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MODULUS-BASED CIRCULANT AND SKEW-CIRCULANT SPLITTING
ITERATION METHOD FOR THE LINEAR COMPLEMENTARITY PROBLEM

WITH A TOEPLITZ MATRIX∗

MINHUA WU† AND CHENLIANG LI‡

Abstract. By reformulating the linear complementarity problem involving a positive definite Toeplitz matrix
as an equivalent fixed-point system, we construct a modulus-based circulant and skew-circulant splitting (MCSCS)
iteration method. We also analyze the convergence of the method and show that the new method is effective by
providing some numerical results.
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1. Introduction. Some elastic normal contact problems are modeled by linear comple-
mentarity problems (LCPs) with Toeplitz matrices. Vollebregt [23] presented the BCCG+FAI
method to solve the contact problem, Belsky [7] developed a multigrid strategy for contact
problems, and Zhao in [26] proposed a full multigrid strategy combined with an active set
algorithm. Wu and Li [24] presented a preconditioned modulus-based matrix multisplitting
block iteration method for solving the linear complementarity problem with a symmetric
positive definite Toeplitz matrix.

The modulus-based matrix splitting method, firstly presented by Bai [3], has been ex-
tensively studied due to its low computational complexity [1, 2, 5, 6, 9, 25]. The basic idea
of this method is to find the numerical solution of the LCP’s equivalent system of nonlinear
equations, which can be expressed as the following absolute value equation (AVE)

(1.1) Ax+B|x| = b.

The AVE has become the focus of attention for many scholars in the recent years.
Rohn [19] obtained sufficient conditions for the existence of a unique solution, Mangasar-
ian [13] pointed out that the AVE is in the class of NP-hard problems, and he proposed
relevant solutions of AVEs when the matrices satisfy B = −I (see [14, 15]). In addition,
Mangasarian [16] and Prokopyev [18] discussed the relationship between the AVE and the
linear complementarity problem. If B is the zero matrix, B = 0, then Bai, Golub, and Ng [4]
established the HSS iteration method by splitting the system matrix into a Hermitian matrix
plus a skew-Hermitian matrix. Based on the HSS iteration method, Salkuyeh developed a
Picard-HSS iteration method to solve the AVE in [20]. For solving Toeplitz linear systems,
Ng [17] established the CSCS iteration method based on a so-called circulant and skew-
circulant splitting. Several kinds of circulant matrices are used as preconditioners in PCG
methods to solve Toeplitz linear systems; see [8, 11, 12, 21, 22]. For the AVE (1.1) where
A is a Toeplitz matrix and B = −I , the Picard-CSCS iteration method and the nonlinear
CSCS-like iteration method were proposed in [10].
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In this paper, by reformulating the linear complementarity problem as a class of AVEs,
we construct a modulus-based CSCS iteration method inspired by the Picard-CSCS iteration
method. The method is based on a splitting of the system matrix into a circulant matrix and
a skew-circulant matrix and solving the fixed-point equations by the Fast Fourier Transform
(FFT). The new method can save a lot of computational work, and the numerical examples
also show that the new method is efficient.

The remainder of this paper is organized as follows. Section 2 gives some necessary
notations and lemmas. In Section 3, we establish the modulus-based CSCS iteration methods.
An analysis of the optimal parameters is presented in Section 4. Numerical experiments are
reported in Section 5. Finally, the paper closes with some conclusions in Section 6.

2. Preliminaries. In this section, we briefly review some necessary notations, definitions,
and lemmas. A matrix A = (aij)n×n ∈ Rn×n is a Toeplitz matrix if it has the form

A =


a0 a−1 · · · a2−n a1−n
a1 a0 a−1 · · · a2−n
...

. . . . . . . . .
...

an−2 · · · a1 a0 a−1

an−1 an−2 · · · a1 a0

 ,
i.e., the matrix elements satisfy aij = ai−j .

When B is the zero matrix and A is a Toeplitz matrix, the AVE (1.1) is reduced to the
Toeplitz linear systems Ax = b. Ng proposed the CSCS methods to solve Toeplitz linear
systems in [17], and the relevant background is provided next.

A Toeplitz matrix A has a circulant and skew-circulant splitting A = C + S, where

(2.1) C =
1

2


a0 a−1 + an−1 · · · a2−n + a2 a1−n + a1

a1 + a1−n a0 a−1 + an−1 · · · a2−n + a2

...
. . . . . . . . .

