subspaces can easily accommodate the analysis
of the effects of the inexact evaluation of each g(xk), whereas it is less clear how this can
be done for the result of [17] due to its entry-wise or column vector-wise analysis of the QR
factorization used to solve the minimization by the linear least-squares method.

4. Inexact Anderson acceleration. Our main goal in this paper is the investigation of
inexact Anderson acceleration, based on our analytic framework presented in Section 3. To this
end, recall that given m+ 1 approximate solutions to x = g(x), namely, xk−m, . . . , xk−1, xk,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

INEXACT ANDERSON ACCELERATION 297

Algorithm 1 gives the new iterate

xk+1 = (1− β)

k∑
j=k−m

α
(k)
j xj + β

k∑
j=k−m

α
(k)
j g(xj),

where the coefficients {α(k)
j }kj=k−m solve the minimization problem

min∑k
j=k−m α

(k)
j =1

∥∥∥∥∥∥
k∑

j=k−m

α
(k)
j (g(xj)− xj)

∥∥∥∥∥∥ .
In this section, our goal is to show that each g(xj) can be computed approximately with some
errors kept under control, without obviously impacting the one-step linear convergence factor(
(1− β) + βκg

)
sinϕ

(k)
k of Algorithm 1; see (3.7).

Algorithm 2 Inexact Anderson acceleration for solving the nonlinear system x = g(x).
Input: function g : X → X , x0 ∈ X , integer m > 0, β ∈ (0, 1], a sufficiently small fixed
constant τ ∈ (0, 1), and tolerance δ > 0.
Output: an approximate solution xk such that xk ≈ g(xk).

1: Compute x1 = ĝ0 ≈ g(x0) such that the error δg0 = ĝ0 − g(x0) satisfies ‖δg0‖ ≤
τ‖g(x0)− x0‖ (achieved without exact evaluation of g(x0)), and let ŵ0 = ĝ0 − x0.

2: for k = 1, 2, . . . , do
3: Compute ĝk ≈ g(xk), such that δgk = ĝk − g(xk) satisfies ‖δgk‖ ≤ τ‖g(xk)− xk‖

(achieved without exact evaluation of g(xk)), and let ŵk = ĝk − xk.
4: if ‖ŵk‖ ≤ δ then
5: terminate the algorithm and return xk.
6: end if
7: Let ` = max{0, k −m}, and solve min∑k

i=` α̂
(k)
i =1

∥∥∑k
i=` α̂

(k)
i ŵi

∥∥ for {α̂(k)
i }.

8: Evaluate the new iterate xk+1 = (1− β)
∑k
j=` α̂

(k)
j xj + β

∑k
j=` α̂

(k)
j ĝj .

9: end for

The inexact variant of Anderson acceleration is outlined in Algorithm 2, where the evalu-
ation of g(xk) at each step k is performed only approximately and never exactly. Specifically,
at step k, let ĝk ≈ g(xk) be the actual computed approximation to g(xk) such that the error
δgk = ĝk − g(xk) satisfies ‖δgk‖ ≤ τ‖g(xk) − xk‖ = τ‖wk‖, where τ ∈ (0, 1) is a suf-
ficiently small constant predetermined and fixed throughout the algorithm. Since τ is fixed
but the residual norm ‖wk‖ tends to decrease as the algorithm proceeds, so does ‖δgk‖. This
means that ĝk should be an increasingly accurate approximation to g(xk) as the algorithm
approaches convergence. The bound for ‖δgk‖ can be achieved without an exact evaluation of
g(xk). The computed (approximate) nonlinear residual is

ŵk = ĝk − xk = g(xk)− xk + ĝk − g(xk) = wk + δgk

such that

(4.1) ‖ŵk − wk‖ = ‖δgk‖ ≤ τ‖wk‖,

which should also be achieved without having the exact g(xk) or wk at hand. Then we solve
the perturbed least-squares problem min∑k

j=k−m α̂
(k)
j =1

∥∥∑k
j=k−m α̂

(k)
j ŵj

∥∥ and construct

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

298 F. XUE

the new approximate solution

xk+1 = (1− β)

k∑
j=k−m

α̂
(k)
j xj + β

k∑
j=k−m

α̂
(k)
j ĝj

=

k∑
j=k−m

α̂
(k)
j xj + β

k∑
j=k−m

α̂
(k)
j (ĝj − xj).

(4.2)

The approximate solutions computed by both algorithms are denoted as {xk} because
it should be clear from the context if they are obtained from {g(x`)} and {w`} or from
{ĝ`} and {ŵ`}. To compute the new iterate xk+1, both algorithms use their own recent
iterates {x`}k`=k−m. Algorithm 1 needs the exact function evaluations {g(x`)}k`=k−m and
the exact residuals {w`} = {g(x`)− x`}k`=k−m, whereas Algorithm 2 uses the approximate
evaluations {ĝ`}k`=k−m and the approximate residuals {ŵ`} = {ĝ` − x`}k`=k−m, where
‖ĝk − g(xk)‖ = ‖ŵk − wk‖ ≤ τ‖wk‖ for a small tolerance τ > 0. Both methods need only
one function evaluation (exact or approximate) at each step because they keep a record of
{g(x`)} (or {ĝ`}) and {w`} (or {ŵ`}) (k−m ≤ ` ≤ k−1) computed from the previous steps.
The inexact algorithm does not compute, use, or rely on any information generated by the
exact algorithm, including the recent iterates, exact function evaluations, and exact residuals.

