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A CONTRIBUTION TO THE CONDITIONING OF THE MIXED
LEAST-SQUARES SCALED TOTAL LEAST-SQUARES PROBLEM∗

LINGSHENG MENG†

Abstract. A new closed formula for first-order perturbation estimates for the solution of the mixed least-squares
scaled total least-squares (MLSSTLS) problem is presented. It is mathematically equivalent to the one by [Zhang
and Wang, Numer. Algorithms, 89 (2022), pp. 1223–1246]. With this formula, new closed formulas for the relative
normwise, mixed, and componentwise condition numbers of the MLSSTLS problem are derived. Compact forms
and upper bounds for the relative normwise condition number are also given in order to obtain economic storage and
efficient computations.
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1. Introduction. The standard approaches to solve an overdetermined linear system
Ax ≈ b is to find minimal corrections of the matrix A and/or the vector b such that the
corrected system is consistent, such as, for instance, for the least-squares (LS) method, the
data least-squares (DLS) method, and the total least-squares (TLS) method. Rao [9] proposed
the scaled total least-squares (STLS) method that unifies the LS, DLS, and TLS methods. For
a given A ∈ Rm×n (m ≥ n) and b ∈ Rm, based on the work of Rao, Paige, and Strakoš [8],
the STLS problem is formulated as follows:

min
E,f

∥∥[E f
]∥∥
F
, subject to (A+ E)λx = λb+ f,

where λ is a real positive parameter.
However, in many linear parameter estimation problems, some entries of the data matrix

A may contain no errors. For instance, in regression analysis [2], system identification [10],
and signal processing [11], some signals can be observed without error, whereas the other ones
are disturbed by zero-mean white noise. These cases often result from the fact that some of the
columns of A are exact. Hence, to maximize the accuracy of the estimated parameters x, the
case that some of the columns in the data matrix A are error-free whereas others are perturbed
is naturally encountered when estimating a parameter x using the TLS approach. The TLS
problem with some exact columns in the data matrix is known as the mixed least-squares total
least-squares (MTLS) problem.

Let A =
[
A1 A2

]
with A1 ∈ Rm×n1 , A2 ∈ Rm×n2 , and n1 + n2 = n. Assume that

the columns of A1 are known exactly and A is of full column rank. If we partition the vector
x =

[
xT1 xT2

]T
, with x1 ∈ Rn1 and x2 ∈ Rn2 , then the MTLS problem is stated as

(1.1) min
E2,f

∥∥[E2 f
]∥∥
F
, subject to A1x1 + (A2 + E2)x2 = b+ f.

Obviously, if n1 = 0, then the MTLS problem becomes the TLS problem, whereas if n2 = 0,
then it will reduce to the LS problem. However, the MTLS problem does not involve the
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STLS problem. Based on this observation, Zhang and Wang [13] generalized the MTLS
problem (1.1) as follows:

(1.2) min
E2,f

∥∥[E2 f
]∥∥
F
, subject to A1x1 + (A2 + E2)λx2 = λb+ f.

The authors refer to (1.2) as the mixed least-squares scaled total least-squares (MLSSTLS)
problem. The vector x = xMS satisfying (1.2) is called the MLSSTLS solution.

Condition numbers measure the worst-case sensitivity of a solution of a problem with
respect to small perturbations in the input data. The condition numbers of the TLS problem,
the STLS problem, and the MTLS problem have been studied widely, e.g., by Zhou et al. [16],
Baboulin and Gratton [1], Li and Jia [5, 4], Zheng et al. [14], Wang et al. [12], Zheng
and Yang [15]. Recently, Zhang and Wang [13] studied a closed formula for a first-order
perturbation estimate of the MLSSTLS solution and gave explicit expressions for the condition
numbers of the MLSSTLS problem. We notice that the closed formulas for the normwise,
mixed, and componentwise condition numbers derived in [13] are based on the evaluation of
the norm of a matrix expressed as a Kronecker product, resulting in large matrices, which may
be, as pointed out by the authors, impractical to compute, especially for large-scale problems.
In this paper, we revisit the condition numbers for the MLSSTLS problem. We derive another
different closed formula for the first-order perturbation estimate of the MLSSTLS solution
and show that the formula is equivalent to that in [13]. We also present a compact form for the
condition numbers which allows for a more efficient computation using less storage.

