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DECAY BOUNDS FOR BERNSTEIN FUNCTIONS OF HERMITIAN MATRICES
WITH APPLICATIONS TO THE FRACTIONAL GRAPH LAPLACIAN∗

MARCEL SCHWEITZER†

Abstract. For many functions of matrices f(A), it is known that their entries exhibit a rapid—often exponential
or even superexponential—decay away from the sparsity pattern of the matrix A. In this paper, we specifically focus
on the class of Bernstein functions, which contains the fractional powers Aα, α ∈ (0, 1), as an important special
case, and derive new decay bounds by exploiting known results for the matrix exponential in conjunction with the
Lévy-Khintchine integral representation. As a particular special case, we find a result concerning the power law
decay of the strength of connection in nonlocal network dynamics described by the fractional graph Laplacian, which
improves upon known results from the literature by doubling the exponent in the power law.
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1. Introduction. In this paper, we investigate the decay of the entries of matrix functions
f(A), whereA ∈ Cn×n is a Hermitian matrix and f is a Bernstein function, i.e., a nonnegative
function f : (0,∞)→ R that is infinitely many times continuously differentiable and satisfies

(1.1) (−1)n−1f (n)(z) ≥ 0 for all n ∈ N and z ∈ (0,∞).

As the condition (1.1) means that f ′ is a completely monotonic function, the class of Bernstein
functions is intimately related to the completely monotonic function classes of Laplace-Stieltjes
and Cauchy-Stieltjes transforms. While the latter classes have received considerable interest in
the analysis of matrix functions in recent years (see, e.g., [3, 19, 25, 26, 32] and the references
therein), the class of Bernstein functions has not been investigated as thoroughly, although
it also frequently occurs in applications. Our present study is motivated by the fact that
fractional powers LαG, α ∈ (0, 1), where LG is the Laplacian of an undirected graph G, have
recently emerged as a useful tool in modeling non-local diffusion processes on graphs and in
the efficient exploration of large networks; see, e.g., [5, 12, 36, 37]. Clearly, zα, α ∈ (0, 1),
is nonnegative on (0,∞) and fulfills the condition (1.1), so that it is a Bernstein function,
whereas it is neither a Laplace-Stieltjes nor a Cauchy-Stieltjes function.

The off-diagonal decay in matrix functions is a topic that has been intensively studied in
the past, in particular for the case of the matrix inverse f(A) = A−1 (see, e.g., [14, 16, 18,
21, 22]) and for entire functions like the exponential [6, 8, 29, 31, 35]. Quite recently, some
of these bounds were also extended to Cauchy-Stieltjes and Laplace-Stieltjes functions of
matrices; see, e.g., [8, 21] and also the recent survey [4]. A priori knowledge of the decay
in matrix functions has many different applications, e.g., the efficient construction of sparse
approximations [24, 39], the design of linearly scaling algorithms for certain linear algebra
problems [7, 13], and the analysis of probing methods for trace estimation [23]. In the context
of fractional powers of the graph Laplacian LG, decay estimates can give insight into transition
probabilities of non-local random walks on G; see [5, 12].

The remainder of this paper is organized as follows. In Section 2, we recall some basic
facts about Bernstein functions and several special functions that appear in the bounds that we
derive in later sections and facts on functions of matrices in general. Our main results for the

∗Received November 11, 2021. Accepted March 3, 2022. Published online on May 9, 2022. Recommended by
M. Benzi.
†School of Mathematics and Natural Sciences, Bergische Universität Wuppertal, 42097 Wuppertal, Germany

(marcel@uni-wuppertal.de).

438

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol55s438


ETNA
Kent State University and

Johann Radon Institute (RICAM)

DECAY IN BERNSTEIN FUNCTIONS OF HERMITIAN MATRICES 439

decay of Bernstein functions of matrices are presented in Section 3, where we consider both
the case of positive semidefinite as well as the case of positive definite matrices A. Section 4
deals with the special case of the fractional graph Laplacian, where we compare our new decay
estimates to previously found estimates from the literature. Concluding remarks are given in
Section 5.

2. Basics. In this section, we introduce the basic concepts and notations needed for the
derivations in later sections of the paper.

2.1. Bernstein functions. A Bernstein function is a nonnegative function f : (0,∞)→R
that is infinitely many times continuously differentiable and satisfies (1.1). As already men-
tioned in Section 1, this implies that f ′ is a completely monotonic function. Bernstein functions
can thus be characterized as nonnegative primitives of completely monotonic functions. An
important result for Bernstein functions is that they exhibit the Lévy-Khintchine integral
representation

(2.1) f(z) = a+ bz +

∫ ∞
0

(1− e−tz) dµ(t),

where a, b ≥ 0 and µ is a positive measure (the Lévy measure) on (0,∞) such that∫ ∞
0

min{t, 1} dµ(t) <∞,

see, e.g., [10, 38]. Also note that any Bernstein function admits a continuous extension
to the origin (which we also denote by f for convenience) for which the Lévy-Khintchine
representation remains valid; see, e.g., [38, Proof of Proposition 3.6].