In this section, we consider a one-step analysis of the convergence of Algorithm 2 and
compare it with the one-step analysis of Algorithm 1 in the previous section. This is not a
multi-step analysis of the residual wk of Algorithm 2 that starts with the same initial iterate
as Algorithm 1, which seems rather complex for a non-contractive mapping g, and this is
beyond the scope of this paper (to the best of our knowledge, no multi-step analysis of
Algorithm 1 for non-contractive g has been performed). To explore the one-step difference
between Algorithms 1 and 2, we shall show that at step k, if the error control constant
τ ∈ (0, 1) is sufficiently small, the true residual ‖wk+1‖ of the new iterate xk+1 from the
inexact method (not to be computed in practice) would be sufficiently close to the counterpart
of the exact method, assuming that Algorithms 1 and 2 have the same set of previous iterates
xk−m, xk−m+1, . . . , xk but different corresponding function evaluations ({g(x`)} or ĝ`) and
residuals ({w`} or {ŵ`}).

To this end, define a new block of vectors, associated subspaces, and projectors:

(4.3)
W

(k)
[j] = [ŵk, . . . , ŵj+1, ŵj−1, . . . , ŵk−m], W(k)

[j] = col
(
W

(k)
[j]

)
,

S
(k)
[j] = W

(k)
[j]

(
W

(k)T
[j] W

(k)
[j]

)−1
W

(k)T
[j] , and S

(k)⊥
[j] = I − S(k)

[j] .

Here, S(k)⊥
[j] is the orthogonal projector alongW(k)

[j] onto the orthogonal complement ofW(k)
[j] .

We also define the oblique projector

T
(k)
[j] =

ŵjŵ
T
j S

(k)⊥
[j]

ŵTj S
(k)⊥
[j] ŵj

=
1

sin∠(ŵj , S
(k)
[j] ŵj)

ŵj
‖ŵj‖

ŵTj S
(k)⊥
[j]∥∥ŵTj S(k)⊥
[j]

∥∥ .
It is not difficult to see that range

(
T

(k)
[j]

)
= span{ŵj}, W(k)

[j] ⊂ null
(
T

(k)
[j]

)
, and that

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

INEXACT ANDERSON ACCELERATION 299

α̂
(k)
j ŵj = T

(k)
[j]

(∑k
`=k−m α̂

(k)
` ŵ`

)
. It follows that

(4.4)

∥∥α̂(k)
j ŵj

∥∥ =

∥∥∥∥∥T (k)
[j]

(
k∑

`=k−m

α̂
(k)
` ŵ`

)∥∥∥∥∥
=

1

sin∠(ŵj , S
(k)
[j] ŵj)

∣∣∣∣∣∣
ŵTj S

(k)⊥
[j]

(∑k
`=k−m α̂

(k)
` ŵ`

)
∥∥∥ŵTj S(k)⊥

[j]

∥∥∥
∣∣∣∣∣∣
∥∥∥∥ ŵj
‖ŵj‖

∥∥∥∥
=

1

sin∠(ŵj , S
(k)
[j] ŵj)

∥∥∥∥∥∥ ŵTj S
(k)⊥
[j]

‖ŵTj S
(k)⊥
[j] ‖

∥∥∥∥∥∥
×

∥∥∥∥∥
k∑

`=k−m

α̂
(k)
` ŵ`

∥∥∥∥∥ cos∠
(
S

(k)⊥
[j] ŵj ,

k∑
`=k−m

α̂
(k)
` ŵ`

)
=

sin ϕ̂
(k)
k ‖ŵk‖

sin∠(ŵj , S
(k)
[j] ŵj)

cos∠
(
S

(k)⊥
[j] ŵj ,

k∑
`=k−m

α̂
(k)
` ŵ`

)
≤

sin ϕ̂
(k)
k

sin∠(ŵj , S
(k)
[j] ŵj)

‖ŵk‖,

where ϕ̂(k) = ∠(ŵk, Û (k)
k), with Û (k)

k = range ([ŵk − ŵk−1, . . . , ŵk − ŵk−m]).
Now we let zk(k+1) = xk + (xk+1 − xk)t. Starting with (4.2), one can follow the

derivations from (3.2) through (3.6) to obtain

(4.5)

g(xk+1)− xk+1

= (1− β)
(k∑
j=k−m

α̂
(k)
j ŵj

)
+ β

∫ 1

0

g′(zk(k+1)(t))
(k∑
j=k−m

α̂
(k)
j ŵj

)
dt+

k∑
j=k−m

α̂
(k)
j (wj − ŵj) + q̂k,

where the quadratic term is

q̂k =

k∑
j=k−m

α̂
(k)
j

∫ 1

0

(
g′(zk(k+1)(t)− g′(zkj(t))

)
(xj − xk)dt.

To analyze the inexact algorithm, we make the following assumption.
ASSUMPTION 2. Assume that Algorithm 1 converges linearly but not with a higher order,

so that there exists a constant µ ∈ (0, 1) such that ‖wj+1‖ ≥ µ‖wj‖ for all j.
Under such an assumption, we have ‖wk−`‖ ≤ µ−`‖wk‖ for all ` (1 ≤ ` ≤ k). Note that

under certain circumstances, Algorithm 1 may exhibit asymptotic superlinear convergence;
see, e.g., a discussion in [21]. This seems consistent with the superlinear convergence of
GMRES for solving linear systems of equations, which occurs when convergence-delaying
eigenvalues of the coefficient matrix have been ‘resolved’ after sufficiently many steps, so that
the effective spectrum shrinks as the GMRES iteration proceeds; see, e.g., [14, 22] and the
references therein. In practice, however, superlinear convergence might not be the most typical
behavior of Algorithm 1 if the underlying fixed point iteration xk+1 = g(xk) converges no

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

300 F. XUE

more rapidly than linearly near the solution: In [21] it is claimed that the general experience
with DIIS was a typical lack of superlinear convergence; see [21, Section 3.3, Figure 3]. In
a recent study of Algorithm 1 for accelerating the Picard iteration to compute steady-state
solutions of the incompressible Navier-Stokes equations [18], no superlinear convergence was
observed.

