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MULTIVARIATE FRACTAL INTERPOLATION FUNCTIONS:
SOME APPROXIMATION ASPECTS AND AN ASSOCIATED FRACTAL

INTERPOLATION OPERATOR∗

KSHITIJ KUMAR PANDEY† AND PUTHAN VEEDU VISWANATHAN†

Abstract. In the classical (non-fractal) setting, the natural kinship between theories of interpolation and
approximation is well explored. In contrast to this, in the context of fractal interpolation, the interrelation between
interpolation and approximation is subtle, and this duality is relatively obscure. The notion of α-fractal functions
provides a proper foundation for the approximation-theoretic facet of univariate fractal interpolation functions (FIFs).
However, no comparable approximation-theoretic aspects of FIFs have been developed for functions of several
variables. The current article intends to open the door for intriguing interactions between approximation theory
and multivariate FIFs. To this end, in the first part of this article, we develop a general framework for constructing
multivariate FIFs, which is amenable to provide a multivariate analogue of an α-fractal function. Multivariate α-fractal
functions provide a parameterized family of fractal approximants associated with a given multivariate continuous
function. Some elementary aspects of the multivariate fractal (not necessarily linear) interpolation operator that sends
a continuous function defined on a hyperrectangle to its fractal analogue are studied. As in the univariate setting, the
notion of α-fractal functions serves as a basis for fractalizing various results in multivariate approximation theory,
including that of multivariate splines. For our part, we provide some approximation classes of multivariate fractal
functions and prove a few results on the constrained fractal approximation of real-valued continuous functions of
several variables.

Key words. multivariate fractal approximation, constrained approximation, fractal operator, nonlinear operator,
Schauder basis, Müntz theorem
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1. Introduction. The first systematic study of interpolation of univariate data with con-
tinuous functions whose graphs are self-referential sets (fractals)—popularly known as fractal
interpolation—has its origin in Barnsley’s fundamental paper on fractal functions and interpo-
lation [1]. During the past three decades, various questions concerning fractal interpolation
have led to numerous generalizations of the original setting by Barnsley; for a lucid expo-
sition, we refer the reader to the book [17]. One of the features of fractal interpolation that
distinguishes it from various standard interpolation techniques is its ability to produce both
smooth and nonsmooth interpolants. It is worth noting that there are only a very few methods
that produce nonsmooth interpolating functions, another popular method being subdivision
schemes [10]. Recently, attempts have been made to link subdivision schemes and fractal
interpolation [11, 14]. The Hausdorff dimension of the graph of a fractal interpolant provides
an additional index to measure the complexity of a signal, for instance, EEG signals [9].
Furthermore, smooth fractal interpolation supplements and subsumes the theory of splines and
Hermite interpolation [7, 18, 27].

Classical theories of interpolation and approximation often appear as two sides of the
same coin; the results about the one frequently imply results about the other. Indeed, at a
basic level, both are, in essence, one and the same. This duality between interpolation and
approximation seems to be more subtle in the fractal setting. Fruitful interactions between
the notion of univariate FIFs and classical approximation theory took place via a suitable
subclass of fractal interpolation functions. This subclass was brought out by Barnsley himself;
see, for instance, [1], especially his remarks in Example 2 on page 309 there. The subclass
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mentioned above was later named α-fractal functions to reflect the vectorial parameter α that
influences the Hausdorff dimension of the graph of a FIF. Substantial extensions of this theme
have been carried out by Navascués and her coworkers [21, 22, 23, 38]. It is our opinion
that the concept of α-fractal functions assisted fractal interpolation to find applications in
other fields of mathematics that belong, in a broad sense, to the topic of approximation of
functions in various function classes, for instance, in the theory of bases and frames [24, 25].
Another interesting theoretical and practical ramification of these findings is the fact that
fractal functions can be used for constrained approximation [36]. Recent years have witnessed
a renewed level of interest in fractal interpolation, in particular, in the study of α-fractal
functions.

Parallel with, or perhaps even prior to, the investigations on approximation-theoretic
aspects of univariate FIFs through the notion of α-fractal functions, attempts have been made
to study multivariate analogues of fractal interpolation, especially the bivariate FIFs or fractal
surfaces. The study of multivariate FIFs, even in the bivariate case, is more complex, and
approaches are less obvious; see, for instance, [4, 6, 8, 12, 15, 16, 19, 41, 42]. In most cases,
the construction is confined to the case wherein some suitable restriction on the interpolation
points is imposed or maps in the Iterated Function System (IFS) use equal scaling factors.
In [31] the authors give a more general framework to construct bivariate fractal interpolation
functions for data on rectangular grids. Our interest in [31] is attributed to the fact that the
formalism therein can be easily adapted to obtain bivariate α-fractal functions, an interlude to
the study of approximation-theoretic aspects of bivariate fractal interpolation; see the recent
works reported in [39, 40].