Important examples of Bernstein functions are, e.g.,
• f(z) = zα, α ∈ (0, 1),
• f(z) = 1− e−tz , t ≥ 0, and
• f(z) = log(1 + z).

As the composition of two Bernstein functions is again a Bernstein function, we also have that,
e.g., 1− e−tzα , t ≥ 0, α ∈ (0, 1), is a Bernstein function.

Because they are of particular importance in the applications we consider in later sections,
we mention that the Lévy-Khintchine representation of the fractional powers is explicitly
known and given by

(2.2) zα =
α

Γ(1− α)

∫ ∞
0

(1− e−tz)t−α−1 dt, α ∈ (0, 1),

where Γ denotes the gamma function; cf. Section 2.2.

2.2. The Gamma function and related special functions. In the following, we intro-
duce some classical special functions that appear in the derivation of our results.

The gamma function is defined for z ∈ C with <(z) > 0, where <(z) denotes the real
part of z, via

Γ(z) =

∫ ∞
0

tz−1e−t dt,

and it has the property that Γ(n) = (n− 1) · Γ(n− 1) = (n− 1)! for n ∈ N. Closely related
are the upper and lower incomplete gamma functions, defined by

(2.3) Γ(z, s) =

∫ ∞
s

tz−1e−t dt and γ(z, s) =

∫ s

0

tz−1e−t dt,
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respectively. Clearly, we have Γ(z) = Γ(z, s) + γ(z, s) for all s ≥ 0 and Γ(z) = Γ(z, 0) =
lim
s→∞

γ(z, s). We also need the error function

erf(z) =
1√
π

∫ z

−z
e−t

2

dt

and the complementary error function erfc(z) = 1−erf(z), which are related to the incomplete
gamma functions through the identities

Γ

(
z,

1

2

)
=
√
π erfc(

√
z) and γ

(
z,

1

2

)
=
√
π erf(

√
z).

2.3. Matrix functions and graphs of matrices. Let A ∈ Cn×n be a Hermitian ma-
trix with eigendecomposition A = V ΛV H , where Λ = diag(λ1, . . . , λn) is the diagonal
matrix of eigenvalues and V contains the corresponding orthonormal eigenvectors. Then,
for a scalar function f : C → C, the matrix function f(A) is given by the simple relation
f(A) = V f(Λ)V H , where f(Λ) = diag(f(λ1), . . . , f(λn)), provided that f(λi) exists for
all i = 1, . . . , n. For general—not necessarily diagonalizable—A, a similar definition using
the Jordan canonical form is possible (where for eigenvalues with nontrivial Jordan blocks,
also the derivatives of f need to be defined, up to the block size minus 1). As we only consider
Hermitian matrices in this work, we do not further pursue this topic and refer the reader
to [27, Chapter 1.2] for details.

It directly follows from the definition of matrix functions given above that when f is a
Bernstein function (2.1), we can insert A in place of z into the integral representation and find

(2.4) f(A) = aI + bA+

∫ ∞
0

(I − e−tA) dµ(t).

An important concept frequently used in the formulation of decay bounds for matrix
functions is that of the graph of a sparse matrix: Given A ∈ Cn×n, the graph of A is given
by G(A) = (V,E), where V = {1, . . . , n} and E = {(i, j) : aij 6= 0, i 6= j}. We recall
that a path of length ` in G is a sequence (e1, . . . , e`) of edges ek ∈ E, k = 1, . . . , `, such
that there exist pairwise distinct nodes i1, . . . , i`+1 ∈ V with ek = (ik, ik+1), k = 1, . . . , `.
For any two nodes i, j in the graph of A, we denote by d(i, j) the geodesic distance of the
nodes in G(A), i.e., the length of the shortest path from i to j. If there is no path from i to j
in G, then we set d(i, j) = ∞. Clearly, when A is Hermitian, G(A) is undirected and thus
d(i, j) = d(j, i) for all i, j.

3. Decay of Bernstein functions of Hermitian matrices. This section contains our
main results on the off-diagonal decay of Bernstein functions of Hermitian matrices. We first
consider the case of a positive semidefiniteA in Section 3.1 and then discuss how the estimates
can be improved when A is positive definite in Section 3.2. As these estimates for positive
definite A have the drawback that some integrals occur for which no closed form solution is
available, we also derive other, more explicit, bounds for fractional powers of positive definite
matrices in Section 3.3 by exploiting a connection to Cauchy-Stieltjes functions.

3.1. The positive semidefinite case. Using the representation (2.1) allows us to relate
the decay of matrix Bernstein functions to the decay in the matrix exponential, a very thor-
oughly studied topic. In particular, our analysis in this section is based on the following theorem
from [8] on the decay in the matrix exponential, which in turn is based on the well-known
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convergence result of Hochbruck and Lubich [28, Theorem 2] for Lanczos approximations of
the action of the matrix exponential.