...
an−2 + a−2 · · · · · · a0 a−1 + an−1

an−1 + a−1 an−2 + a−2 · · · a1 + a1−n a0


and

(2.2) S =
1

2


a0 a−1 − an−1 · · · a2−n − a2 a1−n − a1

a1 − a1−n a0 a−1 − an−1 · · · a2−n − a2

...
. . . . . . . . .

...
an−2 − a−2 · · · · · · a0 a−1 − an−1

an−1 − a−1 an−2 − a−2 · · · a1 − a1−n a0

 .

Here C is a circulant matrix, and it can be diagonalized by the Fourier matrix F , i.e.,

FCFH = ΛC ,

where the diagonal entries in the diagonal matrix ΛC are the eigenvalues of the circulant
matrix C and

F = (F )i,j =
1√
n
e

2πijk
n , 0 ≤ j, k ≤ n− 1.

S is a skew-circulant matrix, and it also can be diagonalized in a similar way, i.e.,

F̂SF̂H = ΛS ,
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where F̂ = FΩ, Ω = diag
(

1, e−
πi
n , . . . , e−

(n−1)πi
n

)
, and the diagonal matrix ΛS consists of

the eigenvalues of the skew-circulant matrix.
Let λk (k = 1, 2, . . . , n) and µk (k = 1, 2, . . . , n) be the eigenvalues of the circulant

and the skew-circulant matrix, respectively. If the real parts of the eigenvalues of λk(µk)
(k = 1, 2, . . . , n) are positive, then it holds that the circulant matrix C (the skew-circulant
matrix) is positive definite. With this approach, Ng extended the CSCS method in [17].
Specifically, given an initial guess x0, for k = 0, 1, 2, . . . until

{
xk
}

converges, compute

(σI + C)xk+
1
2 = (σI − S)xk+b

(σI + S)xk+1 = (σI − C)xk+
1
2 + b,

where σ is a positive constant.
Besides, the CSCS methods converge to the unique solution when the circulant and

the skew-circulant splitting matrices are positive definite. Ng presented also the optimal
parameters taken from reference [4].

Gu et al. [10] presented the Picard CSCS iteration method to solve the AVE (1.1) when B
is the identity matrix andA is a Toeplitz matrix. That is, given an initial guess x0 and a positive
integer sequence {lk}∞k=0. When k = 0, 1, 2, . . ., for l = 0, 1, . . . , lk, set xk+1 = xk,l+1 until{
xk+1

}
converges, where the iterates xk,l+1 are computed by

(σI + C)xk,l+
1
2 = (σI − S)xk,l+

∣∣xk∣∣+ b,

(σI + S)xk,l+1 = (σI − C)xk,l+
1
2 +

∣∣xk∣∣+ b.

Here σ is a positive constant.
In this paper, we consider the linear complementarity problem, denoted as LCP (q, A),

finding a pair of feasible complementary solution w and z ∈ Rn such that

(2.3) w = Az + q ≥ 0, z ≥ 0, zTw = 0,

where A ∈ Rn×n is a given Toeplitz matrix and q = (q1, q2, . . . , qn)T ∈ Rn.
LEMMA 2.1 (See [3]). Given α > 0, and let I be the identity matrix. Then problem (2.3)

is equivalent to the following fixed-point problem: find x ∈ Rn such that

(2.4) (αI +A)x = (αI −A) |x| − q.

1. If x is a solution of (2.4), then

w = α (|x| − x) , z = |x|+ x

defines the solution pair of the problem (2.3).
2. If the vector pairs w and z solve problem (2.3), then x = 1

2

(
z − w

α

)
solves the

fixed-point problem (2.4).

3. The modulus-based CSCS iteration method. Let A = C + S. We extend the
modulus-based CSCS iteration method to solve the linear complementarity problem with a
Toeplitz matrix.
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METHOD 1. Modulus-based CSCS Iteration Method.
Step 1: Select an arbitrary initial vector x0 ∈ Rn, and set k = 0.
Step 2: Set xk,0 = xk. For l = 0, 1, 2, . . . , lk − 1, compute

(3.1)

(αI + σI + C)xk,l+
1
2 = (σI − S)xk,l + (αI −A)

∣∣xk∣∣− q,
(αI + σI + S)xk,l+1 = (σI − C)xk,l+

1
2 + (αI −A)

∣∣xk∣∣− q,
where σ is a given positive constant, and set xk+1 = xk,lk .

