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A PROBABILISTIC ORACLE INEQUALITY AND QUANTIFICATION OF
UNCERTAINTY OF A MODIFIED DISCREPANCY PRINCIPLE FOR

STATISTICAL INVERSE PROBLEMS∗
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Abstract. In this note we consider spectral cut-off estimators to solve a statistical linear inverse problem under
arbitrary white noise. The truncation level is determined with a recently introduced adaptive method based on the
classical discrepancy principle. We provide probabilistic oracle inequalities together with quantification of uncertainty
for general linear problems. Moreover, we compare the new method to existing ones, namely the early stopping
sequential discrepancy principle and the balancing principle, both theoretically and numerically.
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1. Introduction. In this note we take a closer look at a recently introduced modified
discrepancy principle for solving an inverse problem by means of spectral cut-off. The problem
of interest reads

(1.1) Kx = y,

where K : X → Y is a compact injective operator with dense range between infinite-
dimensional Hilbert spaces. The problem (1.1) is known to be ill-posed in the sense that K is
not continuously invertible on the whole space. This causes problems, since the exact right-
hand side y† ∈ R(K) ⊂ Y is unknown and we just have access to component measurements
corrupted by noise. For the abstract corrupted data, we write

yδ = y† + δZ,

where δ > 0 is the noise level and Z is centred white noise with finite second moments, i.e., it
holds that

(i) E[(Z, y)] = 0,
(ii) E[(Z, y)(Z, y′)] = (y, y′),

(iii) (Z, y)
d
=
‖y‖
‖y′‖

(Z, y′),

for all y, y′ ∈ Y .
We have to give an approximation to the true solution x† based on component measure-

ments (yδ, y1), (yδ, y2), . . . with y1, y2, . . . ∈ Y . Under the above assumptions the forward
operatorK can be fully described by its singular value decomposition. There exist orthonormal
bases (vj)j∈N ⊂ X and (uj)j∈N ⊂ Y as well as a sequence σ1 ≥ σ2 ≥ · · · > 0 converging to
zero such that Kvj = σjuj and K∗uj = σjvj for all j ∈ N. We define the spectral cut-off
estimator of x† via

xδk :=

k∑
j=1

(yδ, uj)

σj
vj ,
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with the truncation level k to be determined from the data yδ and the noise level δ. Note that
here we assume the noise level δ to be known in advance; see [14, 15, 30] on how to estimate
it in a general setting by a generic method. It is well known that spectral cut-off estimators
have excellent theoretical properties, but may be infeasible for general problems in very high
dimension due to the fact that the singular value decomposition is unknown in practice and has
to be calculated with enormous costs. However, recently, computationally efficient methods
like the randomised singular value decomposition [16] have been analysed in the context of
regularisation theory and show the potential to allow the use of spectral cut-off estimators in
practically relevant settings.

Choosing a suitable truncation level k is one of the main issues in regularisation theory,
and plenty of different techniques have been analysed in the past. For general a priori error
bounds depending on unknown properties of the exact solution x†, we refer to [4]. Of special
interest are adaptive (see [10, 34]) a posteriori methods, which are strategies to choose k
dependent on only the noisy measurement yδ and the noise level δ. Many of the parameter
choice rules in statistical inverse problems are adapted from classical statistical methods used
for direct regression problems, i.e., problems where K is the identity in (1.1). We name
here empirical risk minimisation [21], the balancing principle [29] and generalised cross-
validation [24], which are based on Stein’s unbiased risk estimation [32], Lepski’s method [20]
and cross-validation [36], respectively. Others have their roots in the classical deterministic
regularisation theory, e.g., the famous discrepancy principle [31] or heuristic methods like the
quasi-optimality criterion [18, 33] or the L-curve method [12].

In [17] we proposed a modification of the discrepancy principle for a data-driven choice
of k. Originally, the discrepancy principle had its root in the classical deterministic theory,
where one assumes that one has an absolute upper bound on the norm of noise ‖yδ − y†‖. It
then follows the paradigm that the data yδ should only be approximated up to the amount of
noise, i.e., k should be determined such that ‖Kxδk − yδ‖ ≈ ‖yδ − y†‖. In the white noise
setting, however, it holds that E‖yδ − y†‖2 =

∑∞
j=1 δ

2E(Z, uj)
2 = ∞, and therefore the

classical discrepancy principle is not applicable. Consequently the discrepancy principle has
to be adapted adequately to the white noise case. This has been done in the past by either
pre-smoothing the problem (1.1) (see [7, 22]) or by working directly on a finite-dimensional
discrete problem [5, 35]. In the recent work [17], we proposed a modified discrepancy principle
using discretisation.

However, different from the above-mentioned works, here the discretisation dimension is
treated as an additional regularisation parameter. Precisely, we discretise (1.1) and consider
only the first m components (yδ, u1), . . . , (yδ, um). Then the data error fulfills

E
[∥∥∥∥ m∑

j=1

(yδ − y†, uj)uj
∥∥∥∥2]

= mδ2,

and the classical implementation of the discrepancy principle yields

(1.2) kδdp(m) :=

{
k ≥ 0 :

√∑m

j=k+1
(yδ, uj)2 ≤ τ

√
mδ

}
,

where τ > 1 is a fudge parameter. It remains to determine the discretisation level m. In [17] it
was shown that the ultimate choice

(1.3) kδdp = max
m∈N

kδdp(m)

yields a convergent regularisation method, as the noise level δ tends to zero.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

A PROBABILISTIC ORACLE INEQUALITY FOR A MODIFIED DISCREPANCY PRINCIPLE 37

In this article we give a more complete picture and generalise the main result from [17]
to arbitrary K and prove an oracle-type inequality [9] with a controlled probability, instead
of asymptotic convergence rates under source conditions [19, 26]. Oracle inequalities have
become popular in statistics and guarantee that, after fixing a family of estimators (in our case
spectral cut-off estimators, where the estimators are indexed by the truncation level k), one
obtains, up to a constant, the optimal error for a given exact solution x†. They depend strongly
on the fact that, under white noise, one has sharp estimates for the data propagation error
(variance). Minimax convergence rates over source sets, on the other hand, are classic in the
deterministic theory, where one only knows an upper bound of the norm of the error, without
any structural information. They guarantee optimal convergence in a worst-case fashion where
the true solution is an element of an unknown source set. See the survey article [8] for more
details. We state here a special case of the general main result presented in the following
Section 2.

COROLLARY 1.1. Assume that there exist q, cq, Cq > 0 such that Cqj−q ≥ σ2
j ≥ cqj−q

for all j ∈ N and assume that the white noise Z has finite fourth moment E(Z, y)4 ≤
‖y‖4γ4 <∞. Then, for all κ ≥ 3, the following holds:

sup
x†∈X

k̄δpr(x
†)≥κ

P
(
‖xδkδdp

− x†‖ ≤ Cτ min
k∈N
‖xδk − x†‖

)

≥ 1−max

(
12

τ2 + 2τ − 3
, 9

)√
2(1 + γ4)

κ
− 2(γ4 + 1)C̄q

κ
,

with

Cτ := max

(
√

2

(
τ + 1

τ − 1
+ 1

)
,
√

2 + (2τ + 1)

√
91+q(1 + q)Cq

cq
4

)
and C̄q as given in Section 4.