THEOREM 3.1 (Theorem 4.2 in [8]). Let A ∈ Cn×n be a Hermitian positive semidefinite
matrix with eigenvalues in the interval [0, 4ρ], and denote by d(i, j) the geodesic distance of
the nodes i and j in the graph of A. Then, for i 6= j,

(i) for ρt ≥ 1 and
√

4ρt ≤ d(i, j) ≤ 2ρt,

|[exp(−tA)]ij | ≤ 10 exp

(
− 1

5ρt
d(i, j)2

)
,

(ii) for d(i, j) ≥ 2ρt

|[exp(−tA)]ij | ≤ 10
exp(−ρt)

ρt

(
eρt

d(i, j)

)d(i,j)
.

Note that in its original form, the result of Theorem 3.1 was stated for banded matrices, but
it directly generalizes to arbitrary sparse matrices; see also [8, Section 5]. In [8], Theorem 3.1
was used by Benzi and Simoncini to analyze the decay behavior of Laplace-Stieltjes matrix
functions. Similar to Bernstein functions, Laplace-Stieltjes functions can be defined using an
integral transform involving exponentials. Many of the arguments that we use in the derivation
of our results closely follow the techniques used in [8].

By exploiting the relation between Bernstein functions (2.1) and the matrix exponential,
we can prove the following result.

LEMMA 3.2. Let f be a Bernstein function (2.1). Let A ∈ Cn×n be positive semidefinite
with spectral radius ρ(A), and denote by d(i, j) the geodesic distance of the nodes i and j in
the graph of A. Then, for all i, j with d(i, j) ≥ 2, we have

|[f(A)]ij | ≤ 10

∫ 2d(i,j)
ρ(A)

0

4 exp(− 1
4ρ(A)t)

ρ(A)t

(
eρ(A)t

4d(i, j)

)d(i,j)
dµ(t)

+ 10

∫ d(i,j)2

ρ(A)

2d(i,j)
ρ(A)

exp

(
−4d(i, j)2

5ρ(A)t

)
dµ(t)

+

∫ ∞
d(i,j)2

ρ(A)

|[exp(−tA)]ij | dµ(t).

(3.1)

Proof. For i 6= j, we have

|[I − exp(−tA)]ij | = | [exp(−tA)]ij |,

so that (2.4) implies

(3.2) |[f(A)]ij | ≤ |b · aij |+
∫ ∞
0

| [exp(−tA)]ij |dµ(t).

We can therefore use bounds for the entries of the matrix exponential in order to bound (3.2).
Further note that for i, j with d(i, j) ≥ 2, it directly follows that |b · aij | = 0, so that we can
ignore this term. By recasting the conditions for t in Theorem 3.1 as d(i,j)

2ρ ≤ t ≤ d(i,j)2

4ρ or

t ≤ d(i,j)
2ρ , respectively, and writing ρ = 1

4ρ(A), the assertion of the lemma follows.
The integral representation (3.1) does not give a clear picture of the actual decay behavior

at first sight, and in general it can only be evaluated by numerical quadrature. For fractional
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powers f(z) = zα, α ∈ (0, 1), the special case that we are most interested in, and in particular
for the square root f(z) =

√
z, we can give analytic expressions for all occurring integrals in

terms of the special functions introduced in Section 2.2.
THEOREM 3.3. Let A ∈ Cn×n be positive semidefinite with spectral radius ρ(A). Let

α ∈ (0, 1), and denote by d(i, j) the distance of the nodes i and j in the graph of A. Then, for
all i, j with d(i, j) ≥ 2, we have

|[Aα]ij | ≤
α

Γ(1− α)
·

(
10ed(i,j)ρ(A)α

4αd(i, j)d(i,j)
· γ
(
d(i, j)− α− 1,

d(i, j)

2

)

+ 10

(
5ρ(A)

4d(i, j)2

)α
·
(

Γ

(
α,

4

5

)
− Γ

(
α,

2d(i, j)

5

))
+

ρ(A)α

α · d(i, j)2α

)
.

(3.3)

In particular, for α = 1
2 we have

|[
√
A]ij | ≤

1

2
√
π
·

(
10ed(i,j)

√
πρ(A)

2d(i, j)d(i,j)
· γ
(
d(i, j)− 3

2
,
d(i, j)

2

)

+
5
√

5πρ(A)

d(i, j)

(
erfc

(
2√
5

)
− erfc

(√
2d(i, j)

5

))
+

2
√
ρ(A)

d(i, j)

)
.