Step 3: Compute zk+1 = |xk+1|+ xk+1, wk+1 = Azk+1 + q.
Step 4: Compute RES = min

(∣∣zk+1
∣∣ , ∣∣wk+1

∣∣). If RES < ε then stop. Otherwise, set
k := k + 1 and return to Step 2.

In Step 2, equation (3.1) can be solved rapidly by the FFT, and the numerical experiments
in Section 5 show that Method 1 becomes efficient.

Let A = C + S be a circulant and a skew-circulant splitting of the matrix A, and let α, σ
be given positive constants. Then the iteration of Method 1 can be reformulated as follows:

xk,l+1 = W (α, σ)xk,l+V (α, σ)
(
(αI −A)

∣∣xk∣∣− q)
= (W (α, σ))

lk xk,0 +

lk−1∑
j=0

(W (α, σ))
j
V (α, σ)

(
(αI −A)

∣∣xk∣∣− q),(3.2)

where

W (α, σ) = (αI + σI + S)
−1

(σI − C) (αI + σI + C)
−1

(σI − S) ,

V (α, σ) = (α+ 2σ) (αI + σI + S)
−1

(αI + σI + C)
−1
.

THEOREM 3.1. Let A ∈ Rn×n be a positive definite Toeplitz matrix and α and σ be
given positive constants. Let A = C + S be a splitting, where C is real positive definite
and S is positive definite defined by (2.1) and (2.2), respectively. Then the iteration sequence{
zk
}+∞
k=0
⊂ Rn generated by Method 1 converges to the unique solution z∗ of LCP (q, A)

for any initial vector x0 ∈ Rn and any sequence {lk}∞k=0 of positive integers, provided that
l = lim infk→∞ lk ≥ N , where N is a positive integer satisfying

(3.3) ‖(W (α, σ))‖s2 <
1− ζ
1 + ζ

for any s > N , where ζ =
∥∥∥(αI +A)

−1
(αI −A)

∥∥∥
2
< 1.

Proof. Let z∗, w∗ be a solution pair of LCP (q, A). Then from Lemma 2.1 we have that

x∗ =
1

2

(
z∗ − 1

α
w∗
)

(α > 0)

satisfies the fixed-point equations (2.4). It can be rewritten as follows according to the matrix
splitting A = C + S:

(3.4) x∗ = W (α, σ)lkx∗ +

lk−1∑
j=0

W (α, σ)jV (α, σ) ((αI −A) |x∗| − q).
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Set xk,0 = xk and xk,l+1 = xk+1. From (3.2) and (3.4), we have

xk+1 − x∗ = W (α, σ)lk
(
xk − x∗

)
+

lk−1∑
j=0

W (α, σ)jV (α, σ) (αI −A)
(∣∣xk∣∣− |x∗|).(3.5)

Let αI +A = B(α, σ)− C(α, σ), where

B(α, σ) =
1

α+ 2σ
(αI + σI + C) (αI + σI + S) ,

C(α, σ) =
1

α+ 2σ
(σI − C) (σI − S) .

Then W (α, σ) = B(α, σ)−1C(α, σ) and V (α, σ) = B(α, σ)−1. Because

lk−1∑
j=0

W (α, σ)jV (α, σ) =
[
I −W (α, σ)lk

]
[I −W (α, σ)]

−1
V (α, σ)

=
[
I −W (α, σ)lk

] [
I −B(α, σ)

−1
C(α, σ)

]−1

B(α, σ)
−1

=
[
I −W (α, σ)lk

]
(αI +A)

−1
,

we can reformulate (3.5) as

xk+1 − x∗

= W (α, σ)lk
(
xk − x∗

)
+
[
I −W (α, σ)lk

]
(αI +A)

−1
(αI −A)

(∣∣xk∣∣− |x∗|)
= W (α, σ)lk

[(
xk − x∗

)
− (αI +A)

−1
(αI −A)

(∣∣xk∣∣− |x∗|)]
+ (αI +A)

−1
(αI −A)

(∣∣xk∣∣− |x∗|) .
Thus, ∥∥xk+1 − x∗

∥∥
2
≤
[∥∥W (α, σ)lk

∥∥
2

(1 + ζ) + ζ
] ∥∥xk − x∗∥∥

2

≤
[
‖W (α, σ)‖lk2 (1 + ζ) + ζ

] ∥∥xk − x∗∥∥
2
.