We recall that
∥∥∑k

j=k−m α
(k)
j wj

∥∥ and
∥∥∑k

j=k−m α̂
(k)
j ŵj

∥∥ are the results of the original
and the perturbed linear least-squares problem, respectively. In fact, in (2.15), if we let

w = wk, U = U
(k)
k = [wk − wk−1, wk − wk−2, . . . , wk − wk−m],

∆w = δgk, ∆U = [δgk − δgk−1, δgk − δgk−2, . . . , δgk − δgk−m],
(4.6)

then

f(U,w) =
∥∥ k∑
j=k−m

α
(k)
j wj

∥∥ and f(U + ∆U,w + ∆w) =
∥∥ k∑
j=k−m

α̂
(k)
j ŵj

∥∥.

Under Assumption 2, for sufficiently small ‖∆U‖ and ‖∆w‖, by (2.15), we have

(4.7)

∥∥ k∑
j=k−m

α̂
(k)
j ŵj

∥∥ ≤ ∥∥ k∑
j=k−m

α
(k)
j wj

∥∥+ C(k)
u ‖∆U‖+ Cw‖∆w‖

≤ sinϕ
(k)
k ‖wk‖+ C(k)

u

(
m‖δgk‖+

k−1∑
j=k−m

‖δgj‖
)

+ Cw‖δgk‖

≤ sinϕ
(k)
k ‖wk‖+ (mC(k)

u + Cw)τ‖wk‖+ C(k)
u τ

k−1∑
j=k−m

‖wj‖

≤ sinϕ
(k)
k ‖wk‖+ (mC(k)

u + Cw)τ‖wk‖+ C(k)
u τ

m∑
`=1

µ−`‖wk‖

≤
(

sinϕ
(k)
k +

((
m+

µ−m − 1

1− µ
)
C(k)
u + Cw

)
τ

)
‖wk‖.

Here, we use a superscript k for Cu but not for Cw because, as shown in (2.16), Cu depends
on U (and on the iteration count k) but Cw can be bounded uniformly in all iterations.

To continue, note that (4.1) leads to ‖wj‖−‖ŵj‖ ≤ ‖wj− ŵj‖ ≤ τ‖wj‖. For τ ∈ [0, 1),
we have ‖wj‖ ≤ 1

1−τ ‖ŵj‖. Similarly, ‖ŵj‖ − ‖wj‖ ≤ τ‖wj‖. It follows that

(4.8) ‖wj − ŵj‖ ≤ τ‖wj‖ ≤
τ

1− τ
‖ŵj‖ and ‖ŵj‖ ≤ (1 + τ)‖wj‖.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

INEXACT ANDERSON ACCELERATION 301

Starting with (4.5), by (4.1), (4.4), (4.7), and (4.8), we have for Algorithm 2 that

(4.9)

‖g(xk+1)− xk+1‖

≤ ((1− β) + βκg)
∥∥ k∑
j=k−m

α̂
(k)
j ŵj

∥∥+

k∑
j=k−m

∥∥α̂(k)
j (wj − ŵj)

∥∥+ ‖q̂k‖

≤ ((1− β) + βκg)

(
sinϕ

(k)
k +

((
m+

µ−m − 1

1− µ
)
C(k)
u + Cw

)
τ

)
‖wk‖

+
τ

1− τ

k∑
j=k−m

‖α̂(k)
j ŵj‖+ ‖q̂k‖

≤ ((1− β) + βκg)
(

sinϕ
(k)
k + ζ

(k)
1 τ

)
‖wk‖

+
τ

1− τ

k∑
j=k−m

sin ϕ̂
(k)
k

sin∠(ŵj , S
(k)
[j] ŵj)

‖ŵk‖+ ‖q̂k‖

≤
(

((1− β) + βκg)
(

sinϕ
(k)
k + ζ

(k)
1 τ

)
+
τ(1 + τ)

1− τ
ζ

(k)
2

)
‖wk‖+ ‖q̂k‖,

where

(4.10) ζ
(k)
1 =

(
m+

µ−m − 1

1− µ

)
C(k)
u + Cw, ζ

(k)
2 =

k∑
j=m−k

sin ϕ̂
(k)
k

sin∠(ŵj , S
(k)
[j] ŵj)

.

Assume that ζ(k)
1 and ζ(k)

2 are not large for a fixed m at each step k. This assumption is
valid if bothU (k)

k = [wk−wk−1, . . . , wk−wk−m] and [ŵk, . . . , ŵk−m] are not ill-conditioned;
see the definitions of Cu in (2.16), S(k)

[j] in (4.3), and (4.10). Since

lim
τ→0+

(
((1− β) + βκg)

(
sinϕ

(k)
k + ζ

(k)
1 τ

)
+
τ(1 + τ)

1− τ
ζ

(k)
2

)
= (1− β + βκg) sinϕ

(k)
k ,

the one-step convergence of Algorithm 2 would be sufficiently close to that of Algorithm 1
if both algorithms had the same set of recent iterates xk−m, xk−m+1, . . . , xk and the relative
tolerance τ ∈ (0, 1) is sufficiently small. The quadratic term ‖q̂k‖ can be analyzed in detail as
given in Theorem 3.1, but we will not further explore it here as it is supposed to have limited
impact on the overall linear convergence when the algorithm is nearly convergent with very
small residual norms. The major result of this section is as follows.