(3.4)

Proof. We use the representation (2.2) of fractional powers and insert the result of
Lemma 3.2. For the third integral, note that

|[exp(−tA)]ij | ≤ ‖ exp(−tA)‖2 = exp(−tρ(A)) ≤ 1

because A is positive semidefinite. This way, we obtain

|[Aα]ij | ≤
α

Γ(1− α)
·

(
10

∫ 2d(i,j)
ρ(A)

0

4 exp(− 1
4ρ(A)t)

ρ(A)t

(
eρ(A)t

4d(i, j)

)d(i,j)
· t−α−1 dt

+ 10

∫ d(i,j)2

ρ(A)

2d(i,j)
ρ(A)

exp

(
−4d(i, j)2

5ρ(A)t

)
· t−α−1 dt

+

∫ ∞
d(i,j)2

ρ(A)

t−α−1 dt

)
.

(3.5)

We handle the three integrals in (3.5) one after the other now. First, consider∫ 2d(i,j)
ρ(A)

0

4 exp(− 1
4ρ(A)t)

ρ(A)t

(
eρ(A)t

4d(i, j)

)d(i,j)
· t−α−1 dt

=
4

ρ(A)

(
eρ(A)

4d(i, j)

)d(i,j) ∫ 2d(i,j)
ρ(A)

0

exp

(
−1

4
ρ(A)t

)
· td(i,j)−α−2 dt.

To find an antiderivative of this function, first note that ∂
∂sΓ(z, s) = − exp(−s) · sz−1, which

follows directly from the integral representation (2.3). Now, for a general function of the form
exp(−mt) · tk, with m > 0, k > −1, we have

(3.6)
∫

exp(−mt) · tk dt =

∫
exp(−u) ·

( u
m

)k
m−1 du = m−k−1

∫
exp(−u) · uk du,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

DECAY IN BERNSTEIN FUNCTIONS OF HERMITIAN MATRICES 443

where u = mt. From the considerations above, we clearly have∫
exp(−u) · uk du = −Γ(k + 1, u) + c

for some constant c. Backsubstituting u = mt and inserting into (3.6) yields the antiderivative

(3.7)
∫

exp(−mt) · tk dt = −m−k−1 · Γ(k + 1,mt) + c.

Using the choice m = ρ(A)
4 and k = d(i, j) − α − 2 and inserting the limits of integration

gives∫ 2d(i,j)
ρ(A)

0

exp

(
−1

4
ρ(A)t

)
· td(i,j)−α−2 dt

= −
(

4

ρ(A)

)d(i,j)−α−1(
Γ

(
d(i, j)− α− 1,

d(i, j)

2

)
− Γ(d(i, j)− α− 1)

)

=

(
4

ρ(A)

)d(i,j)−α−1
γ

(
d(i, j)− α− 1,

d(i, j)

2

)
.

(3.8)

The second integral in (3.5) is of the general form exp(−mt ) · t−α−1, with m > 0, for
which we find the antiderivative∫

exp
(
−m
t

)
· t−α−1 dt = m−α · Γ

(
α,
m

t

)
+ c

for some constant c by proceeding similarly to the derivation of (3.7) above. With the choice
m = 4d(i,j)2

5ρ(A) and inserting the limits of integration, we obtain

∫ d(i,j)2

ρ(A)

2d(i,j)
ρ(A)

exp

(
−4d(i, j)2

5ρ(A)t

)
· t−α−1 dt

=

(
5ρ(A)

4d(i, j)2

)α(
Γ

(
α,

4d(i, j)2

5ρ(A)
· ρ(A)

d(i, j)2

)
− Γ

(
α,

4d(i, j)2

5ρ(A)
· ρ(A)

2d(i, j)

))
=

(
5ρ(A)

4d(i, j)2

)α(
Γ

(
α,

4

5

)
− Γ

(
α,

2d(i, j)

5

))
.(3.9)

Finally, for the third integral, the antiderivative is simply∫
t−α−1 dt = − 1

α
t−α + c

for a constant c. After inserting the limits of integration, we directly obtain

(3.10)
∫ ∞
d(i,j)2

ρ(A)

t−α−1 dt =
ρ(A)α

α · d(i, j)2α
.

Inserting (3.8), (3.9), and (3.10) into (3.5) now yields (3.3). The more compact formula (3.4)
for the special case α = 1

2 directly follows by using Γ( 1
2 ) =

√
π together with the relation

Γ(z, 12 ) =
√
π erfc(

√
z).

Numerical experiments illustrating the quality of the bounds obtained from Theorem 3.3
will be given in Section 4.1.
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3.2. The positive definite case. The bounds derived in Section 3.1 are obviously also
valid when A is positive definite and not just semidefinite. However, in this case, the bounds
can be sharpened by using the following observation.

PROPOSITION 3.4. Let A ∈ Cn×n, and let σ ∈ C. Then,

(3.11) exp(A+ σI) = exp(σ) exp(A).

Using (3.11), we can first shift the smallest eigenvalue of A to zero and then apply the
result of Theorem 3.1.