The quantity k̄δpr(x
†) will be defined in the next section and ensures that x† can be

distinguished sufficiently from the zero signal, relative to the noise level δ. In particular, it
holds that k̄δpr(x

†) → ∞ as δ → 0 for all non-degenerate x† (for which arbitrarily large
j ∈ N exist with (x†, uj) 6= 0). To understand this condition better, consider the extreme
case x† = 0. Here the minimal error could only be obtained for kδdp = 0, which obviously
cannot occur with probability tending to 1 (as, e.g., δ → 0), since a finite fixed number of
(random) measurements cannot be controlled with probability tending to 1. Thus the corollary
states that, for mildly ill-posed problems, we obtain, up to a constant, the best possible error
for spectral cut-off regularisation, uniformly over all signals with sufficiently many relevant
components.

In Section 3 we comment on points that were left open in [17], e.g., on how to perform
the maximisation over the infinite set N practically. We end this introduction by stressing that
the main difference of the proposed modified discrepancy principle from existing methods is
the minimality of the assumptions. In Theorems 2.2 and 2.4 the white noise is only assumed
to have a finite second moment and also the singular values of K are arbitrary. Numerical
and theoretical comparisons between different regularisation methods for statistical inverse
problems can be found in, e.g., [2, 23, 37]. In Sections 3 and 5 we compare our new method to
the parameter choice strategies to which it is most closely related, namely, the early stopping
discrepancy principle [5, 6] and the balancing principle [1, 25, 27]. In particular, we show
that, similar to the balancing principle, the modified discrepancy principle also coincides with
Lepski’s method in the direct case K = Id and discuss how the different viewpoint yields an
early-stopping-type implementation.
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2. Main results. For a truncation level k, we decompose the error into two parts, a data
propagation error (variance) and an approximation error (bias):

‖xδk − x†‖2 =

k∑
j=1

(
(yδ, uj)

σj
− (x†, vj)

)2

+

∞∑
j=k+1

(x†, vj)
2

=

k∑
j=1

(yδ − y†, uj)2

σ2
j

+

∞∑
j=k+1

(x†, vj)
2

= ‖xδk − E[xδk]‖2 + ‖E[xδk]− x†‖2.

For the analysis, it will be convenient to consider not only the strong error ‖xδk − x†‖, but also
the predictive (or weak) error ‖K(xδk − x†)‖, for which we obtain

‖K(xδk − x†)‖2 =

k∑
j=1

(yδ − y†, uj)2 +

∞∑
j=k+1

(y†, uj)
2;

note that (y†, uj) = σj(x
†, vj). Thus we can split the error into two parts, one part that

increases monotonically with k and another that decreases monotonically with k.

Now note that minimising such a sum of a monotonically increasing and a monotonically
decreasing term is in essence equivalent to balancing the two terms. We thus define the
following two truncation levels:

kδpr(x
†) := min

{
k ∈ N0 :

k∑
j=1

(yδ − y†, uj)2 ≥
∞∑

j=k+1

(y†, uj)
2

}
,

kδst(x
†) := min

{
k ∈ N0 :

k∑
j=1

(yδ − y†, uj)2

σ2
j

≥
∞∑

j=k+1

(x†, vj)
2

}
.

They balance the competing error terms in strong and predictive norm, respectively. For the
sake of self-containedness, we formulate the aforementioned well-known result (see, e.g.,
Lemma 3.2 in [3]), which states that kδpr or kδpr − 1 and kδst or kδst − 1 (up to a constant factor)
minimise the corresponding error norms.

PROPOSITION 2.1. For all x† ∈ X with kδpr(x
†) ≥ 1, the following hold:

min
k∈N0

‖K(xδk − x†)‖ ≥
1√
2

min
(
‖K(xδkδpr

− x†)‖, ‖K(xδkδpr−1 − x
†)‖
)
,

min
k∈N0

[‖xδk − x†‖] ≥
1√
2

min
(
‖xδkδst − x

†‖, ‖xδkδst−1 − x
†‖
)
.

Proof. We use the convention
∑0
j=1 = 0. By monotonicity and the definition of kδpr, the
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following hold for k ≥ kδpr,

‖K(xδk − x†)‖2 =

k∑
j=1

(yδ − y†, uj)2 +

∞∑
j=k+1

(y†, uj)
2 ≥

k∑
j=1

(yδ − y†, uj)2

≥ 1

2

( kδpr∑
j=1

(yδ − y†, uj)2 +

kδpr∑
j=1

(yδ − y†, uj)2

)

≥ 1

2

( kδpr∑
j=1

(yδ − y†, uj)2 +

∞∑
j=kδpr+1

(y†, uj)
2

)
=

1

2
‖K(xδkδpr

− x†)‖2,

and for k ≤ kδpr − 1,

‖K(xδk − x†)‖2 =
k∑
j=1

(yδ − y†, uj)2 +
∑
j=k+1

(y†, uj)
2 ≥

∞∑
j=k+1

(y†, uj)
2

≥ 1

2

( ∞∑
j=kδpr

(y†, uj)
2 +

∞∑
j=kδpr

(y†, uj)
2

)

≥ 1

2

(kδpr−1∑
j=1

(yδ − y†, uj)2 +

∞∑
j=kδpr

(y†, uj)
2

)
=

1

2
‖K(xδkδpr−1 − x

†)‖2,

which proves the assertion for kδpr. The argumentation for the second assertion is analogous.

Note that yδ and hence also kδpr and kδst are random quantities. In order to formulate our
main results, it is handy to have a deterministic quantity. We thus define

k̄δpr(x
†) := min

{
k ∈ N0 : δ2k ≥

∞∑
j=k+1

(y†, uj)
2

}
.

Obviously k̄δpr is closely related to kδpr, since kδ2 = E
[∑k

j=1(yδ − y†, uj)2
]

and thus k̄δpr

balances the expected squared prediction error norm E‖K(xδk − x†)‖2. We come to the first
main result, a full oracle inequality for the prediction error.

THEOREM 2.2. For all κ ≥ 3, it holds that

sup
x†∈X

k̄δpr(x
†)≥κ

P
(
‖K(xδkδdp

− x†)‖ ≤ Cτ min
k∈N0

‖K(xδk − x†)‖
)

≥ 1−max

(
12

τ2 + 2τ − 3
, 9

)
E
[∣∣∣∣ 1κ

dκ/3e∑
j=1

((Z, uj)
2 − 1)

∣∣∣∣]→ 1,

as κ → ∞, with Cτ :=
√

6
√

3
2 (Aτ + 1) +Bτ , and with Aτ and Bτ as given below in

Section 4.
We want to point out the generality of the above result, which perfectly reflects the

paradigm that the discrepancy principle balances approximation and data propagation error in
the image space, in that it results, up to a constant, in the error of the weak balanced oracle.
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However, usually one is interested in the error in the strong norm. The result we obtain here
will depend on the difference between the weak balanced oracle kδpr and the strong balanced
oracle kδst. We give an important relation between the two oracles in the next proposition.

PROPOSITION 2.3. It holds that kδpr ≤ kδst.
Proof. We have

kδpr−1∑
j=1

(yδ − y†, uj)2

σ2
j

≤
∑kδpr−1

j=1 (yδ − y†, uj)2

σ2
kδpr−1

<
1

σ2
kδpr−1

∞∑
j=kδpr

(y†, uj)
2

=
1

σ2
kδpr−1

∞∑
j=kδpr

σ2
j (x†, vj)

2 ≤
∞∑

j=kδpr

(x†, vj)
2,

where we used the definition of kδpr in the second step. By the definition of kδst, it follows that
kδst > kδpr − 1, hence kδst ≥ kδpr.