THEOREM 4.1. Suppose that g : X → X satisfies Assumption 1 and Algorithm 1
satisfies Assumption 2. At a given step k, assume that in Algorithm 2 each ĝj ≈ g(xj) and the
corresponding computed residuals ŵj = ĝj − xj satisfy

‖ŵj − wj‖ = ‖ĝj − g(xj)‖ ≤ τ‖wj‖ (k −m ≤ j ≤ k)

for some small relative tolerance τ ∈ (0, 1). Then, for the new iterate xk+1 of Algorithm 2
defined in (4.2), its true residual norm ‖g(xk+1) − xk+1‖ satisfies (4.9) with ζ(k)

1 and ζ(k)
2

defined in (4.10). Assume that ζ(k)
1 and ζ(k)

2 are bounded at step k. With the same set of recent
iterates xk−m, xk−m+1, . . . , xk, as τ → 0+, the one-step convergence of Algorithm 2 is the
same as Algorithm 1.

REMARK 4.2. From (2.16), (4.6), and (4.10), we conclude from Theorem 4.1 that the
condition number of U = U

(k)
k has an impact on the rate of convergence of the inexact

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

302 F. XUE

Anderson acceleration. If U (k)
k is well-conditioned, then C(k)

u is small and so is ζ(k)
2 . As a

result, the inexact algorithm tends to exhibit one-step convergence that is closer to that of the
exact method. If U (k)

k is ill-conditioned, then we may need a smaller tolerance τ to keep ζ(k)
2

under control to have the inexact algorithm match the behavior of the exact counterpart.

5. Numerical experiments. In this section, we solve a few nonlinear problems to il-
lustrate the performance of exact and inexact Anderson acceleration. The behavior of the
exact variant has been shown extensively in quite a few different problem settings; see,
e.g., [13, 17, 21, 28] and the references therein. Our focus is to show that the inexact variant
can exhibit essentially the same convergence behavior as the exact variant, whereas the former
requires considerably less computational costs for evaluating g(xk). Our focus is on the
comparison of Algorithms 1 and 2 for non-contractive mapping g because these problems
are more challenging (the iteration xk+1 = g(xk) would not converge without Anderson
acceleration), and there are no similar results for such a comparison in the literature to the best
of our knowledge.

We let β = 1 in Algorithms 1 and 2 for all tests. Our experiments were performed
in MATLAB R2018b, on a Macbook Pro with operating system OS X 10.11.6, a 2.9 GHz
dual-core Intel Core i5 CPU, and 16 GB 1867 MHz DDR3 memory. The experiments were
done in double precision, yet they could be done in single precision and may exhibit similar
results if the matrices U (k)

k = [wk − wk−1, . . . , wk − wk−m] and [ŵk, . . . , ŵk−m] are not
ill-conditioned at each step k, which guarantees that ζ(k)

1 and ζ(k)
2 in (4.10) are modest.

Example 1. We seek the steady-state solution of a 1-D Burgers’ equation

ut + uux = νuxx, 0 < x < 1,(5.1)
u(0) = a, u(1) = b.

In our experiments, we let a = −1, b = 3, and ν = 5× 10−6. To obtain a numerical steady-
state solution of (5.1), we apply the finite difference discretization to (5.1) with n = 216

equispaced subintervals of length h = 1
n on [0, 1], using the standard 2-point and 3-point

centered differences to approximate the first- and second-order derivatives, respectively. Since
ut vanishes, we choose the Picard iteration as

u(k)u(k)
x = νu(k+1)

xx ,

though other options are also possible. Let u(k)
j (0 ≤ j ≤ n) be the approximation of u(jh) at

the k-th step of the Picard iteration, and define the vector u(k) = [u
(k)
1 , u

(k)
2 , . . . , u

(k)
n−1]T ∈

Rn−1 and the tridiagonal matrices

D =
1

2h
trig[−1, 0, 1] and L =

1

h2
trig[−1, 2,−1] ∈ R(n−1)×(n−1).

This leads to

diag(u(k))

(
Du(k) +

1

2h
[−u0, 0, . . . , 0, un]T

)
= ν

(
−Lu(k+1) +

1

h2
[u0, 0, . . . , 0, un]T

)
,

which defines the relation u(k+1) = g(u(k)). We let u(0)
j = −4 cos(9πjh)− 4jh+ 3, which

satisfies the boundary condition u0 = u(0) = −1 and un = u(1) = 3.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

INEXACT ANDERSON ACCELERATION 303

Note that with ν = 5×10−6, the Picard iteration above defines a non-contractive mapping
g near the desired fixed point u∗. The non-contractiveness has been verified numerically by
running the Picard iteration with the initial approximation u(0) described above and with the
approximate fixed point solution u∗ (found by Anderson acceleration with m ≥ 2), both of
which quickly lead to a blowup in u(k).

The evaluation of u(k+1) from u(k) requires the solution of a linear system of the form
Lu(k+1) = f , where L is symmetric and positive definite. Solving this linear system is
quite straightforward by a direct linear solver (e.g., MATLAB’s backslash operator), but for
illustration purposes here, we solve it iteratively by the preconditioned steepest descent (PSD)
method with the preconditioner M = trig[−1, 2 + 10−7,−1], whose action can be performed
by a Cholesky factorization.

