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EXPLOITING COMPRESSION IN SOLVING DISCRETIZED LINEAR SYSTEMS∗

ERIN CARRIER† AND MICHAEL T. HEATH‡

Abstract. We propose a method for exploiting compression in computing the solution to a system of linear
algebraic equations. The method is based on computing an approximate solution in a reduced space, and thus we seek
a basis in which the solution has a compressed representation and can consequently be computed more efficiently.
Although the method is completely general, it is especially effective for linear systems resulting from discretization
of an underlying continuous problem, which will be our main focus. We address three primary issues: (1) how to
compute an approximate solution to a given linear system using a given basis, (2) how to choose a basis that will
yield significant compression, and (3) how to detect when the chosen basis is of sufficient dimension to provide a
satisfactory approximation. While all three aspects have antecedents in previous ideas and methods, we combine,
adapt, and extend them in a manner we believe to be novel for the purpose of solving discretized linear systems.
We demonstrate that the resulting method can be competitive with—and often substantially outperforms—current
standard methods and is effective for efficiently solving linear systems resulting from the discretization of major
classes of continuous problems, including both differential equations and integral equations.
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1. Motivation. Discretization of a continuous problem (e.g., a differential or integral
equation) using local (aka nodal) basis functions generally yields a sparse linear system
but a dense discrete solution in that essentially all of the degrees of freedom are nonzero.
Spectral discretization using global (aka modal) basis functions, on the other hand, generally
yields a dense linear system but a sparse solution in that rapid convergence of the spectral
approximation means that relatively few terms are required to provide a sufficiently accurate
approximate solution. Is there a way that we can have the best of both worlds: a sparse linear
system with a compactly representable approximate solution? To answer this question, we
first observe that a discrete solution generally embodies some degree of structure inherited
from the underlying continuous problem as well as the specific discretization employed and
thus, being highly non-random, is potentially highly compressible.

Motivated by this key insight, the solution method that we propose directly computes (i.e.,
without first computing a dense approximate solution) such a compressed representation of
the discrete solution that typically depends on far fewer parameters than the dimension of the
linear system. The effectiveness of the compression method that we propose depends critically
on the choice of the compression basis and on a suitable criterion for determining when the
approximate solution is sufficiently accurate, and we will address both of these issues. With
these issues resolved, we can then answer our earlier question by demonstrating that not only
can we simultaneously achieve a sparse representation of both the problem and its solution,
but we can often achieve a spectral-like convergence rate in the bargain (though not necessarily
spectral accuracy due to the limitations of a sparse discretization).

This paper is based largely on the unpublished PhD. thesis [7], which should be consulted
for further details and additional background. The current paper is organized as follows:
Details of the compression method are presented in Section 2, guidance on choosing and
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forming a compression basis in Section 3, computational results in Section 4, a practical
termination criterion in Section 5, and conclusions follow in Section 6.

2. Compression method. We begin by formalizing the concept of a compressed repre-
sentation of a solution. Let Ax = b be an m× n linear system, where the m× n matrix A
and the m-vector b are given and the unknown solution n-vector x is to be determined. The
solution x has a compressed representation if there is a k-vector z and an n × k matrix X
such that x ≈Xz, with k � n.

We now formulate an algorithm for exploiting such compression when solving a system
of linear algebraic equations. Simply stated, for a linear system Ax = b, we strategically
sample the column space of A and then orthogonally project b onto the subspace spanned by
the samples, thereby approximating the right-hand-side vector b by a linear combination of
the columns of AX . This basic method is stated more formally in Algorithm 1, where k is
the number of samples, X is an n× k matrix (compression basis) to be chosen, and Y is the
resulting m× k matrix of samples. The resulting vector x is an approximate solution because

Ax = AXz = Y z ∼= b.

Indeed, the residual for the original linear system is the same as that of the least-squares
subproblem in Algorithm 1, because

‖b− Y z‖2 = ‖b−AXz‖2 = ‖b−Ax‖2.

The hope, of course, is that a basis matrix X can be identified that will produce a sufficiently
accurate approximate solution with a relatively small value for k, in which case the method
may be significantly less costly computationally than conventional methods. As we will see,
such a favorable outcome is often possible for linear systems arising from discretization of
continuous problems.

Algorithm 1 Basic Compression Method.
Given m× n matrix A and m-vector b;
Choose integer k, k ≤ n;
Choose n× k matrix X;
Y = AX;
Solve m× k least-squares problem Y z ∼= b for z;
x = Xz;

Algorithm 1 is remarkably general: it is formally applicable whether or not A is square or
has full rank, and in each case it computes an appropriate approximate solution. If A has full
column rank, then it approximates the conventional solution (this holds for both the square
nonsingular and the overdetermined full-column-rank cases). If A lacks full column rank
(including the underdetermined case), then it will compute a regularized solution. Here we
focus on the square case m = n, but the lessons to be learned are applicable to the other cases
as well.

Algorithm 1 leaves open two crucial, gaping questions: how to choose k and how to
choose X . We will begin to address the first question here and then answer it more definitively
in Section 5. Answering the second question is the subject of Section 3. To achieve a compact
representation of the solution at the least computational cost, our goal is to choose the smallest
value for k that yields a solution of acceptable accuracy. Unfortunately, one generally has
no foundation a priori for choosing such a value for k. A convenient practical alternative is
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given in Algorithm 2, which builds the compression basis X incrementally, one column at a
time, stopping when a residual tolerance is met. (Algorithm 2 is stated with a simple residual
tolerance for convenience; a more intelligent stopping criterion is presented in Section 5.)
The cost per iteration of Algorithm 2 (matrix-vector multiplication and orthogonalization) is
similar to that of GMRES [27] plus the cost of generating the basis vectors xk, which varies
from trivial to more significant, depending on the chosen basis. Note also that A is used only
as an operator (i.e., for computing matrix-vector products) in Algorithm 2, making it easy to
exploit sparsity in A, which is often the case for nodal discretizations.