Proposition 2.3 already indicates that the strong error of the discrepancy principle might
be suboptimal in the case that kδpr is substantially smaller than kδst. This is indeed the case.
The next theorem shows that the error in the strong norm depends on the difference between
kδpr and kδst.

THEOREM 2.4. For κ ≥ 3 it holds that

sup
x†∈X

k̄δpr(x
†)≥κ

P

(
‖xδkδdp

− x†‖ ≤ Cτ

(
min
k∈N
‖xδk − x†‖+

√∑kδst

j=kδpr

(x†, vj)2

))

≥ 1−max

(
12

τ2 + 2τ − 3
, 9

)
E
[∣∣∣∣ 1κ

dκ/3e∑
j=1

((Z, uj)
2 − 1)

∣∣∣∣]→ 1

as κ→∞, with

Cτ :=
√

2 max

(
τ + 1

τ − 1
+ 1, 1 +

√
3

8
(3τ + 1)

)
.

Under additional assumptions, we can bound the probability in Theorems 2.2 and 2.4
explicitly.

PROPOSITION 2.5. Assume that, for some 2 < p ≤ 4, the white noise has finite pth
moment, i.e., E|(Z, y)|p = γp‖y‖ <∞. Then

E
[∣∣∣∣ 1κ

κ∑
j=1

((Z, uj)
2 − 1)

∣∣∣∣] ≤ 21−2/p(γp + 1)2/pκ2/p−1.

Proof. By convexity and the Marcinkiewicz–Zygmund inequality (Corollary 8.2 in [11]),
it holds that

E
[∣∣∣∣ 1κ

κ∑
j=1

((Z, uj)
2 − 1)

∣∣∣∣] ≤ (E[∣∣∣∣ 1κ
κ∑
j=1

((Z, uj)
2 − 1)

∣∣∣∣p/2])2/p

≤ (κ1−p/2E|(Z, u1)2 − 1|p/2)2/p

≤ (2p/2−1(γp + 1)1)2/pκ2/p−1

≤ 21−2/p(γp + 1)2/pκ2/p−1.
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Unlike Theorem 2.2, Theorem 2.4 above is not a proper oracle inequality, since the
additional term is likely to dominate. In fact, this perfectly illustrates in full generality
one well-known drawback of the discrepancy principle, namely that it saturates. Note that
this saturation is hidden when one considers convergence rates over source conditions for
the discrepancy principle with spectral cut-off. For some operators we can show that the
additional term will not dominate the total error (see, e.g., Corollary 1.1), and we obtain a full
oracle inequality for the strong error norm. The proofs of Theorem 2.2, Theorem 2.4, and
Corollary 1.1 are deferred to Section 4.

3. Comparison to other parameter choice strategies. In this section we will compare
our rule to two other parameter choice strategies, namely the balancing principle and the
early-stopping discrepancy principle. We start with the balancing principle. This principle
is based on ideas introduced by Lepski [20]. Lepski’s method is originally formulated in a
regression setting. A signal corrupted by white noise has to be recovered. This corresponds
to our problem (1.1) with K = Id. We state the problem explicitly. Given noisy component
measurements

(yδ, uj) = (y†, uj) + δ(Z, uj), j ∈ N,

and the spectral cut-off estimators

yδk :=

k∑
j=1

(yδ, uj)uj ,

find the truncation level k ∈ N such that the error ‖yδk − y†‖ is optimal in some sense. Lepski
proposed the following rule:

kδLep := min{k ∈ N : ‖yδm − yδk‖ ≤ κ
√
mδ, ∀m > k},

with a fudge parameter κ > 1. The idea was that k should be large enough such that the
differences would be dominated by the variance; note that

E‖yδm − E[yδm]‖2 = E
[ m∑
j=1

(yδ − y†, uj)2

]
= mδ2.

In the above direct setting, our approach (1.3) and (1.2) would yield

kδdp := max
m∈N

kδdp(m) = max
m∈N

min

{
0 ≤ k ≤ m :

√∑m

j=k+1
(yδ, uj)2 ≤ τ

√
mδ

}
.

It is not hard to show that the two parameter choices actually coincide in this setting.
THEOREM 3.1. Let κ = τ . Then kδLep = kδdp pointwise.
Proof. We observe that

m∑
j=k+1

(yδ, uj)
2 = ‖yδm − yδk‖2

and hence

kδdp = max
m∈N
{0 ≤ k ≤ m : ‖yδm − yδk‖ ≤ τ

√
mδ}.
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Now let k = kδLep. By definition, for all m > k it holds that ‖yδm− yδk‖ ≤ τ
√
mδ. We deduce

kδdp(m) ≤ k for all m ∈ N and thus kδdp ≤ kδLep. Now let k = kδLep − 1. By definition, there
existsm > k with ‖yδm−yδk‖ > τ

√
mδ. Thus kδdp(m) > k and therefore kδdp ≥ k+1 = kδLep.

The proof is finished.
So we see that the two methods coincide for direct regression problems, i.e., whenK = Id.

When a forward operator K is involved, the balancing principle for inverse problems deduced
from Lepski’s method, however, follows a different approach. There, the estimators are
compared, not in the weak norm, but in the strong norm. The variance of the spectral cut-off
estimator in the strong norm is

E‖xδm − E[xδm]‖2 =

m∑
j=1

E(yδ − y†, uj)2

σ2
j

= δ2
m∑
j=1

1

σ2
j

,

i.e., we have

(3.1) kδbal := min

{
k ≥ 0 : ‖xδm − xδk‖ ≤ κδ

√∑m

j=1

1

σ2
j

, ∀m > k

}
.

Here the choice of κ is delicate. The reason for this is the following. In the direct setting
we have

‖yδm − E[yδm]‖2 − E‖yδ − E[yδm]‖2 =

m∑
j=1

((yδ − y†, uj)2 − 1) = δ2
m∑
j=1

((Z, uj)
2 − 1),

which is an i.i.d. sum of unbiased random variables and hence a reverse martingale;
see the proof of Proposition 4.1 in Section 4 below. Therefore, its whole trajectory, i.e.,
(‖yδm−E[yδm]‖2−E‖yδ−E[yδm]‖2)m∈N, can be controlled. Unlike this, in the case of inverse
regression, we have

‖xδm − E[xδm]‖2 − E‖xδm − E[xδm]‖2 = δ2
m∑
j=1

(Z, uj)
2 − 1

σ2
j

,

which is just a sum with independent summands of increasing variance. In particular, depend-
ing on the behaviour of the singular values σj , the single last summand may give a significant
contribution to the whole sum or even dominate the whole sum. Consequently, one considers
only finitely many estimators in (3.1), i.e., m ≤ D, where D depends on the noise level δ
and the spectrum of K, and κ will also depend on D and therefore on δ. Typically one sets
κ ∼ log(δ)−1 and then obtains optimal convergence in L2 up to a logarithmic correction for
polynomially and exponentially ill-posed problems under Gaussian noise. While the concrete
dependence of κ on δ is usually tailored to obtain optimal convergence in L2 for Gaussian
noise, it is not directly clear whether a constant κ could yield convergence in probability; cf.
Theorems 2.2 and 2.4. The following counter-example shows that, at least for exponentially
ill-posed problems, κ has to depend on δ.