COROLLARY 3.5. Let A ∈ Cn×n be Hermitian positive definite with smallest and largest
eigenvalue λmin and λmax, respectively. Denote by d(i, j) the geodesic distance of the nodes
i and j in the graph of A, and let ρ := (λmax − λmin)/4. Then, for i 6= j,

(i) for ρt ≥ 1 and
√

4ρt ≤ d(i, j) ≤ 2ρt,

|[exp(−tA)]ij | ≤ 10 exp(−tλmin) exp

(
− 1

5ρt
d(i, j)2

)
,

(ii) for d(i, j) ≥ 2ρt

|[exp(−tA)]ij | ≤ 10
exp(−(ρ+ λmin)t)

ρt

(
eρt

d(i, j)

)d(i,j)
.

Proof. Define the shifted matrix Ã = A− λminI with eigenvalues in [0, λmax − λmin].
From (3.11), it then follows that

exp(−tÃ) = exp(−tA+ tλminI) = exp(tλmin) exp(−tA),

which is equivalent to exp(−tA) = exp(−tλmin) exp(−tÃ). The result then follows by
applying Theorem 3.1 to exp(−tÃ).

Corollary 3.5 directly gives rise to a result analogous to Lemma 3.2 for the positive
definite case.

LEMMA 3.6. Let f be a Bernstein function (2.1). Let A ∈ Cn×n be positive definite with
smallest and largest eigenvalue λmin and λmax, respectively. Denote by d(i, j) the geodesic
distance of the nodes i and j in the graph of A, and let ρ := (λmax − λmin)/4. Then, for all
i, j with d(i, j) ≥ 2, we have

|[f(A)]ij | ≤ 10

∫ d(i,j)
2ρ

0

exp(−(ρ+ λmin)t)

ρt

(
eρt

d(i, j)

)d(i,j)
dµ(t)

+ 10

∫ d(i,j)2

4ρ

d(i,j)
2ρ

exp(−tλmin) · exp

(
−d(i, j)2

5ρt

)
dµ(t)

+

∫ ∞
d(i,j)2

4ρ

exp(−tλmin) dµ(t).

(3.12)

In contrast to the integrals arising in the positive semidefinite case in Lemma 3.2, even
for the special case of fractional powers zα, there is no closed-form expression for the more
complicated second integral in (3.12). Thus, in order to use Lemma 3.6 for predicting the decay
in f(A) for positive definite A, this integral needs to be evaluated by numerical quadrature.
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3.3. Explicit decay bounds for fractional powers of positive definite matrices via
Cauchy-Stieltjes functions. For fractional powers, explicit decay bounds can also be ob-
tained in a different way when A is positive definite by employing a simple trick. For this, we
write

(3.13) Aα = A ·Aα−1

and exploit the fact that Aα−1 is a Cauchy-Stieltjes function when α ∈ (0, 1). Using the
relation (3.13), known decay results for Cauchy-Stieltjes functions [8, 21] can easily be
transferred to positive fractional powers. A similar trick is used in the context of extending the
scope of restarted Krylov subspace methods for Stieltjes matrix functions in [19, 20].

THEOREM 3.7. Let A ∈ Cn×n be Hermitian positive definite with condition number
κ = λmax/λmin. Let α ∈ (0, 1), and denote by d(i, j) the geodesic distance of the nodes i
and j in the graph of A. Then, for all i, j with d(i, j) ≥ 2,

(3.14) |[Aα]ij | ≤ 2λα−1min ‖A‖∞ · q
d(i,j)−1 with q =

√
κ− 1√
κ+ 1

.

Proof. Define B = Aα−1, so that Aα = AB, or, written elementwise,

(3.15) [Aα]ij =

n∑
k=1

aikbkj .

As zα−1 is a Cauchy-Stieltjes function, we can apply [21, Theorem 4] to B, which states that

(3.16) |bkj | ≤ 2λα−1min · q
d(k,j),

where q is as defined in (3.14). When aik 6= 0 we clearly have d(k, j) ≥ d(i, j)− 1. Using
this relation after inserting (3.16) into (3.15) and taking the absolute value gives

|[Aα]ij | ≤ 2λα−1min · q
d(i,j)−1

n∑
k=1

|aik| ≤ 2λα−1min · q
d(i,j)−1‖A‖∞,

which concludes the proof.
Note that the technique used in the proof of Theorem 3.7 cannot be applied when A is

only positive semidefinite, as Aα−1 is not defined when A has a zero eigenvalue. Thus, the
result cannot be extended to this situation.

REMARK 3.8. The bound (3.14) is stated in a rather simple form that is valid for all
i, j with d(i, j) ≥ 2. When one is interested in a specific entry |[Aα]ij |, the bound can be
sharpened to

|[Aα]ij | ≤ 2λα−1min ·min{‖Ai:‖1, ‖A:j‖1} · qd(i,j)−1,

with q as in (3.14), where Ai:, A:j denote the ith row and jth column of A, respectively. This
directly follows from the fact that both the bounds obtained from writing Aα = AA1−α and
from writing Aα = A1−αA are valid for each entry, so that one can always select the smaller
of the two.