Throughout this paper, we denote by Rm×n the space of all m × n real matrices and
by ‖ · ‖2, ‖ · ‖∞, and ‖ · ‖F the 2-norm, the∞-norm, and the Frobenius norm, respectively.
Single vertical bars around a matrix or vector indicate the componentwise absolute value of a
matrix or vector. As usual, In denotes the identity matrix of order n, and 0m,n is the m× n
matrix with all zero entries (if no confusion occurs, we drop the subscript). For any matrix
A =

[
a1 a2 · · · an

]
= [aij ] ∈ Rm×n and C ∈ Rp×q, AT denotes the transpose of A,

and the Kronecker product A ⊗ C is defined as A ⊗ C = [aijC] ∈ Rmp×nq. We define
vec(A) ∈ Rmn by vec(A) =

[
aT1 aT2 · · · aTn

]T
, i.e., by stacking the columns of A.

2. Algebraic properties of the MLSSTLS problem. Let the QR decomposition of[
A b

]
in (1.1) be

QT
[
A b

]
=
[
Q1 Q2

]T [
A1 A2 b

]
=

[ n1 n2 1

n1 R11 R12 R1b

m−n1 0 R22 R2b

]
,

and

QTE2 =

[
n1 Ē21

m−n1 Ē22

]
, QT f =

[
n1 f̄1

m−n1 f̄2

]
,

where Q1 ∈ Rm×n1 and Q2 ∈ Rm×(m−n1). Let σk(A) denote the kth largest singular value
of A. If

σ̂ := σn2
(R22) > σ := σn2+1

([
R22 λR2b

])
> 0,(2.1)

then the MLSSTLS problem (1.2) has a unique solution, and it is equivalent to [13]

(2.2) min
Ē22,f̄2

∥∥[Ē22 f̄2

]∥∥
F
, subject to (R22 + Ē22)λx2 = λR2b + f̄2
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and

(2.3) R11x1 = λR1b − λR12x2.

Throughout this paper, we assume that the condition in (2.1) holds.
THEOREM 2.1. Let C = diag(0n1 , In2) and D = diag(λIn1 , In2), where 0n1 is the

n1 × n1 zero matrix. Then the MLSSTLS solution x
MS

solves the system

(2.4)
[
ATA AT b
bTA bT b

] [
D−1x
−1

]
= σ2

[
C 0
0 1

λ2

] [
D−1x
−1

]
,

where σ is defined in (2.1).
Proof. The solution x2 of (2.2) satisfies the augmented system[

RT22R22 λRT22R2b

λRT2bR22 λ2RT2bR2b

] [
λx2

−1

]
= σ2

[
λx2

−1

]
.

Combining this with equality (2.3), we haveRT11R11 RT11R12 λRT11R1b

0 RT22R22 λRT22R2b

0 λRT2bR22 λ2RT2bR2b

 x1

λx2

−1

 = σ2

 0
λx2

−1

 .
According to the QR decomposition of

[
A b

]
and (2.3), the above equality can be rewritten

as AT1 A1 AT1 A2 λAT1 b
AT2 A1 AT2 A2 λAT2 b
λbTA1 λbTA2 λ2bT b

 x1

λx2

−1

 = σ2

[
C 0
0 1

] 0
λx2

−1

 ,
which is equivalent to

diag(λIn, λ
2)

AT1 A1 AT1 A2 AT1 b
AT2 A1 AT2 A2 AT2 b
bTA1 bTA2 bT b

[D−1x
−1

]
= σ2

[
C 0
0 1

] 0
λx2

−1

 .
By premultiplying the above equality by the inverse matrix of diag( 1

λIn,
1
λ2 ) from the left, we

obtain (2.4).
REMARK 2.2. According to Theorem 2.1, the unique MLSSTLS solution x

MS
can be

expressed as

xMS = D(ATA− σ2C)−1AT b,

which has been derived in [13, Theorem 2.1]. Moreover, the result in Theorem 2.1 reduces to
the result in [6, Theorem 2.1] when λ = 1.

Let Ã =
[
Ã1 Ã2

]
= A+ ∆A and b̃ = b+ ∆b, where ∆A and ∆b are perturbations of

the input data A and b, respectively. Consider the perturbed MLSSTLS problem

(2.5) min
E2,f

∥∥[E2 f
]∥∥
F
, subject to Ã1x1 + (Ã2 + E2)λx2 = λb̃+ f.

When the norm
∥∥[∆A λ∆b

]∥∥
F

of the perturbations is sufficiently small, a perturbation
analysis of the singular values can ensure that the perturbed MLSSTLS problem (2.5) has a
unique solution x̃MS. Let the change in the MLSSTLS solution be ∆x = x̃MS − xMS

. In [13,
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Theorem 3.7 and Lemma 3.8], the authors obtained the following first-order expression for
∆x:

∆x =
[
−(DK)⊗ rT − (D−1x

MS
)T ⊗Bλ 1

λBλ
]

vec
([

∆A λ∆b
])

+O
(∥∥[∆A λ∆b

]∥∥2

F

)
,

where

K = (ATA− σ2C)−1, r = AD−1xMS − b, and

Bλ = DK

(
AT − 2λ2

1 + ‖λCxMS‖22
CxMSr

T

)
.