Algorithm 2 Incremental Compression Method.
Given m× n matrix A, m-vector b, tolerance tol;
k = 1;
Choose n-vector xk; Xk = [xk];
yk = Axk; Yk = [yk];
Solve m× 1 least-squares problem Ykz ∼= b for z by QR factorization;
while (‖b− Ykz‖2 > tol)

k = k + 1;
Choose n-vector xk; Xk = [Xk−1,xk];
yk = Axk; Yk = [Yk−1,yk];
Update and extend QR factorization of Yk−1 to incorporate yk;
Solve m× k least-squares problem Ykz ∼= b using updated QR;

x = Xkz;

The possibility of a rank-deficient Y in Algorithm 1 due to possible rank deficiency of X
or of A can be handled easily. When Y is rank deficient, simply compute a basic solution (i.e.,
a solution having the fewest possible nonzero components) using the QR factorization already
computed (see, e.g., [16, p. 136]). This is an appropriate remedy, as we seek a compressed
representation of the solution. In the incremental version of the method given in Algorithm 2,
potential rank deficiency can be detected by monitoring rkk, the diagonal entry of the upper
triangular matrix R in the QR factorization. If the relative magnitude of rkk falls below some
tolerance, then simply skip to the next basis vector, if any. Thus, the final Yk need never be
rank deficient.

In summary, the compression method we propose is both simple (it can be fully stated in
a single sentence requiring no mathematical notation) and general (applicable regardless of
the shape or rank of A). Most conventional methods for solving linear systems are neither
simple nor general. It is also worth noting that the compression method, even in its incremental
implementation, is in principle a direct method in that for any nondegenerate basis matrix X
it produces the exact solution when k = n. In this sense it is somewhat analogous to Krylov
subspace methods that are in principle finitely terminating but are implemented iteratively
in practice. In both cases, for economy we wish to terminate after the fewest iterations that
yield a sufficiently accurate solution. In the remainder of this paper we will address how to
accomplish this for the compression method.

Related work. Compression is ubiquitous in today’s digital world, with a wide variety
of techniques routinely employed to compress all types of signals, images, and data files for
more efficient storage and transmission. The present work differs from standard practice,
however, in that the object being compressed—the solution to a discretized linear system—is
unknown before the compression procedure begins and is revealed only implicitly in the
resulting compressed representation.
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Though it differs in many details, the work presented here has a philosophical kinship with
a variety of methods—such as model reduction [2], compressed sensing [31], sparse approxi-
mation [1], cross approximation [20], and sparse grids [12]—that reduce high-dimensional
problems to lower-dimensional ones. That philosophy is also shared by Krylov subspace
methods for linear systems [19] in that they typically produce a solution of acceptable accuracy
in far fewer iterations than the dimension of the linear system. Our compression method can be
viewed as a generalization of these methods in which the compression basis is not required to
be a Krylov sequence. For example, the most popular such method for general linear systems,
GMRES [27], can be reproduced by our Algorithm 2 if we use a Krylov sequence as the
compression basis.

Turning now to prior work that is more directly relevant, if one assumes that A is square
and nonsingular and X is of full rank, then Algorithm 1 becomes a special case of the
Prototype Projection Method [26, Algorithm 5.1]. However, our Algorithm 1 is substantially
more general in that we make none of those assumptions, and the choices for X that we
will employ differ markedly from those considered in [26]. The basis matrix X could be
interpreted as a right preconditioner [26, Equation (9.2)], but we do not require that X be
square and nonsingular nor do we solve the resulting modified system by a standard iterative
method.

Related approaches are often used for the numerical solution of ill-posed problems, such
as integral equations of the first kind, for which an otherwise uselessly noisy solution can
be regularized by restricting the computed solution to a designated subspace. An example is
subspace restricted SVD [17, 21], in which the truncated singular value decomposition (TSVD)
method is applied to a projected version of the system matrix A, with the projection based on
a user-chosen subspace of fixed size that is specified in advance. Our Algorithm 1 is simpler
and more efficient than SVD-based methods, and most importantly, it lends itself readily
to an incremental implementation (as in Algorithm 2), thereby enabling k to be determined
adaptively on the fly.

Yet another antecedent from the perspective of ill-posed problems is [14, p. 115], where
essentially the same idea as Algorithm 1 is suggested as a potential type of regularization for
ill-conditioned systems, but it is illustrated using only a single choice of basis, namely the
discrete cosine transform (DCT), and it is not developed any further.

Our approach also differs from augmented or enriched Krylov subspace methods (see
[6, 9, 25]) in that we dispense with the Krylov subspace entirely and rely solely on the subspace
spanned by X , which may bear no direct relation to the system matrix A.

3. Choosing a compression basis matrix. The compression method that we propose is
applicable for solving any linear system, but its efficiency depends critically on the existence
of a basis matrix X (and our ability to find it) in which the solution has a compressed represen-
tation. In essence, we are searching for a pattern in the solution that can be characterized by
relatively few parameters. If, for example, the sequence of solution components were totally
random, then by definition it has no compressed representation, and the compression method
would offer no advantage. It is often the case, however, that the solution does exhibit a system-
atic pattern, especially when it represents a discrete approximation of an underlying continuous
function, which may have known properties—smoothness, periodicity, monotonicity, convex-
ity, even or odd parity, etc.—that can potentially be exploited by the compression method.
Moreover, when the linear system results from discretization of a continuous problem, such
as a differential or integral equation, then we can exploit our knowledge of the discretization
itself to help determine a suitably effective compression basis. Consequently, we will focus
here on such discretized linear systems and let approximation theory (see, e.g., [3, 22, 23, 29])
guide us in choosing a compression basis.
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Basic guidance. We first adopt the following terminology regarding the support of a
given function. A function defined on a continuous (discrete) domain is called global (dense)
if it is nonzero or nonnegligible on a relatively large portion of its domain. Conversely, it is
called local (sparse) if it is nonzero or nonnegligible on only a relatively small portion of its
domain. A basis is said to be modal (nodal) if it consists of global (local) basis functions.
Some bases, notably hierarchical or multiresolution bases, are combinations of these.

Using this terminology, consider Table 3.1, which can be interpreted as follows. Approxi-
mating a global function (column 1) using a nodal basis (column 2) yields a dense coefficient
vector (column 3), whereas using a modal basis (column 2) may yield a sparse coefficient
vector (column 3), depending on the convergence rate of the functional expansion. For a local
function (column 1), on the other hand, using a nodal basis (column 2) may yield a sparse
coefficient vector (column 3), whereas a modal basis (column 2) generally yields a dense
coefficient vector (column 3). Table 3.1 is also applicable for approximating discrete functions,
with global and local interpreted as dense and sparse, respectively.