EXAMPLE 3.9. To illustrate our decay bounds for the positive definite case, we examine a
simple model problem that is frequently used for demonstrating the quality of decay bounds [8,
23]. Let A = I ⊗M + M ⊗ I ∈ CN2×N2

, where M = tridiag(−1, 2 + σ,−1) ∈ CN×N
and σ ≥ 0. For the shift choice σ = 0, the matrix A corresponds to the discretization of
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FIG. 3.1. Decay in one column of
√
A, where A = I ⊗ M + M ⊗ I ∈ C961×961 and where M =

tridiag(−1, 2 + σ,−1) ∈ C31×31 for σ = 0 (top), σ = 0.1 (center), and σ = 1 (bottom). The graph of A is a
regular two-dimensional grid of size 31× 31, and the depicted column corresponds to the node in the center of this
grid.
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the two-dimensional Laplace operator on a regular square grid with homogeneous Dirichlet
boundary conditions (up to a scaling). Increasing the shift σ makes the resulting matrix A
better conditioned. We are interested in the decay of the matrix square root

√
A, which plays

an important role in Dirichlet-to-Neumann maps; see, e.g., [1, 2, 15].
For our experiment, we choose N = 31, resulting in a matrix A of size 961× 961, and

we compare the integral-based bound for Bernstein functions (3.12) and the bound (3.14) for
Aα derived from the connection to Cauchy-Stieltjes functions. We choose three different shift
parameters σ = 0, σ = 0.1, and σ = 1. We consider the magnitude of the entries of the column
of
√
A that belongs to the node in the center of the graph of A, i.e., at grid position (16, 16).

The integrals in the bound (3.12) are approximated using the general-purpose quadrature
routine quad from SciPy.integrate. The results of this experiment are depicted in
Figure 3.1. Note that the seemingly “oscillatory” behavior of the entries of

√
A is caused by

the row-wise numbering of the grid nodes. If plotted over the two-dimensional grid, then one
would observe a smooth decay with respect to the geodesic graph distance, as expected.

We observe that the integral bound (3.12) always lies below the bound (3.14), with the
distance between the bounds reducing when the shift σ is increased. Another interesting
observation is that for σ = 0, the bound (3.12) much better resembles the actual slope of the
decay for nodes nearby the center of the grid, as it is not restricted to a simple exponential
decay of the form C · qd(i,j).

4. Application to the fractional graph Laplacian. Given an undirected graph G =
(V,E) with |V | = n, the graph Laplacian LG of G is defined as

LG = DG −AG,

where AG is the adjacency matrix of G and DG is a diagonal matrix containing the degrees of
the nodes of G on the diagonal, i.e., [DG]ii =

∑n
j=1 aij , i = 1, . . . , n. The graph Laplacian

has applications in modeling diffusion processes on graphs but also in spectral clustering [40],
graph drawing algorithms [30], and many other areas. As all row sums of the graph Laplacian
are equal to zero, it is necessarily a singular matrix, and it is well known that it is always
positive semidefinite [34].

Recently, interest in the fractional graph Laplacian has emerged, which allows one
to model nonlocal diffusion processes on graphs or to use nonlocal random walks for the
exploration of large networks [5, 9, 11, 12, 17]. The fractional graph Laplacian is simply
defined via a fractional power of the ordinary Laplacian, i.e., by LαG. As LαG is a singular
M -matrix [5] with all entries nonzero (ifG is connected), it can be interpreted as the Laplacian
of a weighted, fully-connected graph Gα on the same set V of nodes. In this context, decay
bounds for the entries of LαG are of interest because they give insight into the nature of the
connection strength in Gα between nodes that were not connected in G.

4.1. Power law decay in the fractional Laplacian. In [5, 12], it was observed that the
entries of the fractional graph Laplacian LαG exhibit a power-law decay away from the sparsity
pattern of LG. In particular, for instance, the following result was shown, which is based on
Jackson’s theorem [33].

THEOREM 4.1 (Corollary 3.1 in [5]). Let LG be the Laplacian of an undirected graph G,
and let α ∈ (0, 1). Then, if d(i, j) ≥ 2, we have

(4.1) |(LαG)ij | ≤ c ·
(
ρ(LG)

2

)α
· (d(i, j)− 1)−α

with c = 1 + π2/2.
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We now compare our new result, Theorem 3.3, to Theorem 4.1. An important observation
concerning (3.3) and (3.4) is that the first term in the sum goes to zero exponentially in
d(i, j), so that asymptotically, the second and third term control the decay behavior in LαG. So,
Theorem 3.3 gives an asymptotic decay estimate of the form

(4.2) |[LαG]ij | . C · d(i, j)−2α,

where C is a constant, indicating a power-law decay as already observed in [5, 12] but with
the improved exponent −2α instead of −α. Thus, our new bounds show that the strength of
the connection between far apart nodes in Gα must actually drop off faster than known so far.