The following theorem presents a new first-order expression for ∆x:
THEOREM 2.3. Let H0 = Im − 2rrT

‖r‖22
and G(xMS) =

[
(D−1x

MS
)T − 1

λ

]
⊗ Im. If∥∥[∆A λ∆b

]∥∥
F

is sufficiently small, then

∆x = −DK
(
ATH0G(xMS) +

[
In ⊗ rT 0

])
vec
([

∆A λ∆b
])

+O
(∥∥[∆A λ∆b

]∥∥2

F

)
.

Proof. To prove this theorem we only need to show that[
−(DK)⊗ rT − (D−1x

MS
)T ⊗Bλ 1

λBλ
]

= −DK
(
ATH0G(xMS) +

[
In ⊗ rT 0

])
.

It follows from Theorem 2.1 that[
D−1x

MS

−1

]T [
ATA AT b
bTA bT b

] [
D−1x

MS

−1

]
= σ2

[
D−1x

MS

−1

]T [
C 0
0 1

λ2

] [
D−1x

MS

−1

]
,

i.e., σ2 =
‖r‖22

λ−2+‖Cx
MS
‖22

. Since x
MS

= D(ATA− σ2C)−1AT b and r = AD−1x
MS
− b, we

have

(2.6) AT r = σ2Cx
MS

=
‖r‖22

λ−2 + ‖Cx
MS
‖22
Cx

MS
.

Consequently, we get

Bλ = DK

(
AT − 2λ2

1 + ‖λCx
MS
‖22
Cx

MS
rT
)

= DK

(
AT − 2λ2

1 + ‖λCx
MS
‖22
λ−2 + ‖CxMS‖22

‖r‖22
AT rrT

)
= DKATH0.

Note that for any n×m matrix M1,

M1G(xMS) = M1

([
(D−1x

MS
)T − 1

λ

]
⊗ Im

)
= M1

[
1
λx

(1)
MS
Im · · · 1

λx
(n1)
MS

Im x(n1+1)
MS

Im · · · x(n)
MS
Im − 1

λIm
]

=
[

1
λx

(1)
MS
M1 · · · 1

λx
(n1)
MS

M1 x(n1+1)
MS

M1 · · · x(n)
MS
M1 − 1

λM1

]
=
[
(D−1x

MS
)T ⊗M1 − 1

λM1

]
.
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Therefore, we have[
−(DK)⊗ rT − (D−1x

MS
)T ⊗Bλ 1

λBλ
]

=
[
−(D−1x

MS
)T ⊗Bλ 1

λBλ
]

+
[
−(DK)⊗ rT 0

]
= −DKATH0G(x

MS
)−DK

[
In ⊗ rT 0

]
= −DK

(
ATH0G(xMS) +

[
In ⊗ rT 0

])
.

We have thus proved the theorem.
According to Theorem 2.3 and the following two equalities

G(xMS) vec
([

∆A λ∆b
])

=
([

(D−1x
MS

)T − 1
λ

]
⊗ Im

)
vec
([

∆A λ∆b
])

=
[
(D−1xMS)T ⊗ Im − 1

λIm
] [vec(∆A)

λ∆b

]
= ∆AD−1xMS −∆b

and [
In ⊗ rT 0

]
vec
([

∆A λ∆b
])

=
[
In ⊗ rT 0

] [vec(∆A)
λ∆b

]
= ∆AT r,

we can easily get that

‖∆x‖2
‖x

MS
‖2

.

(
‖DKAT ‖2‖A‖2

λ
+
‖DK‖2‖r‖2‖A‖2

‖x
MS
‖2

)
‖∆A‖2
‖A‖2

+
‖DKAT ‖2‖b‖2
‖x

MS
‖2

‖∆b‖2
‖b‖2

,

which can be found in [13, Theorem 5.1], but our proof is much simpler than the proofs there.