Because ζ =
∥∥∥(αI +A)

−1
(αI −A)

∥∥∥
2
< 1 and since for any s > N it holds that

‖W (α, σ)‖s2 <
1−ζ
1+ζ , we have

‖W (α, σ)‖lk2 (1 + ζ) + ζ < 1.

Thus, Method 1 is convergent.

4. Optimal parameters. We now consider the choice of the parameters α and σ in the it-
eration (3.1): One problem concerns the optimal parameter α∗ in min

∥∥(αI+A)−1(αI−A)
∥∥

2
and another one the optimal parameter σ∗ that minimize the spectral radius ρ(W (α, σ)) of the
modulus-based CSCS iteration method (MCSCS). Let γmin and γmax be the lower and the
upper bounds of the real parts of the eigenvalues of the positive definite matrix A. Then

ζ =
∥∥(αI +A)−1(αI −A)

∥∥
2

= max
γmin≤γj≤γmax

∣∣∣∣α− γjα+ γj

∣∣∣∣ .
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According to [17], we have that

α∗ = argminα

{
max

γj∈γ(A)

∣∣∣∣α− γjα+ γj

∣∣∣∣} =
√
γminγmax

and

ζ (α∗) =

√
γmax −

√
γmin√

γmax +
√
γmin

=

√
κ(A)− 1√
κ(A) + 1

,

where κ(A) is the spectral condition number of the matrix A.
For finding the optimal parameter σ∗ that minimize the spectral radius ρ(W (α, σ)), we

consider the following two cases.
• Case I: The matrix A is symmetric.
If A is symmetric, then according to (2.1) and (2.2), C and S are symmetric positive

definite. Since

ρ(W (α, σ)) = ρ
(
(σI − C)(αI + σI + C)−1(σI − S)(αI + σI + S)−1

)
≤
∥∥(σI − C)(αI + σI + C)−1(σI − S)(αI + σI + S)−1

∥∥
2

≤
∥∥(σI − C)(αI + σI + C)−1

∥∥
2

∥∥(σI − S)(αI + σI + S)−1
∥∥

2
,

it is easy to see that

(4.1) ρ(W (α, σ)) ≤ max
λj∈λ(C)

∣∣∣∣ σ − λj
α+ σ + λj

∣∣∣∣ max
µj∈µ(S)

∣∣∣∣ σ − µj
α+ σ + µj

∣∣∣∣ = σ(M(α, σ)) < 1.

Let ϕmin and ϕmax be the lower and the upper bounds of the real parts of the eigenvalues
of the matrices C or S. Then the optimal parameter σ∗ can be estimated by

max
ϕmin≤ϕ≤ϕmax

(
σ − ϕ

α+ σ + ϕ

)2

,

which is an upper bound for σ(M(α, σ)). By a simple computation, we have that

max
ϕmin≤ϕ≤ϕmax

(
σ − ϕ

α+ σ + ϕ

)2

=


(

σ−ϕmin

α+σ+ϕmin

)2

, σ ≥ ϕmax,(
σ−ϕmax

α+σ+ϕmax

)2

, σ ≤ ϕmin,

max{
∣∣∣ σ−ϕmin

α+σ+ϕmin

∣∣∣ , ∣∣∣ σ−ϕmax

α+σ+ϕmax

∣∣∣}, ϕmin ≤ σ ≤ ϕmax.

If σ∗ is optimal, then it must satisfy(
σ − ϕmin

α+ σ + ϕmin

)2

=

(
σ − ϕmax

α+ σ + ϕmax

)2

.

When ϕmin < σ < ϕmax, the function(
σ − ϕ

α+ σ + ϕ

)2

is monotone with respect to the variable σ. Therefore, we have

σ∗ =


ϕmax, σ ≥ ϕmax,

ϕmin, σ ≤ ϕmin,√
αϕmin+ϕmax

2 + ϕminϕmax + α2

4 −
α
2 , ϕmin ≤ σ ≤ ϕmax.
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From the above analysis, we know that the upper bound of the convergent factor of the
MCSCS iteration method is minimized when α = α∗ and σ = σ∗.
• Case II: The matrix A is nonsymmetric.
If the matrix A is nonsymmetric, then C and S need not be symmetric positive definite.