TABLE 5.1
Performance of exact and inexact Anderson acceleration for solving a 1-D nonlinear Burgers’ equation.

AA progress total PSD iterations

(ν,m) maxκ2(U
(k)
k) exact inexact exact inexact improvement

(5× 10−6, 2) 1.61× 102 27 27 7154 4184 41.5%
(5× 10−6, 4) 2.26× 104 21 21 5640 2690 52.3%
(5× 10−6, 8) 2.18× 105 17 19 4556 2512 44.9%

The exact Anderson acceleration uses a relative tolerance 10−9 for the PSD solves,
whereas for the inexact variant the PSD tolerance at the k-th step of Anderson acceleration is
specified to be max

{
10−9,min{10−5, 10−5‖g(u(k−1))− u(k−1)‖`2}

}
, where the `2-norm

‖u‖`2 :=
(∑n−1

j=1 u
2
jh
)1/2

of the vector u ∈ Rn−1, with uj ≈ u(jh), is an approximation

of ‖u(x)‖L2
=
(∫ 1

0
u2(x)dx

)1/2

. This sets the PSD tolerance to be proportional to the
nonlinear residual norm at the previous Anderson acceleration step, but also require it to be
bounded between 10−5 and 10−9. Both methods are terminated once ‖g(u(k)) − u(k)‖`2
drops below 5× 10−6.

The performance of Anderson acceleration is summarized in Table 5.1 with details
illustrated in Figure 5.1. We see that the inexact variant converges as rapidly as the exact
variant, but the former needs less computational cost. For example, Table 5.1 shows that with
m = 2, it takes both for the inexact variant and the exact variant 27 steps to converge, but the
former only needs 4184 PSD iterations in total compared to 7154 for the latter.

In Figure 5.1, the left column and the right columns display the nonlinear residual norms
‖g(u(k))−u(k)‖`2 and the PSD iterations, respectively, versus the Anderson acceleration steps.
We see that in the first few Anderson acceleration steps, the exact and the inexact variants
deliver approximately the same nonlinear residual norms, which corroborates our results given
in Theorem 4.1 that the inexact algorithm can follow the exact variant’s behavior if g(xk)
is evaluated approximately with appropriate accuracy. Later on, though ‖g(u(k))− u(k)‖`2
obtained at each step of the two variants is not very close, both methods overall exhibit a
similar convergence behavior until the stopping criterion is satisfied. Moreover, it is evident
that the PSD step counts are much lower for the inexact variant than for the exact one thanks
to the advantage of the former in the early steps, as our Theorem 4.1 shows.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

304 F. XUE

0 5 10 15 20 25 30
Anderson Acceleration Iteration

10-6

10-4

10-2

100
N

on
lin

ea
r R

es
id

ua
l

Exact AA (m = 2)
Inexact AA (m = 2)

0 5 10 15 20 25 30
Anderson Acceleration Iteration

0

50

100

150

200

250

300

350

PS
D

 It
er

at
io

n

Exact AA (m = 2)
Inexact AA (m = 2)

0 2 4 6 8 10 12 14 16 18 20 22
Anderson Acceleration Iteration

10-6

10-4

10-2

100

N
on

lin
ea

r R
es

id
ua

l

Exact AA (m = 4)
Inexact AA (m = 4)

0 2 4 6 8 10 12 14 16 18 20 22
Anderson Acceleration Iteration

0

50

100

150

200

250

300

350

PS
D

 It
er

at
io

n

Exact AA (m = 4)
Inexact AA (m = 4)

0 2 4 6 8 10 12 14 16 18 20
Anderson Acceleration Iteration

10-6

10-4

10-2

100

N
on

lin
ea

r R
es

id
ua

l

Exact AA (m = 8)
Inexact AA (m = 8)

0 2 4 6 8 10 12 14 16 18 20
Anderson Acceleration Iteration

0

50

100

150

200

250

300

350

PS
D

 It
er

at
io

n

Exact AA (m = 8)
Inexact AA (m = 8)

FIG. 5.1. Performance of exact and inexact Anderson acceleration for solving a 1-D nonlinear Burgers’ equation.

Example 2. Consider the 1-D nonlinear Helmholtz (NLH) equation

uxx + κ2(1 + ε|u|2)u = 0, 0 < x < 10,

ux + iκu = 2iκ, at x = 0,

ux − iκu = 0, at x = 10,

where κ is the wave number in the surrounding medium and ε ≥ 0 represents a material
constant. This problem has been considered in [17] to test the exact Anderson acceleration.
We discretize the domain into n = 215 equispaced subintervals and apply the second-order
centered differences for the equation and the second-order forward/backward differences for
the boundary conditions. The Picard iteration in the continuous form is defined as

u(k+1)
xx + κ2(1 + ε|u(k)|2)u(k+1) = 0

with boundary conditions holding for each u(k). Since u on the boundary needs to be evaluated,
we let u(k) = [u

(k)
0 , u

(k)
1 , . . . , u

(k)
n]T ∈ Rn+1, where u(k)

j ≈ u(jh). The resulting scheme is

Aku
(k+1) = b,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

INEXACT ANDERSON ACCELERATION 305

where

Ak =

−3 + 2iκh 4 −1

1 −2 1
.

1 −2 1
1 −4 3− 2iκh

+ diag[0;κ2h2(1 + εu(k)(2 :n)); 0],

b = [4iκh, 0, . . . , 0]
T
,

which defines the relation u(k+1) = g(u(k)). The initial approximation u(0) contains the
values of eiκx (which satisfies the boundary conditions) at the nodes xj = jh.