EXAMPLE 3.2. Let σ2
j = e−j and x† = 0 and let Z be Gaussian white noise. Assume

that some κ > 1 is fixed and set mδ = dlog(δ−2)e. Let kδbal be determined by the balancing
principle (3.1). Then there exists pκ > 0 such that

(3.2) P(‖xδkδbal
− x†‖ ≥ 1) ≥ pκ

for all 0 < δ ≤ e−1. We show that (3.2) is fulfilled with

pκ := P(|X| > eκ),
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where X is a standard Gaussian. Indeed, we set

Ωκ := {|(Z, umδ)| > eκ}.

By definition of pκ, it holds that P(χΩκ) = pκ. It also holds that

‖xδmδ − x
δ
mδ−1‖χΩκ = δ|(Z, umδ)|emδ/2χΩκ > eκδemδ/2

≥ κδ
√
emδ+1 − 1

e− 1
> κδ

√∑mδ

j=1
ej

since (em+1 − 1)/(e− 1) ≤ eem. Consequently we have

kδbalχΩκ ≥ mδχΩκ .

Ultimately, we find

‖xδkδbal
− x†‖χΩκ ≥

|(yδ, umδ)|
σmδ

χΩκ = δemδ/2|(Z, umδ)|χΩκ > eκχΩκ ≥ 1χΩκ

by definition of mδ , which finishes the proof of the assertion (3.2).
To put it in a nutshell, we saw that both methods are closely related to Lepski’s method.

The balancing principle has the advantage that the estimators are compared in the same norm
in which one wants to have convergence, i.e., the strong norm. In the case of the modified
discrepancy principle, the estimators are compared in the weak norm. However, we have much
worse control of the variance in the strong norm than in the weak norm, which makes the
choice of the fudge parameter more delicate for the balancing principle and slightly deteriorates
the rate. Finally, at the end of this section we discuss that the different viewpoint on Lepski’s
method provided by the modified discrepancy principle allows for another potential benefit
related to early stopping.

Note that a drawback of both methods is their high computational costs. A whole series of
estimators need to be computed and then compared to each other, before the final choice can
be made. A computational very attractive and still convergent method is the early stopping or
sequential discrepancy principle [5], which makes use of the computational simplicity of the
plain discrepancy principle [28]. Here, a maximal dimension D is chosen first, respectively
given by the measurement process. Then the classical discrepancy principle is applied, but
with the parameter τ set to one:

(3.3) kδes := min

{
0 ≤ k ≤ D :

√∑D

j=k+1
(yδ, uj)2 ≤

√
Dδ

}
.

The name “sequential” or “early stopping” refers to the fact that it takes the estimator that
was computed last. Note that usually the singular value decomposition is unknown and has
to be approximated numerically. In particular, calculations of later singular vectors are more
costly and less accurate than calculations of the first ones. Thus a big advantage is due to the
fact that, in order to compute kδes, one just needs the first kδes singular vectors and values. This
can be seen as follows.

In an application we usually have a discretised K ∈ RD×D′ with D and D′ large, and
right-hand side yδD ∈ RD. Expressing yδD in the singular basis of K then gives yδD =∑D
j=1(yδ, uj)uj and thus

∑D
j=k+1(yδ, uj)

2 = ‖yδD‖2 −
∑k
j=1(yδ, uj)

2. Note hereby that
the total norm ‖yδD‖2 can be computed without knowledge of singular vectors. Similar to
kδdp, also kδes mimics the predictive oracle kδpr. In [5] oracle inequalities for kδes are proven.
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Owing to the large variance in the residuals, they do not hold for very smooth solutions. Also
higher orders of the error distribution are needed; see, e.g., Theorem 4.2 in [15]. We will see
in Section 5 that kδes tends to be numerically less stable than the other two methods.

Finally, there is an obvious way to combine the early stopping discrepancy principle
with the modified discrepancy principle in that one can use the early discrepancy principle to
determine a maximum m over which we maximise in (1.2). That is, one could consider

kδcom := max
m≤kδes

kδdp(m)

or, more generally, and to avoid the instabilities of kδes, one could set, for τ > τmin ≥ 1,

kδcom := max
m≤mmax

min

{
0 ≤ k ≤ m :

√∑m

j=k+1
(yδ, uj)2 ≤ τ

√
mδ

}
,

with

mmax = min

{
0 ≤ k ≤ D :

√∑D

j=k+1
(yδ, uj)2 ≤ τmin

√
Dδ

}
.

4. Proofs. A central tool for the proofs will be the following proposition already used
in [17], which allows one to control the measurement error.

PROPOSITION 4.1. For any ε > 0 and κ ∈ N, the following holds:

P
(∣∣∣∣ m∑

j=1

(yδ − y†, uj)2 −mδ2

∣∣∣∣ ≥ εmδ2, ∀m ≥ κ
)

≤ 1

ε
E
[∣∣∣∣ 1κ

κ∑
j=1

((Z, uj)
2 − 1)

∣∣∣∣]→ 0

as κ→∞.
Proof. We give a short proof in order to keep the paper self-contained; see Proposition 3.1

in [17] for more details. It holds that

P
(∣∣∣∣ m∑

j=1

(yδ − y†, uj)2 −mδ2

∣∣∣∣ ≤ εmδ2, ∀m ≥ κ
)

= P
(

sup
m≥κ

∣∣∣∣ 1

m

m∑
j=1

Xj

∣∣∣∣ ≤ ε),
where

Xj :=
(yδ − y†, uj)2

δ2
− 1 = (Z, uj)

2 − 1.

Note that the right-hand side of the above equation is independent of the noise level δ. Since
(Xj)j∈N is i.i.d. with E[X1] = 0 and E|X1| ≤ 2, the sample mean

(
(1/m)

∑m
j=1Xj

)
m∈N is

a reverse martingale. Thus the Kolmogorov–Doob inequality (Theorem 16.2 in [11]) yields

P
(

sup
m≥κ

∣∣∣∣ 1

m

m∑
j=1

Xj

∣∣∣∣ > ε

)
≤ 1

ε
E
[∣∣∣∣ 1κ

κ∑
j=1

Xj

∣∣∣∣]→ 0

as κ→∞, by the law of large numbers and the fact that reverse martingales are uniformly
integrable.

Now we can prove the main results. So let x† be given with k̄δpr(x
†) ≥ κ. We suppress the

dependence on x† of the balancing index k̄δpr(x
†) in the following. We carry out the analysis
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on the following sequence of events on which we have perfect control of the measurement
error:

(4.1) Ωκ :=

{∣∣∣∣ m∑
j=1

(yδ − y†, uj)2 −mδ2

∣∣∣∣ ≤ min

(
(τ + 1)2

4
− 1,

1

3

)
mδ2, ∀m ≥ κ

3

}
.

By Proposition 4.1 it holds that

(4.2) P(Ωκ) ≥ 1−max

(
12

τ2 + 2τ − 3
, 9

)
E
[∣∣∣∣ 1κ

dκ/3e∑
j=1

((Z, uj)
2 − 1)

∣∣∣∣].
Obviously on Ωκ we have

2

3
mδ2χΩκ ≤

m∑
j=1

(yδ − y†, uj)2χΩκ ≤
4

3
mδ2χΩκ ,√∑m

j=1
(yδ − y†, uj)2 χΩκ ≤

τ + 1

2

√
mδχΩκ .