TABLE 3.1
Guide to choosing a basis.

function to be basis coefficient
approximated type vector

global nodal dense
global modal sparse
local nodal sparse
local modal dense

In solving a discretized linear system using the compression method, we must consider
both the basis used for the discretization and the compression basis used by the solver, so
we make two passes through Table 3.1 to help guide the choice of a compression basis. For
the first pass, we consider the basis used for the discretization, and the table then indicates
what to expect for the solution vector to the discretized linear system. (Simple discretizations
with no explicit discretization basis, such as finite differences for differential equations or
Nystrom (quadrature) method for integral equations, are implicitly nodal.) On the second
pass, we consider approximating a discrete function, namely the solution vector x to the
discretized linear system. For the compression method to be advantageous, we need to choose
a compression basis in the second pass that yields a sparse coefficient vector.

For example, when approximating a global solution function (column 1) discretized
using a nodal basis (column 2), we can expect a dense solution vector x to the linear system
(column 3). So, to approximate this dense solution vector (back to column 1), in order to have a
chance for a sparse z (column 3), we need a modal basis (column 2). On the other hand, when
approximating a global solution function discretized with a modal basis, similar reasoning
leads us to choose a sparse compression basis. Interestingly, either path indicates that for a
global solution function (by far the most common case), the compression basis should be of
opposite type from the discretization basis to benefit from the compression method, effectively
decoupling the two bases. When approximating a local solution function (a much less common
case), however, the table indicates that the two bases should be of the same type.

Table 3.1 is merely a guide, not a guarantee. Comprehensive tests reported in [7] confirm
its validity in the vast majority of cases, with occasional exceptions for unusual combinations
that are unlikely to occur in practice. Although the table appears symmetric in the four cases,
not all the cases are equally useful or “interesting” with respect to the underlying continuous
problem. In particular, continuous problems with global solutions are far more common in
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practice than problems with local solutions (e.g., isolated spikes or steep boundary layers).
Thus, the first two cases in the table are of greater interest, especially the first case, for which
the compression method can realize the goal stated in Section 1, namely the ability to have a
sparse linear system yet still obtain a compact representation of the global solution. For the
second case on the other hand, the compression method simply reproduces a standard spectral
method in the sense that a nodal compression basis can pick out the nonnegligible coefficients
in a modal discretization of the continuous solution. In any case, knowing from the table what
general category of basis functions to use is obviously helpful, but it still leaves open several
issues that will strongly affect the potential effectiveness of the compression method, which
we will address in the remainder of this section.

Choice of basis functions. Approximation theory (see, e.g., [3, 22, 23, 29]) is a plentiful
source of specific types of bases for approximating continuous functions. Another potential
source of bases is digital signal processing (see, e.g., [4, 5, 10]), which seeks efficient repre-
sentations of discrete signals, often for purposes of compression or filtering. An extensive
menagerie of specific families of basis functions are assessed as potential compression bases
in [7], including polynomials, piecewise polynomials, sinusoids, square waves, wavelets,
Gaussians, and sinc functions. The upshot is that, perhaps unsurprisingly, generating a basis
using orthogonal polynomials (specifically Chebyshev polynomials), suitably translated into
the given problem domain of interest, is generally the most effective choice when a modal
compression basis is needed. Perhaps more surprisingly, another effective modal compression
basis is composed of hierarchical Gaussians with moderate overlap. Among nodal compression
bases there is less variety than meets the eye as all tend to reduce to the identity matrix when
evaluated at the most natural set of points (see next paragraph).

Choice of evaluation points. For use in the compression method, continuous basis func-
tions must be converted into discrete basis vectors by evaluating each continuous function at a
discrete set of points. For continuous basis functions φj(t), j = 1, . . . , k, in one dimension,
the entries of the corresponding discrete n× k basis matrix X are given by

xi,j = φj(ti),

where ti, i = 1, . . . , n, are the evaluation points. In principle, any set of distinct evaluation
points could be chosen, but the resulting compression basis will be most effective if it matches
the discretization of the original continuous problem. For example, if the discretization is
based on a set of mesh points or collocation points, then the compression method is most
effective when those same points are used as the evaluation points in forming the compression
basis matrix. For this same reason, discrete transforms from digital signal processing (e.g.,
the discrete cosine transform) may fail to perform well as compression bases in this context
because they are already evaluated at a predetermined, standard set of evaluation points,
leaving no flexibility to match the specific discretization of the continuous problem.

Ordering of evaluation points. For a linear system resulting from discretization of a
continuous problem, each entry of the solution vector x corresponds to a specific degree of
freedom, which may correspond to a specific location in the problem domain or to a specific
discretization basis function (depending on the discretization). By virtue of the ordering
employed during the discretization and formation of A, these degrees of freedom have a
specific ordering. As the effectiveness of the compression method relies on detecting a pattern
in the solution vector x, it is important that the ordering of the evaluation points (i.e., the row
ordering of X) be compatible with the ordering of the degrees of freedom of the discretization.
For one-dimensional problems, when the degrees of freedom correspond to spatial coordinates,
there is a common natural ordering for both the coordinates of the degrees of freedom and the
evaluation points, so that incompatibility is generally not a concern in one dimension, but it
may be a more significant issue in higher dimensions, which we will address shortly.
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Ordering of basis vectors. For the compression method to realize the full benefit of a
compressed representation of the solution, the relevant discrete basis vectors (those with non-
negligible coefficients) must come early in the incremental process of Algorithm 2, and thus
the ordering of the basis vectors (i.e., the column ordering of X) is crucial to the effectiveness
of the method. Fortunately, many of the bases derived from approximation theory have a
natural ordering that works well for most applications. For example, consistent with their
convergence theory, polynomial bases are naturally ordered from lower to higher degree, and
sinusoidal bases are naturally ordered from lower to higher frequency. In practice, the terms
of lower degree or frequency usually carry the main signal, while the terms of higher degree
or frequency tend to represent unwanted noise. For this reason, the compression method can
have a regularizing effect, especially for poorly conditioned problems. Similarly, hierarchical
or multiresolution bases are naturally ordered from coarser to finer levels.

Compression bases in higher dimensions. For a system of linear equations resulting
from discretization of a continuous problem over a domain of more than one dimension, an
appropriate compression basis can be derived by forming a tensor product of one-dimensional
basis functions [3, p. 118]. For a rectangular domain in two dimensions, for example, given a
set of one-dimensional basis functions φj(t), j = 1, . . . , n, we define a set of basis functions
in two dimensions by

(3.1) ψi,j(s, t) = φi(s)φj(t), i, j = 1, . . . , n.