In contrast to the univariate and bivariate theory of FIFs, higher-dimensional analogues
are scarce in the literature. Hardin and Massopust [13, 17] constructed fractal interpolation
functions from a polygonal set D ⊂ Rn to Rm using suitable triangulations of D. The
construction of FIFs at arbitrary interpolation points placed on rectangular grids of Rn is
undertaken in [3]. Both these constructions are based on the concept of recurrent IFSs [2, 17],
and ensuring continuity of such multivariate fractal functions presents geometric complications
beyond those which arise for similar univariate fractal functions or univariate vector-valued
fractal functions.

The principal aim of this article is to initiate an interaction between multivariate FIFs
and multivariate approximation theory and thereby expose some interesting approximation-
theoretic considerations of multivariate FIFs. Having gained some experience with fractal
approximation theory of univariate and bivariate functions, one could easily anticipate that the
development of a multivariate analogue of α-fractal functions could be the first and foremost
step to accomplish this. However, the impediment is that a general framework to construct
multivariate FIFs that is appropriate to provide a notion of multivariate α-fractal functions is
unavailable. The constructions of multivariate FIFs indicated in the previous paragraph do not
seem to lend themselves to the α-fractal function formalism of multivariate FIFs.

In the first part of this contribution, we overcome this obstacle by developing a general
framework for constructing multivariate FIFs. The corresponding problem for the bivariate
case was treated in [31], to which the first part of the article may be considered a sequel.
However, our interest is in the multivariate analogue of α-fractal functions because it provides
a vehicle to interact with approximation theory. Our theory has been designed to establish
a rigorous definition of a multivariate α-fractal function. Using this multivariate α-fractal
function as the proper foundation, the second part of the article attempts to develop some
approximation-theoretic aspects of multivariate FIFs. The present contribution represents,
however, only the beginning of the study of multivariate fractal approximation theory, and
many questions are left untouched. For instance, multivariate fractal splines and multivariate
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fractal functions in Lp-spaces will appear elsewhere. Let us also remark that another standard
approach to the construction of multivariate α-fractal functions is through the tensor product of
univariate fractal functions. For instance, in [26] the authors study special classes of bivariate
fractal functions given as the tensor product of univariate α-fractal functions and hint at the
multidimensional case. To the best of our knowledge, the self-referentiality of the constructed
multivariate approximants is not evident in this approach. As mentioned earlier, Hardin and
Massopust [13] investigated the construction of multivariate fractal interpolation functions
on domains other than hyperrectangles using triangulations of the domain and corresponding
labeling maps. Their techniques do not appear to be suitable for the construction of α-
fractal functions. A general framework for constructing multivariate fractal interpolation
functions, in particular the extension of the α-fractal function formalism to domains other than
hyperrectangles, appears to be more challenging, and this still remains open.

2. Rudimentary facts.

2.1. Multivariate fractal interpolation functions. As mentioned in the introductory
section, a special class of multivariate FIFs, the so-called multivariate α-fractal functions, is
the subject of the current study. However, we decided to include a brief overview of a general
theory of multivariate FIFs due to the fact that 1) it not only forms the requisite background
material for the present study but may also be of independent interest, and 2) we were unable
to find an explicit treatment for multivariate FIFs. The focus in [31] is on the bivariate case,
although it does include a straightforward extension to higher dimensions. Therefore, this
section not only acts as a precursor to the current study but also as a realization that the
treatment in [31] can be extended almost verbatim to the multivariate case.

Let n ≥ 2 be a natural number. Consider a data set

∆ =
{

(x1,i1 , x2,i2 , . . . , xn,in , yi1i2...in) : ik = 0, 1, . . . , Nk, k = 1, . . . , n
}

such that

ak = xk,0 < xk,1 < · · · < xk,Nk = bk

for each k = 1, 2, . . . , n, n ≥ 2. For k = 1, 2, . . . , n, set Ik = [ak, bk]. To simplify the
notation, for m ∈ N, we write

Σm = {1, 2, . . . ,m}, Σm,0 = {0, 1, . . .m},
∂Σm,0 = {0,m}, int Σm,0 = {1, 2, . . . ,m− 1}.

We denote by Ik,ik a subinterval of Ik determined by the partition {xk,0, xk,1, . . . , xk,Nk},
with Ik,ik = [xk,ik−1, xk,ik ], for ik ∈ ΣNk . For any ik ∈ ΣNk , let uk,ik : Ik → Ik,ik be an
affine map satisfying

(2.1)

{
uk,ik(xk,0) = xk,ik−1 and uk,ik(xk,Nk) = xk,ik , if ik is odd,
uk,ik(xk,0) = xk,ik and uk,ik(xk,Nk) = xk,ik−1, if ik is even,

∣∣uk,ik(x)− uk,ik(x′)
∣∣ ≤ αk,ik |x− x′|, ∀x, x′ ∈ Ik,

where 0 ≤ αk,ik < 1 is a constant. Using the definition of uk,ik , it is easy to verify that

(2.2) u−1
k,ik

(xk,ik) = u−1
k,ik+1(xk,ik), ∀ik ∈ int ΣNk,0.
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Let τ : N× {0, N1, N2, . . . , Nn} → N be defined by{
τ(i, 0) = i− 1 and τ(i,Nk) = i, if i is odd,
τ(i, 0) = i and τ(i,Nk) = i− 1, if i is even.