We first show that

(4.3) (kδpr − 1)χΩκ ≥
κ

3
χΩκ

for all κ ≥ 3. Indeed, since dk̄δpr/3e ≥ κ/3 by definition of Ωκ, we have that

dk̄δpr/3e∑
j=1

(yδ − y†, uj)2χΩκ ≤
4

3

⌈
k̄δpr

3

⌉
δ2 ≤ (k̄δpr − 1)δ2 <

∞∑
j=k̄δpr

(y†, uj)
2

<

∞∑
j=dk̄δpr/3e+1

(y†, uj)
2,

and thus kδprχΩκ > dk̄δpr/3eχΩκ by definition, which proves the claim (4.3).
Proof of Theorem 2.2. We begin with an upper bound for kδdp. ForAτ = ((τ+1)/(τ−1))2

one has

(4.4) kδdpχΩκ ≤ Aτkδpr.

To prove (4.4) we have to show that kδdp(m) ≤ Aτkδpr for all m ∈ N. This is clearly true for
all m ∈ N with kδdp(m) ≤ kδpr. Now consider m ∈ N with kδdp(m) > kδpr. By the defining
relation of the discrepancy principle and the definition of kδpr and χΩ̃

k̄δst

it holds that

τ
√
mδχΩκ ≤

√∑m

j=kδdp(m)
(yδ, uj)2 χΩκ

≤
√∑m

j=kδdp(m)
(yδ − y†, uj)2 χΩκ +

√∑m

j=kδdp(m)
(y†, uj)2 χΩκ

≤ τ + 1

2

√
mδ +

√∑m

j=kδpr+1
(y†, uj)2
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≤ τ + 1

2

√
mδ +

√∑kδpr

j=1
(yδ − y†, uj)2 χΩκ

≤ τ + 1

2

√
mδ +

τ + 1

2

√
kδprδ.

We obtain
√
mδχΩκ ≤

τ + 1

τ − 1

√
kδprδ =

√
Aτkδprδ.

This together with the obvious inequality kδdp(m) ≤ m finishes the proof of the claim (4.4).
This shows the stability of the method in the sense that we do not stop too late. To finish

the proof, we have to show that we do not stop too early. We claim that

(4.5)
kδpr∑

j=kδdp+1

(y†, uj)
2χΩκ ≤ Bτkδprδ

2

with Bτ = (3τ + 1)2/4. To prove (4.5) let us consider m = kδpr. Then, by definition of the
discrepancy principle,

τ
√
kδprδχΩκ ≥

√∑kδpr

j=kδdp(kδpr)+1
(yδ, uj)2 χΩκ

≥

√∑kδpr

j=kδdp(kδpr)+1
(y†, uj)2 χΩκ −

√∑kδpr

j=kδdp(kδpr)+1
(yδ − y†, uj)2 χΩκ

≥

√∑kδpr

j=kδdp(kδpr)+1
(y†, uj)2 χΩκ −

τ + 1

2

√
kδprδ.

By monotonicity and with the convention
∑n
j=m = 0 for m > n, we obtain

kδpr∑
j=kδdp+1

(y†, uj)
2χΩκ ≤

kδpr∑
j=kδdp(kδpr)+1

(y†, uj)χΩκ ≤
(3τ + 1)2

4
kδprδ

2 = Bτk
δ
prδ

2

and (4.5) is proven. We combine the two estimates (4.4) and (4.5) to give

‖K(xδkδdp
− x†)‖2χΩκ

=

kδdp∑
j=1

(yδ − y†, uj)2χΩκ +

∞∑
j=kδdp+1

(y†, uj)
2χΩκ

=

kδdp∑
j=1

(yδ − y†, uj)2χΩκ +

kδpr∑
j=kδdp+1

(y†, uj)
2χΩκ +

∞∑
j=kδpr+1

(y†, uj)
2χΩκ

≤
Aτk

δ
pr∑

j=1

(yδ − y†, uj)2χΩκ +Bτk
δ
prδ

2χΩκ +

kδpr∑
j=1

(yδ − y†, uj)2χΩκ

≤
(

3

2
(Aτ + 1) +Bτ

)
kδprδ

2χΩκ .(4.6)
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On the other hand we have

‖K(xδkδpr−1 − x
†)‖2χΩκ =

kδpr−1∑
j=1

(yδ − y†, uj)2χΩκ +

∞∑
j=kδpr

(y†, uj)
2χΩκ

≥ 2

3
(kδpr − 1)δ2χΩκ ≥

1

3
kδprχΩκ ,

and also

‖K(xδkδpr
− x†)‖2 =

kδpr∑
j=1

(yδ − y†, uj)2χΩκ +

∞∑
j=kδpr+1

(y†, uj)
2χΩκ

≥ 2

3
kδprδ

2χΩκ .

Therefore Proposition 2.1 gives

min
k∈N
‖K(xδk − x†)‖χΩκ ≥

1√
2

min
(
‖K(xδkδpr

− x†)‖, ‖K(xδkδpr−1 − x
†)‖
)
χΩκ

≥ 1√
6

√
kδprδχΩκ .

Together with (4.6) we obtain

‖K(xδkδdp
− x†)‖χΩκ ≤

√
3
2 (Aτ + 1) +Bτ

√
kδprδχΩκ ≤ Cτ min

k≥N0

‖K(xδk − x†)‖,

where

Cτ :=
√

6
√

3
2 (Aτ + 1) +Bτ .

Theorem 2.2 then follows with (4.2).
Proof of Theorem 2.4. We again resort to the event Ωκ from (4.1). Note that kδstχΩκ ≥

kδprχΩκ ≥ 3κ by Proposition 2.3. We start by showing the stability of the approach. We claim
that

(4.7)

√∑kδdp

j=1

(yδ − y†, uj)2

σ2
j

χΩκχ{kδdp≥k
δ
st} ≤

τ + 1

τ − 1

∞∑
j=kδdp

(x†, vj)
2χΩκχ{kδdp≥k

δ
st}.

So assume that m ≥ kδst with kδdp(m) ≥ kδst. Then we have

τ
√
mδχΩκ <

√∑m

j=kδdp(m)
(yδ, uj)2

≤
√∑m

j=kδdp(m)
(yδ − y†, uj)2χΩκ +

√∑m

j=kδdp(m)
(y†, uj)2

≤ τ + 1

2

√
mδ + σkδdp(m)

√∑∞

j=kδdp(m)
(x†, vj)2

=⇒
√
m

σkδdp(m)

χΩκ ≤
2

τ − 1

√∑∞

j=kδdp(m)
(x†, vj)2.
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Since obviously kδdp(m) ≤ m, we conclude that

(4.8)

√
kδdp

σkδdp

χΩκ ≤
2

τ − 1

√∑∞

j=kδdp

(x†, vj)2,

whenever kδdp ≥ kδst. Then we have kδdpχΩκ ≥ κχΩκ >
1
3κχΩκ and by (4.8) it follows that

√∑kδdp

j=1

(yδ − y†, uj)2

σ2
j

χΩκ ≤
1

σkδdp

√∑kδdp

j=1
(yδ − y†, uj)2 χΩκ ≤

τ + 1

2

δ
√
kδdp

σkδdp

χΩκ

≤ τ + 1

τ − 1

√∑∞

j=kδdp

(x†, vj)2.