As in one dimension, for best results with the compression method, the choice and
ordering of the evaluation points should match the discretization as closely as possible, which
may be straightforward if the discretization is based on a regular grid of mesh points. For
an irregular discretization, such as finite elements with an irregular mesh, using the spatial
locations corresponding to the degrees of freedom as evaluation points, in the same order as in
the assembly of the system matrix, will ensure compatibility of the row ordering of X with
the discretization.

It is important to note that the use of tensor product basis functions does not limit the
compression method to problems having a rectangular domain, as any bounded problem
domain of whatever shape can be contained within a suitably chosen rectangular domain. The
tensor product basis functions can then be defined on the encompassing rectangular domain,
but the evaluation points for the compression basis are chosen only from within the actual
problem domain (e.g., at the nodes of a triangular finite element mesh in two dimensions).

The ordering of the basis functions (the column ordering of X) is also more complicated
in higher dimensions. In two dimensions, for example, the doubly-indexed set of basis
functions defined by equation (3.1) has no default linear ordering. Among the many linear
orderings that could be defined, the desired overall trend of low-to-high degree or frequency
can be realized by ordering the basis functions by the 1-norm, 2-norm, or∞-norm of their
respective index pairs, smallest to largest, with ties broken in favor of the smaller first index.
Two of these orderings are illustrated for a small example in Figure 3.1. All three orderings
performed similarly in our tests, with the diagonal ordering (based on the 1-norm) having a
slight edge.

4. Computational results. We now present computational results for a series of test
problems, both to demonstrate the effectiveness of the compression method and to develop
intuition for devising a more intelligent stopping criterion for Algorithm 2, to be presented
in Section 5. For each example, we start with a continuous problem, first discretize it, and
then solve the resulting linear system using the compression method. See [7] for details of
the test problems and testing conditions, as well as for a much more extensive collection of
computational test results than we have space to present here. To demonstrate the versatility
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⎡
⎢⎢⎣

ψ0,0 ψ0,1 ψ0,2 ψ0,3

ψ1,0 ψ1,1 ψ1,2 ψ1,3

ψ2,0 ψ2,1 ψ2,2 ψ2,3

ψ3,0 ψ3,1 ψ3,2 ψ3,3

⎤
⎥⎥⎦ :

⎡
⎢⎢⎣

0 1 4 8
2 3 6 11
5 7 10 13
9 12 14 15

⎤
⎥⎥⎦

R

⎡
⎢⎢⎣

ψ0,0 ψ0,1 ψ0,2 ψ0,3

ψ1,0 ψ1,1 ψ1,2 ψ1,3

ψ2,0 ψ2,1 ψ2,2 ψ2,3

ψ3,0 ψ3,1 ψ3,2 ψ3,3

⎤
⎥⎥⎦ :

⎡
⎢⎢⎣

0 1 4 9
2 3 6 11
5 7 8 13
10 12 14 15

⎤
⎥⎥⎦

k

FIG. 3.1. Illustration of linear orderings of two-dimensional basis functions: diagonal ordering (left, based on
the 1-norm of index pairs), and chevron ordering (right, based on the ∞-norm of index pairs).

of the compression method, the test problems include both differential equations and integral
equations. We focus here on simple discretizations (finite differences for differential equations
and Nystrom (quadrature) for integral equations) and finite element discretizations for boundary
value problems in two dimensions. See [7] for additional examples using a wide variety of
discretization methods to derive the corresponding linear systems, including both collocation
and Galerkin methods for both differential and integral equations, as well as a wide range of
compression basis functions. As in [7], all of the examples below are taken from the existing
literature except for the two designated as “designed,” which were designed to illustrate
specific features of the compression method rather than as performance tests.

We begin with two examples to illustrate how and why the compression method can work
well. For the one-dimensional integral equation gravity_c1 and the two-point boundary
value problem (BVP) greengard-ex1, Figure 4.1 displays the sequence of solutions
obtained by Algorithm 2 as k increases, along with the true solution of the continuous problem.
Local discretizations (Nystrom method with composite trapezoid quadrature and second-order
finite differences, respectively), with Chebyshev polynomials evaluated at equally-spaced
points as the compression basis, are used for both problems. Although both discretizations
yield linear systems with n = 128, we see that an accurate solution is already obtained after
only six iterations for the integral equation and eleven for the BVP (in Figure 4.1b we have
omitted the basis functions for even values of k, which are polynomials of odd degree and
therefore make no contribution to the solution, which is of even parity).

It may appear from the plots in Figure 4.1 that we have simply fit an increasingly accurate
sequence of polynomials to the true solutions of these problems, but that is not what happened
here: the compression method has no direct knowledge of the true continuous solution, of
course, but nevertheless it is able to fit that solution indirectly by solving the discretized
linear system using Algorithm 2, in effect fitting discretized and transformed versions of the
polynomial basis functions to the discrete right-hand-side vector b of the linear system.

For each of the following performance tests, we plot both the relative residual and the
relative error of the approximate solution for successive values of k in Algorithm 2. The
relative residual that we report is based on the standard residual ‖b−Ax‖2 for the approximate
discrete solution x of the discretized linear system. It is important to note that the relative
error that we report is taken with respect to the known true solution of the continuous problem,
and hence it includes discretization error as well as any error in solving the discretized linear
system. We include discretization error for three reasons: (1) the continuous problem is
ultimately what we really want to solve, whereas the discretized linear system is merely a
means to an end; (2) by design, we know the true continuous solution to each test problem,
whereas we do not know the true solution to the discretized linear system; (3) accounting for
discretization error will enable us to devise a more intelligent stopping criterion in Section 5.
The error will be unknown in practice, of course, so our goal here is to determine how the
error correlates with the residual, which is available in practice.

To compute the relative error, we use the∞-norm of the difference between the approxi-
mate solution and the known continuous solution for a given continuous problem. For a simple
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(a) Integral equation gravity_c1 discretized by the Nystrom method using composite trapezoid quadrature with
n = 128.
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(b) Boundary value problem greengard-ex1 discretized using finite differences with n = 128.

FIG. 4.1. Plots of the approximate solution obtained by the compression method for successive values of k, with
Chebyshev polynomials evaluated at equally-spaced points as compression basis.

discretization, the discrete approximate solution vector is compared with the corresponding
discrete sample of the continuous true solution function. For a non-simple discretization, the
continuous approximate solution is compared with the continuous true solution by sampling
both at a set of points throughout the problem domain.