TABLE 5.2
Performance of exact and inexact Anderson acceleration for solving a 1-D nonlinear Helmholtz equation.

AA progress total GMRES iterations

(ε, κ,m) maxκ2(U
(k)
k) exact inexact exact inexact improvement

(0.17, 8, 5) 2.90× 102 60 58 3215 1790 44.3%
(0.21, 10, 10) 3.32× 103 264 231 18314 7257 60.4%

0 10 20 30 40 50 60
Anderson Acceleration Iteration

10-6

10-4

10-2

100

N
on

lin
ea

r R
es

id
ua

l

Exact AA (m = 5)
Inexact AA (m = 5)

0 10 20 30 40 50 60
Anderson Acceleration Iteration

0

10

20

30

40

50

60

G
M

R
ES

 It
er

at
io

n

Exact AA (m = 5)
Inexact AA (m = 5)

0 50 100 150 200 250
Anderson Acceleration Iteration

10-6

10-4

10-2

100

N
on

lin
ea

r R
es

id
ua

l

Exact AA (m = 10)
Inexact AA (m = 10)

0 50 100 150 200 250
Anderson Acceleration Iteration

0

10

20

30

40

50

60

70

80

90

G
M

R
ES

 It
er

at
io

n

Exact AA (m = 10)
Inexact AA (m = 10)

FIG. 5.2. Performance of exact and inexact Anderson acceleration for solving a 1-D nonlinear Helmholtz
equation.

The parameters used here define two non-contractive mappings. With ε = 0.17 and κ = 8,
the fixed point iteration u(k+1) = g(u(k)) with the initial u(0) set as the approximate fixed
point u∗ (computed by Anderson acceleration with m = 5) slowly diverges from u∗ with the

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

306 F. XUE

nonlinear residual norm ‖u(k) − g(u(k))‖ gradually increasing to O(10−1). With ε = 0.21
and κ = 10, such a divergence occurs much more rapidly with the nonlinear residual quickly
going up to O(1) without blowup in u(k).

Similar to Example 1, a direct solution to these linear systems is easy, yet we solve
them iteratively to illustrate our point. Since Ak is nonsymmetric, we use the right-side
preconditioned GMRES(30) as the linear solver with the preconditioner M being the in-
complete LU factorization with threshold and pivoting of the tridiagonal part of Ak with
drop tolerance 3× 10−3. The relative tolerance for the GMRES solves is 10−9 for the exact
method and max

{
10−9,min{10−4, 10−3‖g(u(k−1))− u(k−1)‖`2}

}
for the inexact one; see

the definition of ‖u‖`2 in Example 1. Both methods stop when ‖g(u(k))− u(k)‖`2 ≤ 10−6.
The performance of Algorithms 1 and 2 is illustrated in Figure 5.2. We note that the

number of preconditioned GMRES iterations for the exact algorithm fluctuates widely for
different outer iterations. This is probably due to the irregular convergence behavior of restarted
GMRES; see, e.g., [3, 8, 16, 23]. Fortunately, we did not observe such irregularity with the
inexact algorithm. Overall, the results are largely similar to those obtained for Example 1.
Inexact Anderson acceleration takes slightly fewer steps to converge and considerably fewer
GMRES iterations than the exact variant, especially in the early steps. For more difficult
problems, more Anderson acceleration steps are needed, and the inexact method again seems
to have a stronger advantage over the exact method in terms of the number of total GMRES
iterations.

Example 3. Consider the 3-D steady-state Navier-Stokes equation (NSE)

−ν∆u + (u · ∇)u +∇p = f , in Ω ⊂ R3,

∇ · u = 0, in Ω,

u|∂Ω = g,

which models incompressible flows in a lid-driven cavity. Here, ν is the kinematic viscosity,
which is inversely proportional to the Reynolds number Re, f is a forcing term, and u and
p represent the velocity and pressure, respectively. This problem has also been considered
in [17] to test exact Anderson acceleration. We choose the domain Ω = [0, 1]× [0, 1]× [0, 1]
with no-slip boundary conditions on the four sides and the bottom and a moving-lid on the top
imposed by the Dirichlet boundary condition u(x, y, 1) = [1, 0, 0]T for the velocity. There
is no external force applied. The Reynolds numbers considered are Re = 500 and 1000.
The first Hopf bifurcation appears to occur when Re ≈ 2000. The equation is discretized
using (P3, P

disc
2)-Scott-Vogelius finite elements on a barycenter refined tetrahedral mesh that

provides 477 thousand and 1.4 million total degrees of freedom for the two Reynolds numbers,
respectively. The Picard iteration constructs a sequence of approximate solutions by solving
the linear Oseen problem [7]

−ν∆u(k+1) + (u(k) · ∇)u(k+1) +∇p(k+1) = f ,

∇ · u(k+1) = 0,

u(k+1)|∂Ω = g.

This relation defines u(k+1) = g(u(k)), where u(k) is the vectorized velocity u(k).
As shown in [18], with the initial approximation u(0) = 0, the fixed-point iteration

u(k+1) = g(u(k)) does not converge when Re ≥ 400. In addition, we let u(0) be the
approximate fixed-point solution u∗ (found by Anderson acceleration with m = 10), run the
fixed-point iteration, and find that the nonlinear residual increases slowly with Re = 500 to

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

INEXACT ANDERSON ACCELERATION 307

O(10−2) and more quickly with Re = 1000 to O(10−1). These observations show that g is
non-contractive near the fixed-point solution with these relatively high Reynolds numbers.