This proves the assertion (4.7). We come to the approximation error. It holds that√∑kδpr−1

j=kδdp+1
(x†, vj)2 χΩκ

≤ 1

σkδpr−1

√∑kδpr−1

j=kδdp+1
(y†, uj)2 χΩκ

≤ 1

σkδpr−1

(√∑kδpr−1

j=kδdp+1
(yδ, uj)2 +

√∑kδpr−1

j=kδdp+1
(yδ − y†, uj)2

)
χΩκ

≤ 3τ + 1

2

δ
√
kδpr − 1

σkδpr−1

χΩκ ≤
√

3

8
(3τ + 1)

√∑kδpr−1

j=1 (yδ − y†, uj)2

σkδpr−1

≤
√

3

8
(3τ + 1)

√∑∞
j=kδpr

(y†, uj)2

σkδpr−1

≤
√

3

8
(3τ + 1)

√∑∞

j=kδpr

(x†, vj)2,

and consequently√∑∞

j=kδdp+1
(x†, vj)2 χΩκ

≤

√∑kδpr−1

j=kδdp+1
(x†, vj)2 χΩκ +

√∑∞

j=kδpr

(x†, vj)2

≤
√

3

8
(3τ + 1)

√∑∞

j=kδpr

(x†, vj)2

≤
√

3

8
(3τ + 1)

(√∑kδst

j=kδpr

(x†, vj)2 +

√∑∞

j=kδst+1
(x†, vj)2

)
.(4.9)

We put both estimations together to finish the proof. Note that it is easy to see from
Proposition 2.1 that

min
k∈N0

‖xδk − x†‖2 ≥
1

2
max

(kδst−1∑
j=1

(yδ − y†, uj)2

σ2
j

,

∞∑
j=kδst+1

(x†, vj)
2

)
.
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We treat the cases kδdp < kδst and kδdp ≥ kδst separately. First, by (4.7),

‖xδkδdp
− x†‖χΩκχ{kδdp≥k

δ
st}

≤

(√∑kδdp

j=1

(yδ − y†, uj)2

σ2
j

+

√∑∞

j=kδdp+1
(x†, vj)2

)
χΩκχ{kδdp≥k

δ
st}

≤
(
τ + 1

τ − 1

√∑∞

j=kδdp

(x†, vj)2 +

√∑∞

j=kδdp+1
(x†, vj)2

)
χΩκχ{kδdp≥k

δ
st}

≤
(
τ + 1

τ − 1
+ 1

)√∑∞

j=kδst
(x†, vj)2

≤
(
τ + 1

τ − 1
+ 1

)(√
(x†, vkδst)

2 +

√∑∞

j=kδst+1
(x†, vj)2

)
≤
√

2

(
τ + 1

τ − 1
+ 1

)(
min
k∈N0

‖xδk − x†‖+

√∑kδst

j=kδpr

(x†, vj)2

)
.

Second, by (4.9),

‖xδkδdp
− x†‖χΩκχ{kδdp<k

δ
st}

≤

(√∑kδdp

j=1

(yδ − y†, uj)2

σ2
j

+

√∑∞

j=kδdp+1
(x†, vj)2

)
χΩκχ{kδdp<k

δ
st}

≤

(√∑kδst−1

j=1

(yδ − y†, uj)2

σ2
j

+

√∑∞

j=kδdp+1
(x†, vj)2

)
χΩκ

≤
√

2 min
k∈N0

‖xδk − x†‖+

√
3

8
(3τ + 1)

(√∑kδst

j=kδpr

(x†, vj)2 +

√∑∞

j=kδst+1
(x†, vj)2

)

≤
√

2

(
1 +

√
3

8
(3τ + 1)

)(
min
k∈N0

‖xδk − x†‖+

√∑kδst

j=kδpr

(x†, vj)2

)
.

Thus the proof of Theorem 2.4 is finished with

Cτ :=
√

2 max

(
τ + 1

τ − 1
+ 1, 1 +

√
3

8
(3τ + 1)

)
.

Proof of Corollary 1.1. This time we treat the cases kδdp ≤ kδst and kδdp > kδst separately.
In the latter case, we obtain with (4.7) that

‖xδkδdp
− x†‖χΩκχ{kδdp>k

δ
st}

≤
(
τ + 1

τ − 1

√∑∞

j=kδdp

(x†, vj)2 +

√∑∞

j=kδdp+1
(x†, vj)2

)
χΩκχ{kδdp>k

δ
st}

≤
(
τ + 1

τ − 1
+ 1

)√∑∞

j=kδst+1
(x†, vj)2 ≤

√
2

(
τ + 1

τ − 1
+ 1

)
min
k∈N0

‖xδk − x†‖.
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For the former case, note that√∑kδst

j=kδdp+1
(x†, vj)2 χΩκ

≤ 1

σkδst

(√∑kδst

j=kδdp(kδst)+1
(yδ, uj)2 +

√∑kδst

j=kδdp+1
(yδ − y†, uj)2

)
χΩκ

≤ 1

σkδst

(
τ
√
kδstδ +

τ + 1

2

√
kδstδ

)
≤ 3τ + 1

2

√
kδst

σkδst
δ.

Then,

‖xδkδdp
− x†‖χΩκχ{kδdp≤k

δ
st}

≤

√∑kδst

j=1

(yδ − y†, uj)2

σ2
j

χΩκ +

√∑kδst

j=kδdp+1
(x†, vj)2 χΩκ +

√∑∞

j=kδst+1
(x†, vj)2

≤ τ + 1

2

√
kδst

σkδst
δ +

3τ + 1

2

√
kδst

σkδst
δ +
√

2 min
k∈N0

‖xδk − x†‖

= (2τ + 1)

√
kδst

σkδst
δ +
√

2 min
k∈N0

‖xδk − x†‖.

All we need to do to finish the proof is to control the strong oracle kδst. We will need the
following two estimates for k ∈ N and p > 0:

k∑
j=1

jp ≤
∫ k+1

1

(x+ 1)p dx ≤ (k + 2)1+p

1 + p
,

k∑
j=1

jp ≥
∫ k+1

1

(x− 1)p dx ≥ k1+p

1 + p
.

For any k ≥ 1 it holds that

P
(∣∣∣∣ k∑

j=1

(yδ − y†, uj)2

σ2
j

− δ2
k∑
j=1

1

σ2
j

∣∣∣∣ ≥ δ2

2

k∑
j=1

1

σ2
j

)

≤
4E
[∣∣∑k

j=1((yδ − y†, uj)2 − δ2)/σ2
j

∣∣2]
δ4
(∑k

j=1 1/σ2
j

)2 =
4δ4

∑k
j=1 E[|(Z, uj)2 − 1|2/σ4

j

δ4
(∑k

j=1 1/σ2
j

)2
≤

8(γ4 + 1)
∑k
j=1 1/σ4

j(∑k
j=1 1/σ2

j

)2
≤

(8(γ4 + 1)/c2q)
∑k
j=1 j

2q

(1/C2
q )
(∑k

j=1 j
q
)2

≤
8(γ4 + 1)C2

q

c2q

(1/(2q + 1))(k + 2)2q+1

((1/(q + 1))kq+1)2

≤
8(γ4 + 1)C2

q (q + 1)232q+1

c2q(2q + 1)

1

k
=

(γ4 + 1)C̃q
k

,(4.10)
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with

C̃q :=
8C2

q (q + 1)232q+1

c2q(2q + 1)
.

Similar to k̄δpr we define

k̄δst := min

{
k ≥ 0 : δ2

k∑
j=1

1

σ2
j

≥
∞∑

j=k+1

(x†, vj)
2

}
and set

Ω̃k̄δst :=

{∣∣∣∣ dk̄
δ
st/3e∑
j=1

(yδ − y†, uj)2

σ2
j

− δ2

dk̄δst/3e∑
j=1

1

σ2
j

∣∣∣∣ ≥ δ2

2

dk̄δst/3e∑
j=1

1

σ2
j

}

∩
{∣∣∣∣ 3k̄δst∑

j=1

(yδ − y†, uj)2

σ2
j

− δ2

3k̄δst∑
j=1

1

σ2
j

∣∣∣∣ ≥ δ2

2

3k̄δst∑
j=1

1

σ2
j

}
.