Using the above notation we see that

uk,ik(xk,jk) = xk,τ(ik,jk), ∀ik ∈ ΣNk , jk ∈ ∂ΣNk,0, k ∈ Σn.

Let K :=
(∏n

k=1 Ik

)
× R. For each (i1, i2, . . . , in) ∈

∏n
k=1 ΣNk , let the function

Fi1i2...in : K → R be continuous satisfying the following conditions:

Fi1i2...in(x1,j1 , x2,j2 , . . . , xn,jn , yj1j2...jn) = yτ(i1,j1)τ(i2,j2)...τ(in,jn)(2.3)

for all (j1, j2, . . . , jn) ∈
∏n
k=1 ∂ΣNk,0 and

(2.4)
∣∣Fi1i2...in(x1, x2, . . . , xn, y)− Fi1i2...in(x1, x2, . . . , xn, y

′)
∣∣ ≤ γi1i2...in |y − y′|,

for all (x1, x2, . . . , xn) ∈
∏n
k=1 Ik and y, y′ ∈ R, where 0 ≤ γi1i2...in < 1 is a constant.

Finally, for each (i1, i2, . . . , in) ∈
∏n
k=1 ΣNk , we define Wi1i2...in : K → K by

(2.5)
Wi1i2...in(x1, x2, . . . , xn, y)

:=
(
u1,i1(x1), u2,i2(x2), . . . , un,in(xn), Fi1i2...in(x1, x2, . . . , xn, y)

)
,

and we consider the Iterated Function System (IFS){
K,Wi1i2...in : (i1, i2, . . . , in) ∈

n∏
k=1

ΣNk

}
.

For the definition of an IFS and its role in the theory of univariate fractal interpolation
function, the interested reader may consult [1]. The following theorem is a multivariate
analogue of the construction of univariate FIFs, originally appearing in [1] with its bivariate
extension studied in [31]. The proof of the theorem is relegated to the appendix at the referees’
behest.

THEOREM 2.1. Let

∆ =
{

(x1,i1 , x2,i2 , . . . , xn,in , yi1i2...in) : ik = 0, 1, . . . , Nk, k = 1, . . . , n
}

be a prescribed multivariate data set and

{
K,Wi1i2...in : (i1, i2, . . . , in) ∈

n∏
k=1

ΣNk
}

be the IFS associated to it, as defined above. Assume that for each (i1, i2, . . . , in) ∈∏n
k=1 ΣNk , the map Fi1i2...in satisfy the following matching conditions:

For all ik ∈ int ΣNk,0, 1 ≤ k ≤ n, and x∗k = u−1
k,ik

(xk,ik) = u−1
k,ik+1(xk,ik),

(2.6)
Fi1...ik...in(x1, . . . , xk−1, x

∗
k, xk+1, . . . , xn, y)

= Fi1...ik+1...in(x1, . . . , xk−1, x
∗
k, xk+1, . . . , xn, y),

where (x1, . . . , xk−1, xk+1, . . . , xn) ∈
∏n
j=1,j 6=k Ij and y ∈ R. Then there exists a unique

continuous function f̃ :
∏n
k=1 Ik → R such that
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1. f̃ interpolates the given multivariate data. That is,

f̃(x1,i1 , x2,i2 , . . . , xn,in) = yi1i2...in , ∀(i1, i2, . . . , in) ∈
n∏
k=1

ΣNk,0.

2. The graph of f̃ defined by

G =
{(
x1, x2, . . . , xn, f̃(x1, x2, . . . , xn)

)
: (x1, x2, . . . , xn) ∈

n∏
k=1

Ik

}
is self-referential in the following sense: G is the union of transformed copies of itself
given by

G =
⋃

(i1,i2,...,in)∈
∏n
k=1 ΣNk

Wi1i2...in(G).

DEFINITION 2.2. The function f̃ appearing in the previous theorem is termed a multi-
variate FIF.