REMARK 4.2. The bound (4.2) only holds in an asymptotic sense because we ignore
the influence of the first term in (3.3). It can, however, also easily be cast into an explicit,
non-asymptotic form. Taking, e.g., α = 1

2 , we have that

ed

dd
γ

(
d− 3/2,

d

2

)
≤ d−1

holds for all d ≥ 4. Thus, by Theorem 3.3 we directly find a rigorous, non-asymptotic bound
of the form

|[
√
LG]ij | ≤ C̃ · d(i, j)−1 for all i, j with d(i, j) ≥ 4

with a modified constant C̃.
EXAMPLE 4.3. To illustrate how our new decay estimates compare to those from [5, 12],

we begin by considering a very simple test problem: Let G be a one-dimensional chain of
length n. The corresponding graph Laplacian is the tridiagonal matrix

LG =


1 −1

−1 2
. . .

. . . . . . . . .
−1 2 −1

−1 1

 ∈ Rn×n.

By the Geršgorin disk theorem, the spectral radius of LG is bounded by ρ(LG) ≤ 4 inde-
pendently of n. In Figure 4.1 we compare our new bounds (3.3) and (3.4) from Theorem 3.3
(based on the Lévy-Khintchine integral representation) to the bound (4.1) from Theorem 4.1
(based on Jackson’s theorem) for α = 1

2 and α = 1
4 . In both cases, we can observe that the

slope of our new bound more closely resembles the actual decay behavior due to the additional
factor 2 in the exponent. In addition, we also better predict the order of magnitude of the
entries (though they are still overestimated by a quite large margin). Concerning this, it is also
interesting to compare the constants involved in the two bounds. In Theorem 4.1, there is only
one relevant constant, which is(

1 +
π2

2

)√
ρ(LG)

2
≈ 8.39 for α =

1

2

and (
1 +

π2

2

)(
ρ(LG)

2

) 1
4

≈ 7.06 for α =
1

4
.
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FIG. 4.1. Decay in the first column of LαG, where LG is the Laplacian corresponding to a one-dimensional
chain and α = 1

2
(top) or α = 1
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(bottom).

In Theorem 3.3, several constants occur. As the first term does not play a role in the
asymptotic behavior for growing d, we ignore it. The constant in front of the term d(i, j)−1

can be estimated as

5

2

√
5ρ(LG) erfc

(√
4

5

)
+

√
ρ(LG)

π
∼ 3.43 for α =

1

2

because erfc

(√
2d(i,j)

5

)
goes to zero as d(i, j) increases. For α = 1

4 , we obtain the constant

α

Γ(1− α)

(
10

(
5ρ(LG)

4

)α
· Γ
(
α,

4

5

)
+
ρ(LG)α

α

)
∼ 2.18,

again making use of the fact that Γ
(
α, 2d(i,j)5

)
goes to zero for increasing d(i, j). Thus, the
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Actual decay Bound (4.1) Bound (3.4)

3
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1

0

1

FIG. 4.2. Decay in one column of the fractional Laplacian
√
LG for a random geometric graph G on a

logarithmic scale. Left: actual decay; center: bound (4.1); right: bound (3.4). In the center and right graph, nodes
for which no bound is available are not drawn.

constants in the bounds have—at least asymptotically for large distances—also improved by a
factor of roughly 2.4 and 3.2, respectively.

EXAMPLE 4.4. Next, we compare the same bounds as in the previous example but for an
example graph with a more irregular structure. We construct a random geometric graph by
sampling n = 1000 uniformly distributed points in the unit square and then connecting all
pairs with distance below 0.075 by an edge. The resulting graph is depicted in Figure 4.2. The
degrees of the nodes in this graph range from 4 to 29, and the spectral radius of its Laplacian
is ρ(LG) ≈ 31.64. In the left-most plot in Figure 4.2, the color coding of the nodes depicts
the magnitude of the entries in one column of the fractional Laplacian

√
LG of this graph (on

a logarithmic scale). The column corresponds to a node near the bottom right corner of the
unit square (the node with brightest color in the plot). One can nicely see how the magnitude
of the entries decays the farther one moves away from the source node, which is in line with
what our decay bounds predict (and what one would intuitively expect). In the center part
of Figure 4.2, the decay bound (4.1) is shown, and in the right-most part we plot our new
bound (3.4). In both cases, nodes for which no bound is available (i.e., nodes with distance
1 from the source node) are not drawn. Additionally, for easier comparison, we also show
the magnitude of the entries and the bounds in a line plot in Figure 4.3, which also contains
results for the case α = 1

4 . As the graph has no regular underlying structure, we order the
nodes for this plot according to the magnitude of the corresponding column entries, so that the
entries form a monotonically decreasing sequence, which makes it easier to understand the
plot. Observe the resulting “stair-case” like structure of both bounds (3.3) and (3.4) and (4.1),
which predict the same order of magnitude for all entries belonging to nodes that have the
same distance from the source node. While less pronounced, we can also observe a similar
structure with plateau-like areas in the actual decay.