The ground rules for the performance plots are as follows. The horizontal axis shows the
iteration counter k, and the vertical axis shows the relative error (left plot) and the relative
residual (right plot) for a given problem or method at a given value of k. Both the horizontal
and vertical scales are chosen to provide maximum visibility of the most pertinent information
rather than for consistency across different plots, so note the individual scales carefully. In
particular, in keeping with the way iterative methods are used in practice, we show only enough
iterations to capture the behavior prior to nominal convergence and sufficiently beyond to
make the longer term behavior reasonably clear, which is typically long before k = n, the
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dimension of the linear system being solved.

Scaling tests. We first examine how the optimal value for k in Algorithm 2 varies as
the dimension n of the linear system grows when the discretization for a given continuous
problem is refined. Figure 4.2 displays results using the compression method to solve the one-
dimensional BVP designed_sine_bvp and the integral equation designed_sine_ie
discretized using finite differences and composite trapezoid quadrature, respectively, with
Chebyshev polynomials evaluated at equally-spaced points as the compression basis. By
design, the two problems have identical solutions (a simple sine function). Figure 4.2 reveals
a number of interesting observations that are fairly typical of the compression method:

• For both problems, both the error and the residual initially decline sharply as the
(discretized and transformed) Chebyshev series rapidly converges to the smooth
underlying solution. Once the accuracy of the approximate solution is within the
discretization error, however, the error ceases to decline, becoming flat for the BVP
and increasing for the integral equation.

• For both problems, we see from the error plots that the optimal value for k occurs for
k � n, and it increases little, if any, as n grows.

• For both problems, the relative error, which is ultimately dominated by discretization
error, is substantially larger than the relative residual, which is ultimately dominated
by rounding error (note the marked difference in the respective vertical scales).

• For both problems, the achievable error level decreases as n increases, as expected,
whereas the behavior of the residual as n varies is more complicated.
• For the BVP, the error reaches its minimum well before the residual reaches its

minimum, and both become flat thereafter.
• For the integral equation, after reaching its minimum the error then begins to increase,

while the residual continues to decrease, though at a slower rate.
• Stairstepping is evident in both the error and residual plots, in this case due to the

odd parity of the true solution to the continuous problems, so that alternate basis
functions (those of even parity) make no contribution to the approximate solution.
Though certainly not universal, such stairstepping is common for a variety of reasons,
especially in higher dimensions (as we will see).

Performance tests. We next present results for a number of test problems to demon-
strate the overall behavior and performance of the compression method. In addition to the
relative error and the relative residual for Algorithm 2, for comparison we will also plot
the corresponding values for two conventional algorithms, GMRES [27] (for all problems)
and TSVD [14] (only for integral equations). The former is a popular iterative method for
solving general square linear systems, while the latter is commonly used for solving potentially
underdetermined or rank-deficient systems, such as those often arising from integral equations.
Although Algorithm 2 can reproduce either of these methods (by using a Krylov sequence
or the right singular vectors, respectively, as the compression basis), the results we report are
for standard, native implementations of these methods. The point of providing comparisons
with conventional methods is not so much to compete with them directly but rather to provide
familiar benchmarks for assessing the performance potential of the compression method. Re-
call that the compression method and GMRES have similar costs per iteration (matrix-vector
multiplication plus orthogonalization), so comparing them by iteration count rather than by
computing time is a fair comparison.

Additionally, for problems having a sufficiently well-conditioned matrix, we draw a
horizontal line in each plot indicating the relative error or relative residual when the solution to
the linear system is computed using a standard direct solver. Such a line serves not only to set
our expectations for the smallest residual achievable, but it also provides an excellent proxy
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(a) Boundary value problem designed_sine_bvp discretized using finite differences.
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(b) Integral equation designed_sine_ie discretized using composite trapezoid quadrature.

FIG. 4.2. Scaling study showing the optimal value of k using the compression method for discretized systems of
dimension n = 64, 128, 256, with Chebyshev polynomials evaluated at equally-spaced points as compression basis.

for the discretization error, because the rounding error in the direct solution is comparatively
small for well-conditioned systems.

Figure 4.3 displays results for three one-dimensional boundary value problems discretized
using finite differences, the first two with n = 128 and the third with n = 512, which is
required to resolve its highly oscillatory solution adequately. We see that for each of these
problems, the relative error in the compression method solution levels off (at the level of
discretization error) significantly earlier than the residual flattens out, but nevertheless both
occur for k � n. These results suggest that a simple residual tolerance as in Algorithm 2 is a
reasonably effective stopping criterion, but it may significantly overshoot the optimal choice
for k. Unfortunately, there appears to be no indication in the residual plot (which is all we can
observe in practice, of course) of when that earlier optimum occurs, but we will soon see that
this is not always the case.

Figure 4.4 shows results for two one-dimensional integral equations, both discretized
using composite trapezoid quadrature, with Chebyshev polynomials evaluated at equally-
spaced points as compression basis. (To simulate the measurement noise inherent in most
empirical integral equation problems, for gravity_c1 the components of the right-hand-
side vector for the discretized problem are randomly perturbed at a level of 10−5.) These
problems are typically rank deficient, so we have no direct solution with which to approximate
the discretization error, but we do show results for TSVD, which is often used for potentially
rank-deficient problems, in addition to GMRES and the compression method. Here we see a
rather different picture: not only does the error in the compression method solution reach a
minimum for k � n, but that occurrence is detectable from the residual plot for both problems.
Specifically, there is a noticeable change in the slope of the residual plot at the point of
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(a) Boundary value problem fornberg discretized using finite differences with n = 128.
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(b) Boundary value problem greengard-ex1 discretized using finite differences with n = 128.
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(c) Boundary value problem greengard-ex3 discretized using finite differences with n = 512.

FIG. 4.3. Performance of the compression method for one-dimensional boundary value problems, with
Chebyshev polynomials evaluated at equally-spaced points as compression basis.

minimum error for both problems. Moreover, the error does not level off but actually increases
beyond the optimal point, so the penalty for overshooting is to produce a significantly less
accurate solution. Finally, we note that the compression method achieves a lower minimum
error than either of the other methods, illustrating its usefulness as a regularization method.

To demonstrate the compression method in higher dimensions, we next consider test
problems in two dimensions. For all two-dimensional problems, the value of n reported
is the dimension of the linear system being solved, i.e., the number of grid points for the
finite difference or Nystrom discretizations and the number of degrees of freedom for finite
element discretizations. Figure 4.5 displays results for the two-dimensional Poisson prob-
lem ericsson (see [11]). Discretizations shown include finite differences (Figure 4.5a),
finite elements using P1 (linear) basis functions on a uniform triangular mesh (Figure 4.5b),
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(a) Integral equation designed_sine_ie discretized using composite trapezoid quadrature with n = 128.
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(b) Integral equation gravity_c1 discretized using composite trapezoid quadrature with n = 128.