REMARK 2.3. As mentioned in the introductory section, in contrast to the univariate
and bivariate settings, very few studies have addressed multivariate fractal interpolation; [3]
and [13] are worth mentioning. In [3] the authors construct multivariate fractal interpolation
functions on the hypercube [0, 1]n. However, the approach in these references is primarily
based on a recurrent IFS. The construction in [13] is based on a recurrent IFS and uses the
technique of triangulation of the domain. Also, the authors deal with a special choice, namely
affine maps, for the functions vi : Rn × Rm → Rm, which play the role of Fi1...in in our
notation. We deal with more general functions (not necessarily affine) satisfying the required
boundary conditions. More importantly, the constructions in [3, 13] do not assist us for an
α-fractal function formalism and related approximation-theoretic aspects of the multivariate
FIFs that form the main focus of the current paper.

2.2. Some elementary notions from functional analysis. In this section, we will re-
view some fundamental concepts from functional analysis and the perturbation theory of
operators, which will be useful in the upcoming sections. Recall that a sequence (xm)m∈N
in a normed linear space X is called a Schauder basis for X if for each x ∈ X, there exists a
unique sequence (xm)m∈N of scalars such that x =

∑
m∈N

cmxm. The following two definitions

which are fundamental in the perturbation theory of operators can be found in [30] and the
references thereat. Let X and Y be two Banach spaces over the same field K = R or C.

DEFINITION 2.4. LetA,B be two operators between X and Y. ThenA is called relatively
bounded with respect to B (or simply B-bounded) if there exist nonnegative constants a, b
such that

(2.7) ‖A(x)‖ ≤ a‖x‖+ b‖B(x)‖, ∀x ∈ X.

The infimum of all such values of b is called the B-bound of A.
DEFINITION 2.5. Let A,B : X → Y be two operators between X and Y. Then A is

called relatively Lipschitz with respect to B (or simply B-Lipschitz) if

(2.8) ‖A(x)−A(y)‖ ≤ a‖x− y‖+ b‖B(x)−B(y)‖, ∀x, y ∈ X,
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for some nonnegative constants a and b. The infimum of all such values of b is called the
B-Lipschitz constant of A.

REMARK 2.6. Let b0 be the infimum of all values of b satisfying (2.7) or (2.8). Then (2.7)
or (2.8) may not hold with b = b0 because a may tend to infinity as b approaches b0.

LEMMA 2.7 ([30, Proposition 5.1]). Let X be a Banach space, A : X→ X be a Lipschitz
operator. Suppose that |Id−A| < 1, where Id is the identity operator on X and |Id−A| is
the Lipschitz constant of Id−A defined by

|Id−A| = sup
x6=y

‖ (Id−A) (x)− (Id−A) (y)‖
‖x− y‖

.

Then A−1 : X→ X is Lipschitz, and the Lipschitz constant satisfies

|A−1| ≤ 1

1− |Id−A|
.

LEMMA 2.8 ([5, Lemma 1]). Let A : X→ X be a linear operator on a Banach space X
such that

‖A(x)− x‖ ≤ λ1‖x‖+ λ2‖A(x)‖, ∀x ∈ X,

for some λ1 and λ2 ∈ [0, 1). Then A is bounded, invertible, and possesses a bounded inverse.
Further,

1− λ1

1 + λ2
‖x‖ ≤ ‖A(x)‖ ≤ 1 + λ1

1− λ2
‖x‖,

1− λ2

1 + λ1
‖x‖ ≤ ‖A−1(x)‖ ≤ 1 + λ2

1− λ1
‖x‖,

∀x ∈ X.

DEFINITION 2.9. Let X be a normed linear space and A ⊂ X. A is said to be a
fundamental set in X if span(A) = X.

3. A parameterized family of multivariate fractal functions and the associated frac-
tal operator. Influenced by the notion of univariate α-fractal functions and their role in
approximation-theoretical aspects of FIFs [21, 22, 23], we shall develop a special class of
multivariate FIFs, which we call multivariate α-fractal functions.

Let n ∈ N, n ≥ 2 be fixed, and Ik = [ak, bk] ⊂ R be a compact interval for
k = 1, 2, . . . , n. Consider the n-dimensional hyperrectangle

∏n
k=1 Ik and the space

C
(∏n

k=1 Ik
)

endowed with the uniform norm. Let a function f ∈ C
(∏n

k=1 Ik
)

be fixed
but arbitrary. We shall refer to this function as the seed function or germ function.

3.1. Multivariate α-fractal functions. Here we obtain a parameterized family of fractal
functions associated with a prescribed germ function f by using the idea of multivariate fractal
interpolation enunciated in the previous section.

With a slight abuse of notation, consider the set

∆ =
{

(x1,i1 , x2,i2 , . . . , xn,in) ∈
n∏
k=1

Ik ⊂ Rn : ik ∈ ΣNk,0, k ∈ Σn

}
,

where ak = xk,0 < xk,1 < · · · < xk,Nk = bk for each k ∈ Σn := {1, 2, . . . , n}. Note
that {xk,0, xk,1, . . . , xk,Nk} forms a partition of the interval [ak, bk] with the aid of which ∆
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determines a partition of the hyperrectangle. Let us sample the germ function f at the points
in ∆ and consider the data set{(

x1,i1 , . . . , xn,in , f(x1,i1 , . . . , xn,in)
)
∈

n∏
k=1

Ik × R : ik ∈ ΣNk,0, k ∈ Σn

}
.