According to the definition of (4.1),

σ(W (α, σ)) = max
λj∈λ(C)

∣∣∣∣ σ − λj
α+ σ + λj

∣∣∣∣ max
µj∈µ(S)

∣∣∣∣ σ − µj
α+ σ + µj

∣∣∣∣
= max
λj=γj+iηj∈λ(C)

∣∣∣∣ σ − (γj + iηj)

α+ σ + γj + iηj

∣∣∣∣ max
µj=ζj+iξj∈µ(S)

∣∣∣∣ σ − (ζj + iξj)

α+ σ + ζj + iξj

∣∣∣∣
= max
λj=γj+iηj∈λ(C)

√
(σ − γj)2 + η2

j

(α+ σ + γj)2 + η2
j

max
µj=ζj+iξj∈µ(S)

√
(

(σ − ζj)2 + ξ2
j

(α+ σ + ζj)2 + ξ2
j

.

Because of γj > 0 and ζj > 0 and since α and σ are some positive constants, it is easy to
see that σ(M(α, σ)) < 1, and therefore ρ(M(α, σ)) < 1 .

If the eigenvalues of the matrices C and S are contained in the rectangle
Λ = [ϕmin, ϕmax]× i[ηmin, ηmax], then σ(M(α, σ)) can be estimated by

max
ϕ+iη∈Λ

(σ − ϕ)2 + η2

(α+ σ + ϕ)2 + η2
.

Similar to [17], we have the following theorem.
THEOREM 4.1. The optimal parameter σ∗ which minimizes σ(W (α, σ)) is given by

σ∗ =



√
αϕmin+ϕmax

2 + ϕminϕmax + α2

4 − η2
max − α

2 ,

if ηmax <
√
ϕminϕmax + α(ϕmin+ϕmax)

2 ,√
αϕmin + ϕ2

min + α2

4 + η2
max − α

2 ,

if ηmax ≥
√
ϕminϕmax + α(ϕmin+ϕmax)

2 .

5. Numerical results. In this section, we use an example to test the modulus-based
CSCS iteration method (denoted by ‘MCSCS’). In the tables we provide the iteration steps
(denoted by ‘iter’), the average iteration steps of (3.1) (denoted by ‘itav’), and the CPU time
(denoted by ‘time’). In addition, let RES

(
zk
)

be defined as

RES
(
zk
)

= min
(∣∣Azk + q

∣∣ , ∣∣zk∣∣) ,
where zk is the kth approximate solution of Method 1. We use n to denote the dimension of the
system matrix A and α, σ to denote positive parameters. In the tests, numerical comparisons
of the new method and the conjugate gradient method (denoted by ‘CG’) are presented.

EXAMPLE 5.1. Let the system matrix A of problem (2.3) be the positive definite Toeplitz
matrix where the diagonal elements aj are given as

aj = (1 + |j|)−p , j = 0,±1,±2, . . . ,

where p is a given positive constant and q = (1,−1, 1,−1, · · ·)T .
We solve the following system, which is equivalent to equation (3.1), by using a CG

method to compare with MCSCS :

(αI +A)xk+1 = bk.
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Here bk = (αI −A)
∣∣xk∣∣− q.

The solution process uses the FFT; see [10] for more details. The initial vector is chosen to
be x0 = (0, 0, · · · , 0)

T ∈ Rn, and the iteration error satisfies RES(zk) < 10−6. We terminate
when the inexact solution of (3.1) satisfies

(5.1)

∥∥bk − (αI +A)xk+1
∥∥

2

‖bk‖2
< 10−6 .

The numerical results are listed in Tables 5.1–5.2.