FIG. 4.4. Performance of the compression method for one-dimensional integral equations with Chebyshev
polynomials evaluated at equally-spaced points as compression basis.

finite elements using P1 basis functions on an irregular triangular mesh (Figure 4.5c), and
finite elements on the same irregular triangular mesh but with P2 (quadratic) basis functions
(Figure 4.5d). All finite element discretizations were performed using the FEniCS software
package [18]. Tensor-product (see equation (3.1)), diagonally-ordered (see Figure 3.1) Cheby-
shev polynomials evaluated at the mesh points of each discretization form the corresponding
compression basis. More specifically, for a finite element discretization using P1 elements,
the evaluation points are the vertices of the triangles in the mesh, and for P2 elements the
evaluation points include the midpoints of the sides of the triangles as well as the vertices.
In all four cases, the compression method quickly reaches the level of discretization error, at
which point the residual (as well as the error) levels off, in contrast to GMRES, for which the
residual continues to decline but without yielding any additional accuracy.

Recall our earlier observation that despite employing tensor product basis functions for
problems in more than one dimension, the compression method is not limited to problems
having a rectangular domain. Figure 4.6 demonstrates this fact by showing results for the
ericsson problem again but this time on two nonrectangular domains, namely the triangular
region having vertices at (0, 0), (0, 1), (1, 0) and the circular disc of radius 0.5 centered at
(0.5, 0.5). For both domains, the compression basis is composed of tensor-product, diagonally-
ordered Chebyshev polynomials defined on the unit square, but the evaluation points are
the nodes of an irregular triangular finite element mesh (again generated by FEniCS) for
each respective problem domain. Not surprisingly, the behavior for these nonrectangular
subdomains is very similar to what we observed in Figure 4.5c and Figure 4.5d for the same
problem on the full unit square, with the compression method rapidly converging to within the
discretization error, at which point the residual levels off.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

354 E. CARRIER AND M. T. HEATH

0 10 20 30 40 50 60 70 80

k

10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

R
e
la

ti
v
e
 R

e
si

d
u
a
l

Method
Compr

GMRES

Direct

0 10 20 30 40 50 60 70 80

k

10-5

10-4

10-3

10-2

10-1

100

R
e
la

ti
v
e
 E

rr
o
r

(a) Finite difference discretization with n = 256.
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(b) Finite element discretization using P1 basis functions on a uniform triangular mesh with n = 256.
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(c) Finite element discretization using P1 basis functions on an irregular triangular mesh with n = 268.
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(d) Finite element discretization using P2 basis functions on an irregular triangular mesh with n = 1005.

FIG. 4.5. Performance of the compression method for the two-dimensional Poisson problem ericsson on
the unit square using the indicated discretizations with tensor-product, diagonally-ordered, Chebyshev polynomials
evaluated at the mesh points of each discretization as corresponding compression basis.
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(a) Finite element discretization on a triangular domain using P1 basis functions on an irregular triangular mesh with
n = 255.
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(b) Finite element discretization on a circular domain using P1 basis functions on an irregular triangular mesh with
n = 272.
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(c) Finite element discretization on a circular domain using P2 basis functions on an irregular triangular mesh with
n = 1021.

FIG. 4.6. Performance of the compression method for the two-dimensional Poisson problem ericsson on the
indicated domains using the indicated discretizations with tensor-product, diagonally-ordered Chebyshev polynomials
evaluated at the mesh points of each discretization as corresponding compression basis.

Finally, Figure 4.7 displays results for the two-dimensional integral equation su-ex3
discretized using composite trapezoid quadrature with tensor-product, diagonally-ordered
Chebyshev polynomials evaluated at equally-spaced points as the compression basis. We see
that the compression method quickly produces a moderately accurate regularized solution
for this ill-conditioned problem before the residual levels off, beyond which point the error
becomes dominated by sharply increasing rounding error, amplified by the ill-conditioning. By
contrast, the error for GMRES steadily increases almost from the outset even as the residual
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FIG. 4.7. Performance of the compression method for the two-dimensional integral equation su-ex3 discretized
using composite trapezoid quadrature with n = 16, 384 and with tensor-product, diagonally-ordered Chebyshev
polynomials evaluated at equally-spaced points as compression basis.

steadily decreases, and the error for TSVD remains stagnant despite a small initial drop in the
residual.

By now the explanation for the foregoing results should be fairly obvious: for the com-
pression method, the overall error initially decreases rapidly as additional basis vectors yield
increasingly better approximations to the underlying continuous solution. Once sufficiently
many basis vectors have been included for the accuracy of the approximate solution to be
within the discretization error, however, then any further iterations will provide no further
improvement in accuracy with respect to the continuous solution. Indeed, further iterations
may actually increase the error (e.g., when rounding error is amplified by ill-conditioning)
even as the residual for the approximate solution to the discretized linear system may continue
to decline until it eventually flattens out. Thus, the optimal stopping point for the compression
method is at the critical transition between these two phases, which is often—but not always—
marked by a noticeable change in the slope of the residual curve, which we will refer to as a
“bend.” Typically, a bend (slope transition) in the residual curve occurs when the error reaches
the level of discretization error, or the residual reaches the level of rounding error, or both.
Once such a bend is reached, further iterations will yield no improvement in accuracy with
respect to the solution of the continuous problem even if the residual continues to decline, so
we may as well terminate. Consequently, detecting such a bend will be a major component of
the stopping criterion we propose in Section 5.

From the foregoing discussion we see that, unlike conventional methods for solving linear
systems, the compression method can somehow “sense” (from the behavior of the residual) the
discretization error in the approximation to the underlying continuous problem. How can this
be? The key is that the compression basis, by design, reflects the discretization error because
the basis functions from which it is composed are evaluated with the same spatial resolution
as that of the discretization; indeed, ideally the same mesh points or collocation points used
for the discretization are also used as the evaluation points in forming the compression basis.
Lacking this “sense,” conventional iterative methods such as GMRES are often conservatively
run well beyond the (unknown) optimal stopping point, at significant additional cost and
possibly increasing error. Thus, the compression method often benefits from both faster
convergence and more intelligent stopping than conventional methods.