We shall use the notation ∆ to denote the above data set as well.
Suppose that the affine map uk,ik : Ik → Ik,ik is defined as follows:

uk,ik(x) = ak,ikx+ bk,ik , ik ∈ ΣNk , k ∈ Σn,

where ak,ik and bk,ik are chosen such that the contractive maps uk,ik satisfy (2.1) and (2.2).
Choose a function b ∈ C

(∏n
k=1 Ik

)
such that for all (j1, j2, . . . , jn) ∈

∏n
k=1 ∂ΣNk,0,

(3.1) b(x1,j1 , x2,j2 , . . . , xn,jn) = f(x1,j1 , x2,j2 , . . . , xn,jn).

Consider a continuous map α :
∏n
k=1 Ik → R such that

‖α‖∞ := sup
X∈

∏n
k=1 Ik

∣∣α(X)
∣∣ < 1.

As in the univariate counterpart, b is called the base function and α is called the scaling
function. Define

(3.2)

Fi1i2...in
(
x1, x2, . . . , xn, y

)
= f

(
u1,i1(x1), u2,i2(x2), . . . , un,in(xn)

)
+ α

(
u1,i1(x1), u2,i2(x2), . . . , un,in(xn)

)(
y − b(x1, x2, . . . , xn)

)
.

For (i1, i2, . . . , in) ∈
∏n
k=1 ΣNk and (j1, j2, . . . , jn) ∈

∏n
k=1 ΣNk,0, we have

Fi1i2...in
(
x1,j1 , . . . , xn,jn , f(x1,j1 , . . . , xn,jn)

)
= f

(
u1,i1(x1,j1), u2,i2(x2,j2), . . . , un,in(xn,jn)

)
=f
(
x1,τ(i1,j1), . . . , xn,τ(in,jn)

)
,

verifying that (2.3) holds. Using the condition ‖α‖∞ < 1, one can easily see that the
contractivity condition prescribed in (2.4) is satisfied. Let ik ∈ int ΣNk,0, 1 ≤ k ≤ n, and
x∗k = u−1

k,ik
(xk,ik) = u−1

k,ik+1(xk,ik). For any y ∈ R,

Fi1...ik−1ikik+1...in(x1, . . . , xk−1, x
∗
k, xk+1, . . . , xn, y)

= f
(
u1,i1(x1), u2,i2(x2), . . . , uk−1,ik−1(xk−1), uk,ik (x

∗
k), uk+1,ik+1(xk+1), . . . , un,in(xn)

)
+ α

(
u1,i1(x1), u2,i2(x2), . . . , uk−1,ik−1(xk−1), uk,ik (x

∗
k), uk+1,ik+1(xk+1), . . . , un,in(xn)

)
×

(
y − b(x1, x2, . . . , xn)

)
= f

(
u1,i1(x1), u2,i2(x2), . . . , uk−1,ik−1(xk−1), uk,ik+1(x

∗
k), uk+1,ik+1(xk+1), . . . , un,in(xn)

)
+ α

(
u1,i1(x1), u2,i2(x2), . . . , uk−1,ik−1(xk−1), uk,ik+1(x

∗
k), uk+1,ik+1(xk+1), . . . , un,in(xn)

)
×

(
y − b(x1, x2, . . . , xn)

)
= Fi1...ik−1ik+1ik+1...in(x1, . . . , xk−1, x

∗
k, xk+1, . . . , xn, y).

Therefore, the functions Fi1i2...in in (3.2) satisfy the conditions prescribed in (2.3)–(2.4) and
the matching condition given in (2.6). Ergo, by Theorem 2.1, there exists a unique fractal
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interpolation function, which we shall denote by fα∆,b :
∏n
k=1 Ik → R, such that it satisfies

the self-referential functional equation

(3.3)

fα∆,b(x1, x2, . . . , xn)

= f(x1, x2, . . . , xn)

+ α(x1, x2, . . . , xn)

(
(fα∆,b − b)

(
u−1

1,i1
(x1), u−1

2,i2
(x2), . . . , u−1

n,in
(xn)

))
,

for all (x1, x2, . . . , xn) ∈
∏n
k=1 Ik,ik and (i1, i2, . . . , in) ∈

∏n
k=1 ΣNk . With the notation

X = (x1, x2, . . . , xn),

u−1
i1i2...in

(X) =
(
u−1

1,i1
(x1), u−1

2,i2
(x2), . . . , u−1

n,in
(xn)

)
,

we may write the functional equation for the fractal function fα∆,b as follows: For
X ∈

∏n
k=1 Ik,ik and (i1, i2, . . . , in) ∈

∏n
k=1 ΣNk ,

(3.4) fα∆,b(X) = f(X) + α(X)(fα∆,b − b)
(
u−1
i1i2...in

(X)
)
.