Note that k̄δst ≥ k̄δpr; cf. Proposition 2.3. On χΩ̃
k̄δst

it holds that

(4.11)
k̄δst
3
χΩ̃

k̄δst

≤ kδstχΩ̃
k̄δst

− 1 < kδstχΩ̃
k̄δst

≤ 3k̄δstχΩ̃
k̄δst

.

We show the claim (4.11). It holds that

dk̄δst/3e∑
j=1

(yδ − y†, uj)2

σ2
j

χΩ̃
k̄δst

≤ 3δ2

2

dk̄δst/3e∑
j=1

1

σ2
j

≤ 3δ2

2

(
dk̄δst/3e
k̄δst − 1

k̄δst−1∑
j=1

1

σ2
j

)

≤ δ2

k̄δst−1∑
j=1

1

σ2
j

<

∞∑
j=k̄δst

(x†, vj)
2 ≤

∞∑
j=dk̄δst/3e+1

(x†, vj)
2,

where we have used that σj is monotonically decreasing in the second step, and that k̄δst ≥
κ ≥ 3 in the third and in the last step. This shows that (k̄δst/3)χΩ̃

k̄δst

≤ kδst− 1. For the second

claim we can assume without loss of generality that
∑∞
j=3k̄δst+1(x†, vj)

2 > 0. Then we have

3k̄δst∑
j=1

(yδ − y†, uj)2

σ2
j

χΩ̃
k̄δst

≥ δ2

2

3k̄δst∑
j=1

1

σ2
j

χΩ̃
k̄δst

≥ 3δ2

2

k̄δst∑
j=1

1

σ2
j

≥ 3

2

∞∑
j=k̄δst+1

(x†, vj)
2 >

∞∑
j=3k̄δst+1

(x†, vj)
2,

and we deduce that kδstχΩ̃
k̄δst

≤ 3k̄δst. Now we are ready to finish the proof of Corollary 1.1, as

follows:

δ2 k
δ
st

σ2
kδst

χΩ̃
k̄δst

≤ δ2 3k̄δst
σ2

3k̄δst

χΩ̃
k̄δst

≤ δ2

cq
(3k̄δst)

1+qχΩ̃
k̄δst

≤ 91+qδ2

cq

⌈
k̄δst
3

⌉1+q

χΩ̃
k̄δst
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≤ 91+qδ2(1 + q)Cq
cq

dk̄δst/3e∑
j=1

1

σ2
j

χΩ̃
k̄δst

≤ 91+q(1 + q)Cq
cq

2

dk̄δst/3e∑
j=1

(yδ − y†, uj)2

σ2
j

χΩ̃
k̄δst

≤ 91+q(1 + q)Cq
cq

2

kδst−1∑
j=1

(yδ − y†, uj)2

σ2
j

≤ 91+q(1 + q)Cq
cq

4 min
k∈N0

‖xδk − x†‖2.

Putting all this together, we obtain

‖xδkδdp
− x†‖χΩ̃

k̄δst

χΩκ

≤ max

(
√

2

(
τ + 1

τ − 1
+ 1

)
,
√

2 + (2τ + 1)

√
91+q(1 + q)Cq

cq
4

)
min
k∈N0

‖xδk − x†‖,

and the proof follows with

P
(
χΩκχΩ̃

k̄δst

)
≥ 1− P(χΩκ)− P

(
χΩ̃

k̄δst

)

≥ 1−max

(
12

τ2 + 2τ − 3
, 9

)√
1 + γ4√
κ
− 2(γ4 + 1)C̄q

κ
,

where we used (4.2) with Proposition 2.5 and (4.10).

5. Numerical comparison. In this section we compare kδdp with kδbal and kδes numeri-
cally. As examples, we take four model problems from the open-source MATLAB toolbox
“Regutools” [13], namely, phillips and deriv2 (mildly ill-posed), on the one hand, and
gravity and heat (severely ill-posed), on the other. They cover various settings and are
discretisations of the Volterra/Fredholm integral equations, which are solved by means of
either quadrature rules or Galerkin methods. Note that the problems behind deriv2 (the
second derivative) and heat (the backwards heat equation) are also part of the recent numer-
ical survey [37]. The discretisation dimension for the examples is fixed at D = 5000. As
measurement noise, we choose Gaussian white noise, and the singular value decomposition is
determined numerically with the function csvd from the toolbox. The simulations are run for
noise levels δ = 100, 10−2, 10−4 and 10−6. The statistical quantities are computed by 1000
independent Monte Carlo samples. Similar to the numerical survey [37], we set τ = 1.5 in the
definition of the discrepancy principle, and κ = 4 in the definition of the balancing principle,
i.e., for the balancing principle we choose a δ-independent fudge parameter. Note that for
κ = 4 the probability pκ of a bad event from Example 3.2 is extremely small compared to that
for only 100 consecutive runs.

For comparison, we also calculated the (clearly inaccessible) optimal truncation level
kδopt := arg mink∈N ‖xδk−x†‖. We express the sample mean of e∗ := ‖xδkδ∗−x

†‖ (where ∗ =

dp,bal, es, opt) together with the estimated standard deviation in tabular form in Tables 5.1–
5.4. In Tables 5.5–5.8 we also present the statistics of the corresponding truncation levels
kδ∗ together with the optimal stopping time kδopt = arg min ‖xδk − x†‖ and the weak and
strong oracles kδpr and kδst. It can be clearly seen that kδdp and kδopt are close to kδpr and kδst,
respectively, in accordance with Proposition 2.1. Interestingly, kδbal tends to be close to kδdp

and hence kδpr instead of kδst. This is probably due to the comparatively large fudge parameter
κ = 4. Choosing a substantially smaller fudge parameter κ, however, is less stable, and we
decided to stick to the choice from [37]. We also see that the error for kδes is quite large. From
Tables 5.5–5.8 it is not clear if this is due to very rare events, where one substantially stops
too late, or if there is a regular late stopping. We visualise the statistics of kδpr as boxplots in
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Figure 5.1. While the median is relatively close to kδpr, in a substantial part of all runs it stops
way too late. In one quarter of all runs, the stopping happens later than the corresponding index
of the upper border of the blue box. However, kδes concentrates more and more as the noise
level decreases. This result indicates that the early stopping discrepancy principle is better
suited for comparably smaller noise levels. All in all the numerical experiments show that
the choice τ = 1 for the early stopping discrepancy principle is probably too aggressive for
general linear problems violating the assumptions in [5]. Note that we observed in simulations
that adding a small fudge parameter in (3.3), e.g., τ = 1.01, increases stability a lot for the
early stopping discrepancy principle and yields an error slightly larger than, but comparable
to, the other two methods, at least for the mildly ill-posed examples under small error levels.
Increasing the fudge parameter further improves stability, but at the cost of less accuracy.

Acknowledgements. Funded by the Deutsche Forschungsgemeinschaft under Germany’s
Excellence Strategy – GZ 2047/1, Projekt-ID 390685813. The author would like to thank
Professor Markus Reiß for pointing out possible relations of the modified discrepancy principle
to Lepski’s method.

TABLE 5.1
Sample mean and standard deviation of e∗ for phillips.