3. Condition numbers for the MLSSTLS problem. According to Theorem 2.3 and
the concepts of the relative normwise condition number κrel

MLSSTLS, the mixed condition number
κmix

MLSSTLS and the componentwise condition number κcom
MLSSTLS for the MLSSTLS problem

in [13], we can easily obtain the following theorem:
THEOREM 3.1. Using the notation above, we have

κrel

MLSSTLS =

∥∥DK (ATH0G(xMS) +
[
In ⊗ rT 0

])∥∥
2

∥∥[A λb
]∥∥
F

‖x
MS
‖2

,(3.1)

κmix

MLSSTLS =

∥∥∣∣DK (ATH0G(x
MS

) +
[
In ⊗ rT 0

])∣∣ vec
([
|A| λ|b|

])∥∥
∞

‖xMS‖∞
,(3.2)

and

κcom

MLSSTLS =

∥∥∥∥∥
∣∣DK (ATH0G(x

MS
) +

[
In ⊗ rT 0

])∣∣ vec
([
|A| λ|b|

])
x

MS

∥∥∥∥∥
∞

.(3.3)

REMARK 3.2. In [13, Theorem 4.2 and Theorem 4.4], the authors obtained

κrel

MLSSTLS =
‖M +N‖2

∥∥[A λb
]∥∥
F

‖x
MS
‖2

,

κmix

MLSSTLS =

∥∥|M +N | vec
([
|A| λ|b|

])∥∥
∞

‖x
MS
‖∞
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and

κcom

MLSSTLS =

∥∥∥∥∥ |M +N | vec
([
|A| λ|b|

])
x

MS

∥∥∥∥∥
∞

with

M =
[
−(DK)⊗ rT − (D−1x

MS
)T ⊗ (DKAT ) 1

λDKA
T
]
,

N = 2σDKCxMS

[
N1 N2

]
,

N1 = −
(
A†1
[
A2 λb

]
v
)T
⊗ uT ,

N2 = vT ⊗ uT ,

and u, v being the left and right singular vectors of P⊥A1

[
A2 λb

]
corresponding to σ,

respectively. Note that the orders of the matrices DK
(
ATH0G(xMS) +

[
In ⊗ rT 0

])
and

M +N are both n× (mn+m). Moreover, the matrices D, K, A and the vectors xMS , r in
DK

(
ATH0G(x

MS
) +

[
In ⊗ rT 0

])
are all used in M . It is distinctive that, unlike for the

above three formulas, our formulas in Theorem 3.1 do not use the Moore-Penrose inverse A†1
of A1, and u and v. In addition, (3.1) reduces to the compact formula for the relative normwise
condition number of the MTLS problem [7, Eq.(3.1)] in the case that λ = 1. When n1 = 0
and λ = 1, (3.1) reduces to the compact formula for the relative normwise condition number
of the TLS problem [4, Theorem 2].

The formula for the relative normwise condition numbers in Theorem 3.1 involves Kro-
necker products, which might lead to expensive storage and computational costs. In order to
simply the relative normwise condition number of the MLSSTLS problem, we present the
following theorem:

THEOREM 3.3. If we partition the vector x
MS

=
[
xT

MS1
xT

MS2

]T
with x

MS1
∈ Rn1 and

x
MS2
∈ Rn2 , then the relative normwise condition number of the MLSSTLS problem has the

following equivalent forms:

κrel

MLSSTLS

=

∥∥DK (αATA−AT r(D−1x
MS

)T −D−1x
MS
rTA+ ‖r‖22In

)
KD

∥∥1/2

2

∥∥[A λb
]∥∥
F

‖xMS‖2

(3.4)

and

κrel

MLSSTLS

=

∥∥∥∥∥DK
(
αATA+

[
‖r‖22In1

−σ
2

λ xMS1
xT

MS2

−σ
2

λ xMS2
xT

MS1
‖r‖22In2

− 2σ2x
MS2

xT
MS2

])
KD

∥∥∥∥∥
1/2

2

∥∥[A λb
]∥∥
F

‖x
MS
‖2

,

(3.5)

where α = 1
λ2 + ‖D−1xMS‖22.

Proof. By the properties of Kronecker product, we get

G(xMS)G(xMS)T =

(
1

λ2
+ ‖D−1xMS‖22

)
Im,[

In ⊗ rT 0
]

(G(x
MS

))T = D−1x
MS
rT
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and [
In ⊗ rT 0

] [
In ⊗ rT 0

]T
= ‖r‖22In.

Thus, we have

DK
(
ATH0G(x

MS
) +

[
In ⊗ rT 0

]) (
ATH0G(x

MS
) +

[
In ⊗ rT 0

])T
(DK)T

= DK
(
αATA−AT r(D−1xMS)T −D−1xMSr

TA+ ‖r‖22In
)
KD.

(3.6)

The theorem follows immediately from Theorem 3.1, (2.6), (3.6), and the fact that for any real
matrix L it holds that ‖L‖2 = ‖LLT ‖1/22

REMARK 3.4. In (3.1), the matrix DK
(
ATH0G(x

MS
) +

[
In ⊗ rT 0

])
is of size

n× (mn+m), while the associated matrices in (3.4) and (3.5) are both of size n× n, which
is more economical with respect to storage. From the aspect of computation efficiency, the
advantage of (3.5) over (3.4) is obvious since it requires less matrix-product operations.