It is worth to mention that

fα∆,b(x1,i1 , x2,i2 , . . . , xn,in) = f(x1,i1 , x2,i2 , . . . , xn,in), ∀ik ∈ ΣNk,0, k ∈ Σn.

Now we have the multivariate analogue of α-fractal functions studied in [21].
DEFINITION 3.1. The aforementioned continuous function fα∆,b :

∏n
k=1 Ik → R is

referred to as the multivariate α-fractal interpolation function corresponding to the seed
function f , associated with the scale function α, the partition ∆, and the base function b. It
can be viewed as a fractal perturbation of the germ function f .

REMARK 3.2. With different admissible choices of the parameters ∆, α, and b, in fact, we
obtain a parameterized family of self-referential functions {fα∆,b}, each of which interpolates
the germ function at points in ∆.

Using the self-referential functional equation satisfied by fα∆,b, it is straightforward to see
the following inequality. For the univariate counterpart, we refer to [21].

PROPOSITION 3.3. Let f ∈ C(
∏n
k=1 Ik) and the parameters α, ∆, and b be fixed as in

the construction above. Then,

(3.5) ‖fα∆,b − f‖∞ ≤ ‖α‖∞‖fα∆,b − b‖∞.

Proposition 3.3 in conjunction with the triangle inequality yields the following upper bound
for the uniform distance between a germ function f and its fractal counterpart fα∆,b.

PROPOSITION 3.4. Let f ∈ C(
∏n
k=1 Ik). Assume that the parameters α, ∆, and b are

fixed as in the construction above. Then,

‖fα∆,b − f‖∞ ≤
‖α‖∞

1− ‖α‖∞
‖f − b‖∞.

REMARK 3.5. Bearing Proposition 3.4 in mind, we have the following results that point
to the approximation of the germ function f ∈ C(

∏n
k=1 Ik) with its fractal counterparts.

1. Let the base function b and the partition ∆ in the construction of α-fractal interpola-
tion functions corresponding to f be fixed. Assume that (αm)m∈N is a sequence of
scale functions such that ‖αm‖∞ < 1 for all m ∈ N and ‖αm‖∞ → 0 as m→∞.
Then, ‖fαm∆,b − f‖∞ → 0 as m→∞.
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2. Let the scale function α and the partition ∆ in the construction of α-fractal interpola-
tion functions corresponding to f be fixed. Assume that (bm)m∈N is a sequence of
base functions such that ‖f − bm‖∞ → 0 as m→∞. Then ‖fα∆,bm − f‖∞ → 0 as
m→∞.

Let us now illustrate the above construction of α-fractal functions by a few simple
examples in the bivariate setting.

EXAMPLE 3.6. Consider the square, [−1, 1] × [−1, 1] ⊂ R2. Let ∆ be the following
mesh partition of the square ∆ = {−1,−0.5, 0, 0.5, 1} × {−1,−0.5, 0, 0.5, 1} . Let us take
the bivariate germ function

f(x, y) = −20e−0.2
√

0.5(x2+y2) − e0.5(cos(2πx)+cos(2πy)) + e+ 20

illustrated in Figure 3.1(a). Note that f(x, y) is an Ackley function with specific choices of
parameters involved; the general expression for Ackley’s function in n dimension can be found
in [20, Section 2.9]. It is worth mentioning that the Ackley’s function is one of the important
test functions considered in nonlinear optimization theory. Consider the base functions

1. b1(x, y) =
(

sin(πx) + cos(πy2 ) + 1
)
f(x, y).

2. b2(x, y) = f(sin(πx2 ), sin(πy2 )).

It can be easily verified that the above choices of b satisfy the conditions sought in (3.1).

(a) Germ function f . (b) fα∆,b with scale function α(x, y) = 0.9 and
b = b1.

(c) fα∆,b with scale function α(x, y) =
exy

3
and

b = b1.

(d) fα∆,b with scale function α(x, y) =
exy

3
and

b = b2.

FIG. 3.1. Fractal perturbation of Ackley’s function with different choices of scaling and base function.

Figures 3.1(b)–3.1(c) illustrate the surfaces corresponding to the fractal perturbations of
f with the base function b1 and the scaling function α : [−1, 1] × [−1, 1] → (−1, 1) given
by α(x, y) = 0.9 and α(x, y) = exy

3 , respectively. Figure 3.1(d) is the graph of the fractal
function of f associated with the base function b2 and the scaling function α(x, y) = exy

3 .
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3.2. Fractal operator. Here we choose the base function b in the construction of the α-
fractal function fα∆,b through an operator L : C(

∏n
k=1 Ik)→ C(

∏n
k=1 Ik) as follows. Assume

that L : C(
∏n
k=1 Ik)→ C(

∏n
k=1 Ik) satisfies

L(f)(x1,j1 , . . . , xn,jn) = f(x1,j1 , . . . , xn,jn), ∀(j1, . . . , jn) ∈
n∏
k=1

∂ΣNk,0.