δ edp std(edp) ebal std(ebal) ees std(ees) eopt std(eopt)

e0 1.0e0 (1e-1) 1.1e0 (2e-1) 8.9e4 (4e5) 6.3e-1 (2e-1)
e-2 7.6e-2 (1e-3) 7.6e-2 (1e-3) 5.7e2 (2e3) 6.7e-2 (1e-2)
e-4 1.3e-2 (3e-4) 1.3e-2 (3e-4) 5.2e0 (1e1) 1.1e-2 (2e-3)
e-6 2.6e-3 (3e-4) 2.9e-3 (1e-4) 1.1e-1 (3e-1) 1.7e-3 (2e-3)

TABLE 5.2
Sample mean and standard deviation of e∗ for deriv2.

δ edp std(edp) ebal std(ebal) ees std(ees) eopt std(eopt)

e0 8.3e0 (3e1) 1.8e0 (0) 4.7e5 (1e6) 1.7e0 (2e-1)
e-2 1.0e0 (4e-1) 9.5e-1 (8e-3) 3.2e3 (9e3) 8.5e-1 (8e-2)
e-4 4.7e-1 (1e-2) 5.2e-1 (3e-2) 2.7e1 (6.0e1) 4.1e-1 (2e-2)
e-6 2.3e-1 (4e-3) 2.5e-1 (4e-3) 5.7e-1 (1e0) 2.0e-1 (5e-3)

TABLE 5.3
Sample mean and standard deviation of e∗ for gravity.

δ edp std(edp) ebal std(ebal) ees std(ees) eopt std(eopt)

e0 4.6e0 (6e-1) 5.0e0 (8e-2) 5.2e15 (9e15) 3.2e0 (6e-1)
e-2 8.9e-1 (2e-1) 9.5e-1 (2e-1) 4.0e13 (7e13) 6.5.8e-1 (1e-1)
e-4 1.8e-1 (2e-3) 1.8e-1 (7e-3) 5.2e11 (9e11) 1.2e-1 (2e-2)
e-6 4.3e-2 (1e-3) 3.9e-2 (6e-3) 3.8e9 (8e9) 2.5e-2 (4e-3)
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TABLE 5.4
Sample mean and standard deviation of e∗ for heat.

δ edp std(edp) ebal std(ebal) ees std(ees) eopt std(eopt)

e0 1.7e1 (6e0) 1.7e1 (5e-1) 5.6e7 (4e8) 1.4e1 (1e0)
e-2 4.8e0 (3e-1) 5.2e0 (5e-2) 1.1e5 (5e5) 3.1e0 (5e-1)
e-4 6.4e-1 (7e-2) 7.5e-1 (6e-2) 1.1e2 (4e2) 3.8e-1 (3e-2)
e-6 1.7e-1 (3e-3) 1.8e-1 (5e-3) 8.4e1 (6e2) 1.1e-1 (8e-3)

TABLE 5.5
Sample mean and standard deviation of k∗ for phillips.

δ kdp std(kdp) kbal std(kbal) kes std(kes) kopt std(kopt) kpr std(kpr) kst std(kst)

e0 3.3 (0.7) 2.9 (0.5) 47.5 (63.7) 5 (0.6) 4.5 (0.8) 5.2 (0.5)
e-2 7 (0) 7 (0) 43.7 (53.8) 8.1 (1.2) 7 (0,1) 9.4 (0.7)
e-4 12 (0) 12 (0) 48.5 (51.2) 15.9 (2) 12.1 (0.6) 17.4 (1)
e-6 26.1 (1) 25.1 (0.4) 59.7 (60.3) 34.3 (3.3) 28 (1) 35.3 (1.2)

TABLE 5.6
Sample mean and standard deviation of k∗ for deriv2.

δ kdp std(kdp) kbal std(kbal) kes std(kes) kopt std(kopt) kpr std(kpr) kst std(kst)

e0 0.3 (0.5) 0 (0) 43.5 (72) 1.1 (0.3) 1 (0) 1.1 (0.3)
e-2 1.3 (0.6) 1 (0) 39 (62) 3.2 (0.8) 2 (0.7) 3.4 (0.8)
e-4 7 (0.5) 46 (54) 48.6 (59.5) 12.4 (1.7) 8.7 (0.8) 14.6 (1.5)
e-6 32 (1.1) 27 (1) 53 (38) 53 (4.6) 39 (1.5) 66.5 (3.2)

TABLE 5.7
Sample mean and standard deviation of k∗ for gravity.

δ kdp std(kdp) kbal std(kbal) kes std(kes) kopt std(kopt) kpr std(kpr) kst std(kst)

e0 4.3 (0.5) 4 (0.1) 44.7 (61) 5.9 (0.8) 4.2 (0.4) 5.7 (0.6)
e-2 8.7 (0.5) 8.5 (0.5) 28.2 (47.1) 10.5 (0.8) 8.2 (0.4) 10.3 (0.6)
e-4 13 (0.1) 13 (0.2) 48.6 (59.5) 14.9 (0.7) 12.7 (0.4) 14.7 (0.6)
e-6 17 (0.1) 17.4 (0.5) 43.7 (49.4) 19.3 (0.7) 17 (0) 19.2 (0.6)

TABLE 5.8
Sample mean and standard deviation of k∗ for heat.

δ kdp std(kdp) kbal std(kbal) kes std(kes) kopt std(kopt) kpr std(kpr) kst std(kst)

e0 1.5 (0.9) 0.1 (0.3) 53 (66) 3.3 (0.8) 1.6 (0.6) 2.9 (0.9)
e-2 9.9 (0.8) 9 (0.1) 41 (53) 17 (1) 9.4 (0.5) 13.8 (0.8)
e-4 26 (0.6) 25 (1.4) 48 (38) 32 (2) 24.1 (1.3) 29.4 (1)
e-6 51 (0.4) 50 (0.5) 72 (42) 67 (2) 49.4 (0.9) 62.4 (1.5)
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FIG. 5.1. Boxplots of the 100 realisations of kδes for decreasing noise level δ and the different test problems:
upper left, phillips; upper right, deriv2; lower left, gravity; and lower right, heat. On each blue box,
the red bar indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. Red crosses depict outliers, which are data points falling outside the blue box.
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Ž. Vyčisl. Mat i Mat. Fiz., 8 (1968), pp. 295–309.
[32] C. M. STEIN, Estimation of the mean of a multivariate normal distribution, Ann. Statist., 9 (1981), pp. 1135–

1151.
[33] A. N. TIKHONOV AND V. B. GLASKO, Use of the regularization method in non-linear problems, U.S.S.R.

Comput. Math. and Math. Phys., 5 (1965), pp. 93–107.
[34] A. TSYBAKOV, On the best rate of adaptive estimation in some inverse problems, C. R. Acad. Sci. Paris Sér. I

Math., 330 (2000), pp. 835–840.
[35] C. R. VOGEL, Computational Methods for Inverse Problems, SIAM, Philadelphia, 2002.
[36] G. WAHBA, Practical approximate solutions to linear operator equations when the data are noisy, SIAM J.

Numer. Anal., 14 (1977), pp. 651–667.
[37] F. WERNER, Adaptivity and oracle inequalities in linear statistical inverse problems: a (numerical) survey, in

New Trends in Parameter Identification for Mathematical Models, B. Hofmann, A. Leitão, and J. P. Zubelli,
eds., Trends Math., Birkhäuser/Springer, Cham, 2018, pp. 291–316.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://doi.org/10.1093/imanum/drab098