5. Stopping criterion. As we have seen through several examples, the compression
method with a suitably chosen compression basis is often capable of efficiently producing
an accurate solution to a discretized linear system with k � n. Although a simple residual
tolerance as stated in Algorithm 2 sometimes suffices, in many cases we can potentially do
better (i.e., terminate earlier and attain maximum accuracy). In practice the error is unknown,
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FIG. 5.1. Slope and curvature of log residual curve for designed_sine_ie (compare with Figure 4.4a).

of course, but we can examine the detailed behavior of the residual more closely, seeking to
detect the point at which no further useful information will be forthcoming, so that we may as
well terminate.

As we saw in Section 4, when the downward slope of the residual curve abruptly slows
(exhibits a “bend”), this is an indication either that the accuracy of the approximate solution is
within the discretization error or that the residual has reached the level of rounding error. In
either case, no further improvement in accuracy is possible (indeed, the accuracy may even
deteriorate beyond this point), so we should terminate. Thus, the smarter stopping criterion we
seek is based on detecting such a bend in the residual curve on the fly as the iterations proceed.
The residual curve may exhibit more than one bend, but for best efficiency and accuracy we
want to identify the first one. As we will see, for some problems the residual may exhibit no
sufficiently distinct bend before permanently flatlining (within rounding error), so our stopping
criterion will need to be able to detect that possibility as well.

Quantitatively, a significant change in the slope (first derivative) of the residual curve
corresponds to a peak in its curvature (essentially the relative change in the second derivative).
A typical example is shown in Figure 5.1, which displays the slope and curvature (how these
quantities are computed will be explained below) of the log residual curve for the problem
designed_sine_ie. We see that the bend in the residual curve and the minimum in the
error curve visible in Figure 4.4a both correspond to the peak in the curvature at k = 6. We
also see the essentially random values of the slope and curvature once the residual reaches the
level of rounding error.

In preparation for developing the necessary detection capability, we first make some
observations about the residual produced by Algorithm 2 as a function of k, or more specifically
log(‖b− Ykz‖2), because we are working in the semilogy scale of the residual plots. First,
we note that because Algorithm 2 minimizes over a nondecreasing sequence of subspaces, the
residual norm is guaranteed to be monotonically nonincreasing as k increases, absent rounding
effects. The residual norm can be flat, however, either temporarily or when rounding error
prevents any further decrease.

Although we have informally referred to the residual “curve,” the values of the residual
norm for successive values of k are obviously discrete, and they can be jagged and noisy, as we
have seen, for example, with the stairstepping often caused by parity effects. Thus, smoothing
of the discrete data points will be required to define their slope meaningfully and enable
reliable detection of a bend. The degree of smoothing presents a delicate choice, however, in
that too much smoothing may smear out the abrupt transition we seek to detect, but too little
smoothing may yield a useless plethora of abrupt transitions.
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Among the many smoothing techniques available, we have found that an effective choice
for the present purpose is the Savitzky-Golay convolution filter [28], which performs a least-
squares fit of a low-degree polynomial to a moving window of data points, thereby providing
approximate values for the first and second derivatives of the data. Specifically, for one-
dimensional problems we use a window of five points and a polynomial of degree two, where
the smoothed function value and derivatives are then evaluated at the middle point. Note that
a special procedure is necessary initially before five data points are available, and a wider
smoothing window (we use size nine) is needed for two-dimensional problems due to the
greater jaggedness caused by transitions between tiers in the array of two-dimensional basis
functions (see Figure 3.1).

Once we have values for the derivatives, we can identify a bend by detecting a peak in the
curvature of the log residual norm. The curvature of a one-dimensional function y = f(x) is
defined as

curvature =
|y′′|

(1 + y′2)
3
2

.

Substituting the successive smoothed derivative values into this formula, we can now seek a
peak in the curvature on the fly as k progresses. The peak detection heuristic that we use is a
smoothed z-score algorithm adapted from [30]. Although peak detection forms the core of
our stopping criterion, to make it robust, additional logic is required to allow for a number
of contingencies that may arise, including the possibility of the residual flatlining (within
rounding error) without any bend having been detected. The result is a multi-faceted, heuristic
criterion designed to terminate the incremental compression method at or near the optimal
value of k (see [7] for further details). The detailed behavior of the automatic termination
criterion depends on a number of tolerances and other parameters that can in principle be
tuned to a given problem. It is important to note, however, that in the computational tests
reported below we have used a fixed set of parameter values for all one-dimensional problems
and a slightly different set of fixed values for all two-dimensional problems.

Related work. Detecting what we have called a “bend” in the semilog residual curve for
the compression method is analogous to determining the “elbow” or “knee” of a scree plot for
principal component analysis [8] or the “corner” or “vertex” of an L-curve for regularizing an
ill-posed problem [13, 15]. In their original forms, neither of those approaches is useful in our
case, but a more recent version of the L-curve [24] is much closer in spirit to our approach,
and though differing significantly in detail, it could possibly provide a plausible alternative to
our stopping criterion outlined above.

Computational results. We illustrate the effectiveness of our automatic termination cri-
terion by showing the stopping points that it identifies for some of our previous examples.
For each example, a star symbol in the residual plot indicates the stopping point automati-
cally determined based on monitoring the residual from the compression method, and the
corresponding point in the error plot is also indicated by a star symbol. Because we use
the middle point of a five-point smoothing window (for one-dimensional problems) for peak
detection, the compression method will always go at least two iterations beyond a detected
peak, and additional checks to confirm that it should stop at the detected peak require two
more iterations, so typically the compression method will be run for four iterations beyond the
optimal stopping point identified by the automatic termination criterion (or somewhat more
for higher-dimensional problems). In the plots, the solid line indicates the iterations necessary
to detect the stopping point, and for reference, further behavior of the compression method
beyond that point is indicated by a dotted line.
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(a) Boundary value problem fornberg discretized using finite differences with n = 128.
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(b) Boundary value problem greengard-ex1 discretized using finite differences with n = 128.

FIG. 5.2. Stopping points (indicated by a star symbol) automatically determined for two one-dimensional
boundary value problems from Figure 4.3a and Figure 4.3b.
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FIG. 5.3. Slope and curvature of the log residual curve for greengard-ex1 (compare with Figure 5.2b).