Such an operator will be referred to as an admissible operator. Take b = L(f). In this case, we
denote the α-fractal function fα∆,b corresponding to f by fα∆,L. In contrast to the univariate
case studied in the literature, here, in general, the operator L that defines the parameter map
b is not necessarily linear. This will help the fractal operator to have access to the realm of
nonlinear operator theory.

DEFINITION 3.7. Fix a partition ∆, an operator L : C(
∏n
k=1 Ik)→ C(

∏n
k=1 Ik), and a

scale function α as mentioned above. The operator

Fα∆,L : C(
n∏
k=1

Ik)→ C(
n∏
k=1

Ik), Fα∆,L(f) = fα∆,L,

is called the (multivariate) fractal operator.
REMARK 3.8. By the construction of an α-fractal function given in Section 3.1, it follows

that the fractal operator Fα∆,L interpolates f at the points in the chosen partition ∆. Further, in
view of Proposition 3.4, we have

(3.6) ‖Fα∆,L(f)− f‖∞ ≤
‖α‖∞

1− ‖α‖∞
‖f − L(f)‖∞.

Thus, for a suitable choice of the scale function α and/or the base function b, Fα∆,L(f)
approximates f sufficiently well. Furthermore, if L(f) = f or α = 0, then Fα∆,L(f) = f.

In particular, if L = Id, the identity operator on C(
∏n
k=1 Ik), then the fractal operator

Fα∆,L = Id.
REMARK 3.9. As in the univariate setting [21], it can be proved that if the operator

L : C(
∏n
k=1 Ik)→ C(

∏n
k=1 Ik) is a linear operator, then the corresponding fractal operator

Fα∆,L : C(
∏n
k=1 Ik) → C(

∏n
k=1 Ik) is also linear. Furthermore, if L is a bounded linear

operator, then it follows from (3.6) that the corresponding fractal operator Fα∆,L is also a
bounded linear operator. In the remaining part of this section, we bring to light a few properties
of the fractal operator beyond the familiar terrain of bounded linear operators.

PROPOSITION 3.10. The fractal operator Fα∆,L : C(
∏n
k=1 Ik) → C(

∏n
k=1 Ik) is rela-

tively bounded with respect to L with L-bound less than or equal to
‖α‖∞

1− ‖α‖∞
.

Proof. From (3.6) we have

‖fα∆,L − f‖∞ ≤
‖α‖∞

1− ‖α‖∞
(
‖f‖∞ + ‖L(f)‖∞

)
.

Thus,

‖Fα∆,L(f)‖∞ = ‖fα∆,L‖∞ ≤
1

1− ‖α‖∞
‖f‖∞ +

‖α‖∞
1− ‖α‖∞

‖L(f)‖∞,

completing the proof.
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As a consequence of the previous proposition, we have the following result, which states
that the (nonlinear) fractal operator Fα∆,L shares some basic boundedness properties of the
operator L. The proof is straightforward and hence omitted.

COROLLARY 3.11. Consider the map L : C(
∏n
k=1 Ik) → C(

∏n
k=1 Ik) and the corre-

sponding (multivariate) fractal operator Fα∆,L.
1. If L is topologically bounded (that is, L maps bounded sets into bounded sets), then
Fα∆,L is also topologically bounded.

2. If L is norm-bounded, that is,

ρ(L) := max
{

sup
f 6=0

‖L(f)‖∞
‖f‖∞

, ‖L(0)‖∞
}
<∞,

then Fα∆,L is also norm-bounded.
3. If L is quasibounded, that is,

[L]Q := lim sup
‖f‖→∞

‖L(f)‖∞
‖f‖∞

<∞,

then Fα∆,L is quasibounded as well.

PROPOSITION 3.12. The fractal operator Fα∆,L : C(
∏n
k=1 Ik) → C(

∏n
k=1 Ik) is rel-

atively Lipschitz with respect to L, and its L-Lipschitz constant is less than or equal to
‖α‖∞

1− ‖α‖∞
. In particular, if L : C(

∏n
k=1 Ik)→ C(

∏n
k=1 Ik) is a Lipschitz operator, then so

is the fractal operator Fα∆,L with its Lipschitz constant |Fα∆,L| ≤
1 + ‖α‖∞|L|

1− ‖α‖∞
.