The Oseen problem requires a solution to a linear system of the form[
A BT

B 0

] [
u
p

]
=

[
f
0

]
,

which is equivalent, by the classical augmented Lagrangian-based approach [4], to

(5.2)
[
A+ γBTW−1B BT

B 0

] [
u
p

]
=

[
f
0

]
.

Here, we choose γ = 0.1, and we let the action of the preconditioner M−1 be the action of the
inverse of the coefficient matrix in (5.2) with the Schur complement replaced with the pressure
mass matrix. The right-hand side preconditioned GMRES(50) method is used to solve such a
linear system at each Picard iteration step.

TABLE 5.3
Performance of exact and inexact Anderson acceleration for solving a 3-D steady-state Navier-Stokes equation.

AA progress total GMRES iterations

parameters maxκ2(U
(k)
k) exact inexact exact inexact improvement

Re = 500, m = 10 7.14× 102 27 27 1778 963 45.8%
Re = 1000, m = 15 2.63× 103 46 46 2533 1430 43.5%

The initial approximation is u(0) = 0. The exact Anderson acceleration uses a relative tol-
erance of 10−8 for all GMRES solves, whereas the inexact variant sets the GMRES tolerance to
max

{
10−8,min{10−3, 10−3

∥∥g(u(k−1))− u(k−1)
∥∥
`2
}
}

, where ‖u‖`2 is the approximation

of the L2-norm of the velocity. Anderson acceleration stops when
∥∥g(u(k))−u(k)

∥∥
`2
≤ 10−5.

Table 5.3 shows that for both experiments, the exact and inexact Anderson acceleration
take the same number of steps to converge, but the inexact variant needs fewer GMRES
iterations. We also see from Figure 5.3 that the nonlinear residuals

∥∥g(u(k))− u(k)
∥∥
`2

of the
two methods are fairly close throughout the computation, though the inexact variant takes
a small number of GMRES iterations in the early stage. The pattern is consistent with the
previous two numerical experiments. In fact, the nearly overlapping nonlinear residual curves
suggest that there might be additional room to further relax the accuracy of GMRES for inexact
Anderson acceleration to keep the convergence comparable with the exact method.

Finally, we note that the highest condition number of U (k)
k in Example 1 is higher than

those in Examples 2 and 3, and we consequently use a smaller τ = 10−5 for Example 1 and a
larger τ = 10−3 for Examples 2 and 3. With these parameters, inexact Anderson acceleration
overall tracks the exact method fairly well. Using a larger τ for Example 1 would lead to
a slower convergence of the inexact Anderson acceleration, whereas using a smaller τ for
Examples 2 and 3 would result in more inner iterations without speeding up the convergence
of the inexact method. This pattern seems consistent with our remark after Theorem 4.1.

6. Conclusion. In this paper, we developed a one-step convergence analysis of inexact
Anderson acceleration where the optimization is performed in the vector 2-norm by the linear
least-squares method for computing a fixed point solution of x = g(x), where g is non-
contractive. Existing results for inexact Anderson acceleration for contractive mappings [26]
are not applicable in this case. Our main result (Theorem 3.1) shows that if each g(xk) is

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

308 F. XUE

0 5 10 15 20 25 30
Anderson Acceleration iteration

10-6

10-4

10-2

100

N
on

lin
ea

r r
es

id
ua

l

Exact AA (m = 10)
Inexact AA (m = 10)

0 5 10 15 20 25 30
Anderson Acceleration iteration

10

20

30

40

50

60

70

80

G
M

R
ES

 it
er

at
io

n

Exact AA (m = 10)
Inexact AA (m = 10)

0 10 20 30 40 50
Anderson Acceleration iteration

10-6

10-4

10-2

100

N
on

lin
ea

r r
es

id
ua

l

Exact AA (m = 15)
Inexact AA (m = 15)

0 10 20 30 40 50
Anderson Acceleration iteration

10

20

30

40

50

60

70

G
M

R
ES

 it
er

at
io

n

Exact AA (m = 15)
Inexact AA (m = 15)

FIG. 5.3. Performance of exact and inexact Anderson acceleration for solving a 3-D steady-state Navier-Stokes
equation.

evaluated approximately with an error proportional to the nonlinear residual norm ‖wk‖ =
‖g(xk)− xk‖, then the inexact algorithm may still converge as rapidly as the exact method if
the optimization at each step has a sufficient gain and the linear least-squares problem is not
ill-conditioned. Our insight is obtained from properties of orthogonal and oblique projectors
and their perturbations arising from approximate evaluations of g(xk).

Our numerical examples cover a few well-known nonlinear partial differential equations
with carefully chosen parameters for which the fixed-point iterations under consideration
are non-contractive. We show consistently that inexact Anderson acceleration would save
computational cost in the early stage of this algorithm when the residual norm is large. With a
reasonably small tolerance for the stopping criterion of Anderson acceleration, numerical tests
suggest that the inexact algorithm typically could save about 40%–50% of the total cost for
evaluating g(xk) while maintaining the convergence of the exact method.

Acknowledgement. I am grateful to my colleague, Leo Rebholz, for the problem mo-
tivation and the Anderson acceleration code for solving the nonlinear Helmholtz and the
Navier-Stokes equations. I also appreciate the two anonymous reviewers whose careful
reading and suggestions helped me improve the manuscript.

REFERENCES

[1] D. G. M. ANDERSON, Iterative procedures for nonlinear integral equations, J. Assoc. Comput. Mach., 12
(1965), pp. 547–560.