Figure 5.2 displays results for the first two one-dimensional boundary value problems
from Figure 4.3. For both of these problems, the only bend in the residual curve occurs when
it flattens out at the level of rounding error, which is correctly detected by the termination
criterion. Note that the stairstepping in Figure 5.2b (due to the parity of the solution) does
not prevent the automatic criterion from correctly identifying the bend from the curvature
peak (indicated by the vertical dashed line) clearly visible in Figure 5.3. Although the single
bend in the residual curve significantly overshoots the optimal stopping point indicated by the
error curve, the automatically determined stopping point is still far earlier than GMRES would
permit.
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(a) Integral equation designed_sine_ie discretized using composite trapezoid quadrature with n = 128.
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(b) Integral equation gravity_c1 discretized using composite trapezoid quadrature with n = 128.

FIG. 5.4. Stopping points (indicated by a star symbol) automatically determined for two one-dimensional
integral equations from Figure 4.4.
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FIG. 5.5. Slope and curvature of the log residual curve for gravity_c1 (compare with Figure 5.4b).

Figure 5.4 displays results for the two one-dimensional integral equations from Figure 4.4.
For both of these problems, the residual curve exhibits a bend well before it reaches the level of
rounding error. The termination criterion detects this bend at a point that closely approximates
the minimum point in the corresponding error curve, yielding a nearly optimal stopping point
for these problems that minimizes both cost and error. The identified peaks in the curvature
are shown in Figure 5.1 and Figure 5.5, respectively.

Figure 5.6 displays results for two of the discretizations of the two-dimensional Poisson
problem ericsson shown in Figure 4.5. In Figure 5.6a, for a finite element discretization
using a uniform triangular mesh (see Figure 4.5b), the rather gradual, somewhat erratic decline
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(a) Finite element discretization using P1 basis functions on a uniform triangular mesh with n = 256.
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(b) Finite element discretization using P1 basis functions on an irregular triangular mesh with n = 268.

FIG. 5.6. Stopping points (indicated by a star symbol) automatically determined for two different discretizations
of the two-dimensional Poisson problem ericsson shown in Figure 4.5b and Figure 4.5c, respectively.

of the residual curve makes a distinct bend difficult to detect. Figure 5.7a shows multiple
moderate peaks in the curvature, including one tantalizingly close to the optimal stopping point
indicated by the error curve in Figure 4.5b, but none of these peaks is sufficiently pronounced
to trigger the stopping criterion, which eventually stops after the residual curve has flattened,
well beyond the optimal stopping point. No such ambiguity occurs for the irregular finite
element discretization (see Figure 4.5c) shown in Figure 5.6b, for which the automatic criterion
detects a peak in curvature at k = 11 (see Figure 5.7b) before the residual curve flattens when
the level of discretization error is reached, resulting in a nearly optimal stopping point. Such
excellent performance is typical for problems with irregular discretizations.

Finally, Figure 5.8 displays results for the two-dimensional integral equation su-ex3
from Figure 4.7. Here again the termination criterion detects a nearly optimal stopping point
when the residual curve flattens (see Figure 5.9) and avoids the subsequent dramatically
increasing error caused by ill-conditioning (see Figure 4.7).

From these computational examples, which are typical of the results we have observed,
we conclude that our automatic termination criterion, though certainly not perfect (in common
with most other heuristics), often identifies a nearly optimal stopping point for the compression
method. Our tentative conjecture is that when a bend is induced by discretization error, it
corresponds closely to the optimal stopping point, but when a bend is induced by rounding
error, it is typically already well past the optimal stopping point. It is not obvious that
anything can be done about the latter case, but even when our automatic criterion significantly
overshoots the optimal stopping point, typically it still stops far earlier than conventional
methods would permit.

We emphasize that there is nothing sacred about the specific options that we have chosen
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(a) Finite element discretization using a uniform triangular mesh (compare with Figure 5.6a).
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(b) Finite element discretization using an irregular triangular mesh (compare with Figure 5.6b).

FIG. 5.7. Slope and curvature of the log residual curves for ericsson using finite element discretizations
with P1 basis functions on triangular meshes.

in implementing the termination criterion; others might prefer to substitute their favorite
smoothing and peak detection techniques for those we have employed. Finally, we note that
while an automatic termination criterion is enabled by the ability of the compression method
to “sense” the discretization error from the behavior of the residual, such a criterion is not an
inherent part of the compression method itself, which can be used and is often effective in
conjunction with a conventional termination criterion such as a simple residual tolerance. An
important caveat, however, is that a simple residual tolerance is not suitable for any problem
(e.g., many integral equations) for which the error may increase even as the residual decreases,
which makes a compelling argument for an automatic stopping criterion such as the one we
propose, especially for ill-conditioned problems.

6. Concluding summary. We began this paper by asking whether we can have “the best
of both worlds” in solving a discretized continuous problem: a sparse linear system with a
“sparse” (i.e., compactly represented) solution. For example, can we exploit the geometric
flexibility of a finite element method while still enjoying the rapid convergence of a spectral
method? We saw that this may indeed be possible provided we employ separate bases for
discretizing the continuous problem and for representing the solution to the discretized linear
system, and we presented a remarkably simple yet general method for solving a linear system
based on this insight.
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FIG. 5.8. Stopping point (indicated by a star symbol) automatically determined for the two-dimensional integral
equation su-ex3 from Figure 4.7.
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FIG. 5.9. Slope and curvature of the log residual curve for su-ex3 (compare with Figure 5.8).

The efficacy of the resulting compression method depends critically on the compression
basis selected, and we provided guidance for making an effective choice based on broad
knowledge about the continuous solution (e.g., support, smoothness, symmetry), along with
detailed knowledge of the specific discretization employed. We also devised an intelligent
stopping criterion for the incremental version of the compression method that is often ca-
pable of automatically detecting when the accuracy of the approximate solution is within
the discretization error, thereby avoiding further iterations that would yield no additional
(or even potentially worse) accuracy. Computational results for a variety of test problems,
including both differential and integral equations in one and two dimensions, demonstrated
the effectiveness of the compression method in practice.

As illustrated by our computational examples, for integral equation problems the compres-
sion method often produces a more accurate regularized solution (i.e., having lower error) than
conventional methods, and that greater accuracy is then locked in by our automatic stopping
criterion rather than potentially being destroyed by continuing with further, unknowingly
deleterious iterations, as a simple residual tolerance might do. For boundary value problems,
the particular combination of a finite element discretization and a compression basis composed
of Chebyshev polynomials yields what might be termed a “discrete spectral method” that can
simultaneously exploit the geometric flexibility of finite element methods while enjoying the
rapid convergence of spectral methods, with an automatic termination criterion as icing on the
cake!
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