TABLE 5.1
Numerical results of Example 5.1 of CG with the stopping criterion (5.1).

n = 262144 n = 524288 n = 1048576
p α iter itav time iter itav time iter itav time

0.9 4.6 122 8 76.05 134 8 148.722 146 8 495.643
4.8 121 8 77.206 132 8 171.576 144 8 476.639
5.2 113 8 75.032 130 8 143.776 142 8 470.88
5.5 114 8 78.223 125 8 142.949 140 8 451.36

1.0 2.7 90 9 64.717 96 9 144.385 100 9 320.92
3.0 90 8 63.047 96 8 127.957 100 8 316.936
3.3 88 8 56.716 94 8 130.334 100 8 299.815
3.5 88 8 58.645 94 7 114.271 98 7 281.903
3.8 86 7 55.052 90 7 116.361 96 7 259.309

1.1 1.5 63 9 49.067 66 9 102.638 68 8 283.004
2.1 67 8 53.221 71 8 106.317 74 7 247.819
2.5 63 8 50.125 63 8 110.379 71 8 245.444
2.7 67 8 46.175 69 8 82.146 69 8 253.714
3.0 66 7 40.563 68 7 91.228 72 7 246.055

On the other hand, we can set a finite termination condition to get the inexact solution
of (3.1); the value of ζ and ρ (W (σ)) can be estimated in the low-dimensional systems. For
example, the value of the right-hand side of (3.3) is about 0.15 when p = 1.1, α = 2.8,
σ = 2.5, and the inexact solution can be obtained when N = 2. Therefore, the maximum
number of inner iteration steps can be set as 2 (i.e., lk = 2, k = 0, 1, 2, . . .). MCSCS with
finite termination conditions can reduce the unnecessary computation and accelerate the
convergence process. The numerical results are listed in Tables 5.3.

From Tables 5.1–5.2, we can find that, under the conditions (5.1), MCSCS requires less
computation time than the CG method. Specially, for example, when n = 1048576 and
p = 1.1, for the optimal parameters α∗ ≈ 2.7 and σ∗ ≈ 2.4, MCSCS shows its advantages.

From Table 5.3, it can be observed that MCSCS is superior to the CG method under the
finite termination conditions with respect to computation time or iteration steps.

6. Conclusions. By transforming LCPs to a class of AVEs, we constructed MCSCS
iteration methods to solve the LCP with a positive definite Toeplitz matrix and analyzed its
convergence. Both theoretical analysis and numerical experiments show the effectiveness of
the new method.
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TABLE 5.2
Numerical results of Example 5.1 of MCSCS with the stopping criterion (5.1).

n = 262144 n = 524288 n = 1048576
p α σ iter itav time iter itav time iter itav time

0.9 4.6 6.5 82 4 54.183 88 4 129.271 93 5 411.93
6.7 82 4 51.487 88 4 136.586 96 4 420.312
6.9 77 4 40.019 91 4 143.678 96 4 420.182
7.0 77 4 44.424 91 4 135.419 88 5 398.017
7.4 80 4 43.09 89 4 149.953 94 4 417.241

1.0 3.3 3.5 70 4 36.652 73 4 106.967 78 4 272.349
3.8 70 3 36.913 70 4 98.143 78 4 275.276
4.1 68 4 39.87 65 4 89.15 73 4 250.218
4.5 68 4 43.895 73 4 116.914 75 4 230.75
4.8 68 4 40.882 68 4 101.994 74 4 264.198

1.1 2.7 1.5 50 4 32.988 50 4 84.848 58 3 230.019
2.0 57 3 27.581 57 3 77.882 58 3 208.756
2.4 55 3 27.744 55 3 66.089 58 3 177.931
2.8 55 3 34.82 53 3 65.25 58 3 179.576
3.0 55 3 28.562 53 3 66.416 59 3 203.848

TABLE 5.3
Numerical results of Example 5.1 under finite step termination.

n = 262144 n = 524288 n = 1048576
p α σ iter itav time iter itav time iter itav time

0.9 4.6 6.7 109 3 35.241 119 3 93.666 127 3 298.612
7.0 105 3 34.429 115 3 114.7 123 3 284.635

1.0 3.3 4.1 70 2 19.893 81 2 55.963 81 2 133.13
4.5 76 2 18.876 81 2 47.253 79 2 145.22

1.1 2.7 2.0 60 2 18.449 58 2 47.053 67 2 126.98
2.4 62 2 21.734 60 2 55.075 68 2 122.105

Guangxi Natural Science Foundation (2020GXNSFAA159143), and Guangxi Science and
Technology Base and Talent Project (Grant number [2021AC06001]).
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