[2] , Comments on “Anderson acceleration, mixing and extrapolation”, Numer. Algorithms, 80 (2019),
pp. 135–234.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

INEXACT ANDERSON ACCELERATION 309

[3] A. H. BAKER, E. R. JESSUP, AND T. MANTEUFFEL, A technique for accelerating the convergence of restarted
GMRES, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 962–984.

[4] M. BENZI AND M. A. OLSHANSKII, An augmented Lagrangian-based approach to the Oseen problem, SIAM
J. Sci. Comput., 28 (2006), pp. 2095–2113.

[5] E. CĂTINAŞ, The inexact, inexact perturbed, and quasi-Newton methods are equivalent models, Math. Comp.,
74 (2005), pp. 291–301.

[6] R. S. DEMBO, S. C. EISENSTAT, AND T. STEIHAUG, Inexact Newton methods, SIAM J. Numer. Anal., 19
(1982), pp. 400–408.

[7] H. C. ELMAN, D. J. SILVESTER, AND A. J. WATHEN, Finite Elements and Fast Iterative Solvers, 2nd ed.,
Oxford University Press, Oxford, 2014.

[8] M. EMBREE, The tortoise and the hare restart GMRES, SIAM Rev., 45 (2003), pp. 259–266.
[9] C. EVANS, S. POLLOCK, L. REBHOLZ, AND M. XIAO, A proof that Anderson acceleration increases the

convergence rate in linearly converging fixed point methods (but not in quadratically converging ones),
SIAM J. Numer. Anal., 58 (2020), pp. 788–810.

[10] V. EYERT, A comparative study on methods for convergence acceleration of iterative vector sequences, J.
Comput. Phys., 124 (1996), pp. 271–285.

[11] H.-R. FANG AND Y. SAAD, Two classes of multisecant methods for nonlinear acceleration, Numer. Linear
Algebra Appl., 16 (2009), pp. 197–221.

[12] D. R. FOKKEMA, G. L. G. SLEIJPEN, AND H. A. VAN DER VORST, Jacobi-Davidson style QR and QZ
algorithms for the reduction of matrix pencils, SIAM J. Sci. Comput., 20 (1998), pp. 94–125.

[13] C. T. KELLEY, Numerical methods for nonlinear equations, Acta Numer., 27 (2018), pp. 207–287.
[14] J. LIESEN AND P. TICHÝ, Convergence analysis of Krylov subspace methods, GAMM Mitt. Ges. Angew.

Math. Mech., 27 (2004), pp. 153–173 (2005).
[15] K. LIPNIKOV, D. SVYATSKIY, AND Y. VASSILEVSKI, Anderson acceleration for nonlinear finite volume

scheme for advection-diffusion problems, SIAM J. Sci. Comput., 35 (2013), pp. A1120–A1136.
[16] R. B. MORGAN, GMRES with deflated restarting, SIAM J. Sci. Comput., 24 (2002), pp. 20–37.
[17] S. POLLOCK AND L. G. REBHOLZ, Anderson acceleration for contractive and noncontractive operators,

IMA J. Numer. Anal., 41 (2021), pp. 2841–2872.
[18] S. POLLOCK, L. G. REBHOLZ, AND M. XIAO, Anderson-accelerated convergence of Picard iterations for

incompressible Navier-Stokes equations, SIAM J. Numer. Anal., 57 (2019), pp. 615–637.
[19] P. PULAY, Convergence acceleration of iterative sequences. The case of SCF iteration, Chem. Phys. Lett., 73

(1980), pp. 393–398.
[20] , Improved SCF convergence, J. Comput. Chem., 3 (1982), pp. 556–560.
[21] T. ROHWEDDER AND R. SCHNEIDER, An analysis for the DIIS acceleration method used in quantum chemistry

calculations, J. Math. Chem., 49 (2011), pp. 1889–1914.
[22] V. SIMONCINI AND D. B. SZYLD, On the occurrence of superlinear convergence of exact and inexact Krylov

subspace methods, SIAM Rev., 47 (2005), pp. 247–272.
[23] , Recent computational developments in Krylov subspace methods for linear systems, Numer. Linear

Algebra Appl., 14 (2007), pp. 1–59.
[24] G. L. G. SLEIJPEN AND H. A. VAN DER VORST, A Jacobi-Davidson iteration method for linear eigenvalue

problems, SIAM Rev., 42 (2000), pp. 267–293.
[25] D. B. SZYLD AND F. XUE, Local convergence analysis of several inexact Newton-type algorithms for general

nonlinear eigenvalue problems, Numer. Math., 123 (2013), pp. 333–362.
[26] A. TOTH, J. A. ELLIS, T. EVANS, S. HAMILTON, C. T. KELLEY, R. PAWLOWSKI, AND S. SLATTERY,

Local improvement results for Anderson acceleration with inaccurate function evaluations, SIAM J. Sci.
Comput., 39 (2017), pp. S47–S65.

[27] A. TOTH AND C. T. KELLEY, Convergence analysis for Anderson acceleration, SIAM J. Numer. Anal., 53
(2015), pp. 805–819.

[28] H. F. WALKER AND P. NI, Anderson acceleration for fixed-point iterations, SIAM J. Numer. Anal., 49 (2011),
pp. 1715–1735.

[29] T. WASHIO AND C. W. OOSTERLEE, Krylov subspace acceleration for nonlinear multigrid schemes, Electron.
Trans. Numer. Anal., 6 (1997), pp. 271–290.
http://etna.ricam.oeaw.ac.at/vol.6.1997/pp271-290.dir/pp271-290.pdf

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://etna.ricam.oeaw.ac.at/vol.6.1997/pp271-290.dir/pp271-290.pdf