Again our new bounds (3.3) and (3.4) more accurately predict the slope of the decay and
also have a smaller magnitude than (4.1). However, both bounds overestimate the actual decay
by quite a large margin, and the actual decay slope is a little bit steeper than what the new
bound predicts.

4.2. Investigating the sharpness of the decay bounds. An interesting question in the
study of decay bounds is whether they are asymptotically optimal or whether there is a
possibility for further improvement. Currently, we do not have a definitive answer to this
question, but we give an illustrative example that suggests that a further improvement of the
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FIG. 4.3. Decay in the first column of LαG, where LG is the Laplacian corresponding to a random geometric
graph G (see text for details) and α = 1

2
(top) or α = 1

4
(bottom).

exponent in the power law might be possible.

EXAMPLE 4.5. We consider a simple example graph for which we can derive analytic
formulas for the entries of the fractional Laplacian. Let Gn be a graph consisting of n nodes
arranged in a circle, where we assume that n is odd. The Laplacian of this graph is given by

LGn =


2 −1 −1

−1 2
. . .

. . . . . . . . .
−1 2 −1

−1 −1 2

 ∈ Rn×n.
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The eigenvalues and eigenvectors of this matrix are analytically known and given by

(4.3) λk =

{
4 sin2

(
πk
2n

)
if k is even,

4 sin2
(
π(k−1)

2n

)
if k is odd,

and

(4.4) vi,k =


n−1/2 if k = 1,√

2
n sin

(
π(i− 1

2 )k

n

)
if k is even,√

2
n cos

(
π(i− 1

2 )(k−1)
n

)
if k is odd,

respectively. In particular, all eigenvalues except λ1 = 0 appear twice, and the spectrum
of LGn is contained in [0, 4] independent of n. Using (4.3) and (4.4), we can analytically
compute the entries of

√
LGn . We have

[
√
LGn ]ij =

∑n

k=1

√
λkvi,kvj,k

=
∑n−1

2

`=1

√
λ2`(vi,2`vj,2` + vi,2`+1vj,2`+1)

=
4

n

∑n−1
2

`=1
sin

(
π`

n

)(
sin

(
2π(i− 1

2 )`

n

)
sin

(
2π(j − 1

2 )`

n

)
+ cos

(
2π(i− 1

2 )`

n

)
cos

(
2π(j − 1

2 )`

n

))
=

4

n

∑n−1
2

`=1
sin

(
π`

n

)
cos

(
2π`(i− j)

n

)
,(4.5)

where we used an angle sum identity for the last equality. We can resolve the summation
in (4.5) using several standard trigonometric identities, yielding

(4.6) [
√
LGn ]ij =

1

n

(
cot

(
π(2(i− j) + 1)

2n

)
+ cot

(
π(1− 2(i− j))

2n

))
.

For the (dn2 e, 1)-entry, the above formula (4.6) simplifies to

(4.7) [
√
LGn ]dn2 e,1 =

1

n
cot

(
π

(
1

n
− 1

2

))
.

From L’Hôpital’s rule, one can see that (4.7) implies that as n goes to infinity, [
√
LGn ]dn2 e,1

goes to zero as (dn2 e − 1)−2. In contrast, the decay bound of Theorem 3.3 predicts a decrease
of (dn2 e − 1)−1.

In the numerical experiments in Example 4.3 and 4.4—as well as in other numerical
experiments not reported here—we observed that the actual decay was even faster than
predicted by our new, refined bounds, and we were not able to find a graph for which the bound
was (provably or experimentally) asymptotically sharp. Thus, motivated by Example 4.5, we
conjecture that

|[LαG]ij | . C · d(i, j)−4α.

It remains an open topic for future research to prove or disprove this conjecture.
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5. Conclusions. We have derived new integral-based decay bounds for Bernstein func-
tions of Hermitian matrices A with special emphasis on the case that A is positive semidefinite
and f(z) = zα, α ∈ (0, 1). In this case, analytic expressions for all involved integrals are
available, making the bounds particularly easy to use. In other cases, some of the integrals
appearing in the bounds need to be evaluated by numerical quadrature. As a particularly impor-
tant application, we have considered nonlocal network dynamics described by the fractional
graph Laplacian. It is well-known that the strength of connection between far apart nodes in
the network follows a power law in this case, and we were able to improve the exponent of
this power law from −α to −2α using our new approach. Motivated by studying the closed
form representation of the fractional Laplacian of a cycle graph, we conjectured that a further
improvement up to an exponent of −4α could be possible.
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