In many applications, an upper bound would be sufficient to give an estimate of the
conditioning of the MLSSTLS solution. According to (3.4) and (2.6), we can easily get the
following theorem:

THEOREM 3.5. Using the notation above, we have

κrel

MLSSTLS ≤
√
σ2 + ‖A‖22

λ2
+ ‖A‖22‖D−1x

MS
‖22 + σ2‖Cx

MS
‖22 + 2σ2‖D−1x

MS
‖2‖CxMS

‖2

×
‖DK‖2

∥∥[A λb
]∥∥
F

‖xMS‖2
.

In [13, Theorem 4.3], the authors obtained

κrel

MLSSTLS ≤
√
σ2 + ‖A‖22

λ2
+ (3σ2 + ‖A‖22)‖D−1x

MS
‖22
‖DK‖2

∥∥[A λb
]∥∥
F

‖x
MS
‖2

.(3.7)

Recalling that C = diag(0n1 , In2) and D = diag(λIn1 , In2), we have

‖CxMS‖2 = ‖CD−1xMS‖2 ≤ ‖D−1xMS‖2.

Hence the bound in Theorem 3.5 is always sharper than the one in (3.7).

4. Numercial experiments. In [13], the authors obtained

κrel

MLSSTLS =
‖M +N‖2

∥∥[A λb
]∥∥
F

‖x
MS
‖2

and

M +N =
[
−(DK)⊗ rT − (D−1xMS)T ⊗Bλ 1

λBλ
]
,

where

Bλ = DK

(
AT − 2λ2

1 + ‖λCx
MS
‖22
Cx

MS
rT
)
,

M =
[
−(DK)⊗ rT − (D−1x

MS
)T ⊗ (DKAT ) 1

λDKA
T
]
,

N = 2σDKCx
MS

[
N1 N2

]
,

N1 = −
(
A†1
[
A2 λb

]
v
)T
⊗ uT , N2 = vT ⊗ uT
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and u, and v are the left and right singular vectors of P⊥A1

[
A2 λb

]
corresponding to σ,

respectively. Consequently, we can get

(4.1) κrel

MLSSTLS =

∥∥[−(DK)⊗ rT − (D−1x
MS

)T ⊗Bλ 1
λBλ

]∥∥
2

∥∥[A λb
]∥∥
F

‖x
MS
‖2

.

In this section, we report numerical experiments to illustrate that the CPU times using (3.4)
and (3.5) for computing the relative normwise condition number are smaller than when
using (3.1) and (4.1). All the numerical experiments were performed using MATLAB R2016a
with machine precision 2.2204× 10−16.

EXAMPLE 4.1. [13] Consider the MLSSTLS problem (1.2), and let[
A b

]
= Q

[
A11 A12 A1b

0 A22 A2b

]
∈ Rm×(n+1),

where Q = Im − 2yyT with y ∈ Rm being a random unit vector,

A11 = c× eye(20) + triu(rand(20)), with c > 0,

A12 = rand(20, n− 20), A1b = ones(20, 1),

A22 = diag((n− 20) : −1 : 1) ∈ R(m−20)×(n−20), and

A2b =
[
ones(1, n− 19) zeros(1,m− n− 1)

]T
.

In the experiment, we set c = 0.8,m = 600, n = 120, n1 = 100. We report the computed
results (denoted by CR) and the elapsed CPU times in seconds (denoted by CPU) for com-
puting the relative normwise condition number κrel

MLSSTLS by using formulas (3.1), (3.4), (3.5),
and (4.1) for various values of λ in Table 4.1 We can see from Table 4.1 that the computed

TABLE 4.1
Computed results and CPU times for the computation of κrel

MLSSTLS.

λ=1e-05 λ=5 λ=1e+05

(3.1)
CR 4.6092e+07 4.1959e+03 1.7876e+07

CPU 1.4350 1.4366 1.4227

(3.4)
CR 4.6092e+07 4.1959e+03 1.7876e+07

CPU 0.0075 0.0071 0.0065

(3.5)
CR 4.6092e+07 4.1959e+03 1.7876e+07

CPU 0.0044 0.0046 0.0054

(4.1)
CR 4.6092e+07 4.1959e+03 1.7876e+07

CPU 1.1077 1.1492 1.1410

results are always equal for the different formulas but the elapsed CPU times using (3.4)
and (3.5) are much smaller than those for (3.1) and (4.1).
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