Proof. Let f and g be in C(
∏n
k=1 Ik). Using the functional equations for the fractal

functions fα∆,L and gα∆,L (see (3.3)) and some routine computations we have∥∥Fα∆,L(f)−Fα∆,L(g)
∥∥
∞ = ‖fα∆,L − gα∆,L‖∞

≤ 1

1− ‖α‖∞
‖f − g‖∞ +

‖α‖∞
1− ‖α‖∞

‖L(f)− L(g)‖∞,

proving that Fα∆,L is relatively Lipschitz with respect to L. In particular, if L is Lipschitz with
Lipschitz constant |L|, then the previous inequality yields

‖Fα∆,L(f)−Fα∆,L(g)‖∞ ≤
1

1− ‖α‖∞
‖f − g‖∞ +

‖α‖∞
1− ‖α‖∞

|L|‖f − g‖∞,

proving that Fα∆,L is a Lipschitz operator.
PROPOSITION 3.13. Assume that L : C(

∏n
k=1 Ik)→ C(

∏n
k=1 Ik) is a Lipschitz operator

and that the scaling function α is such that ‖α‖∞ <
(
2 + |L|

)−1
. Then the fractal operator

Fα∆,L : C(
∏n
k=1 Ik)→ C(

∏n
k=1 Ik) is a Lipschitz isomorphism (surjective bilipschitz map),

that is, Fα∆,L is a bijective Lipschitz operator and its inverse (Fα∆,L)−1 : C(
∏n
k=1 Ik) →

C(
∏n
k=1 Ik) is also Lipschitz.
Proof. Let f, g ∈ C(

∏n
k=1 Ik). Using the functional equations (see (3.3)) for the self-

referential counterparts to f and g, we have∣∣(Id−Fα∆,L)(f)(X)− (Id−Fα∆,L)(g)(X)
∣∣

=
∣∣∣− α(X)

[(
fα∆,b − L(f)

)] (
u−1
i1...in

(X)
)

+ α(X)
[(
gα∆,b − L(g)

)] (
u−1
i1...in

(X)
)∣∣∣

≤ |α(X)|
[ ∣∣(fα∆,L − gα∆,L) (u−1

i1...in
(X)

)∣∣+
∣∣(L(f)− L(g)) (u−1

i1...in
(X)

)∣∣ ],

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

638 K. K. PANDEY AND P. VISWANATHAN

for all X ∈
∏n
k=1 Ik,ik and (i1, . . . , in) ∈

∏n
k=1 ΣNk . Thus, we obtain

(3.7)
‖(Id−Fα∆,L)(f)− (Id−Fα∆,L)(g)‖∞

≤ ‖α‖∞
(
‖L(f)− L(g)‖∞ + ‖Fα∆,L(f)−Fα∆,L(g)‖∞

)
.

Since L is Lipschitz, by the previous proposition, the fractal operator Fα∆,L is Lipschitz with

|Fα∆,L| ≤
1 + ‖α‖∞|L|

1− ‖α‖∞
,

and hence from (3.7), we infer that

|Id−Fα∆,L| ≤ ‖α‖∞
(
|L|+ |Fα∆,L|

)
≤ ‖α‖∞

(
|L|+ 1 + ‖α‖∞|L|

1− ‖α‖∞

)
=
‖α‖∞

(
1 + |L|

)
1− ‖α‖∞

.

The assertion is now immediate by Lemma 2.7.

4. On approximation aspects of multivariate α-fractal functions.

4.1. Schauder basis consisting of α-fractal functions. The theory of Schauder bases is
an important tool in functional analysis, for instance, for solving partial differential equations
and boundary value problems; see, for example [34] for background information. The question
of existence of a Schauder basis for C([0, 1]n) being settled (see, for instance, [33]), the
emphasis switches to searching for bases with some nice properties. In this section, the
existence of a Schauder basis consisting of multivariate self-referential functions for the space
C([0, 1]n) is attempted; the maps involved are obtained as suitable fractal perturbations of
those belonging to a classical Schauder basis for the space C([0, 1]n).

PROPOSITION 4.1. Let L be a bounded linear operator and ‖α‖∞ < min{1, ‖L‖−1}.
Then the fractal operator Fα∆,L is a topological isomorphism (i.e., a bijective bounded linear
operator with bounded inverse).

Proof. By virtue of Remark 3.9 it follows that Fα∆,L is a bounded linear operator whenever
L is so. In view of Proposition 3.3 we have

‖Fα∆,L(f)− f‖∞ = ‖fα∆,L − f‖∞ ≤ ‖α‖∞‖fα∆,L − L(f)‖∞
≤ ‖α‖∞‖Fα∆,L(f)‖∞ + ‖α‖∞‖L‖‖f‖∞.

The claim is immediate from Lemma 2.8.
Let us mention here that a typical example for a Schauder basis for the space C([0, 1]) is

the Faber-Schauder system or the orthonormal Franklin system. Since the space C
(
[0, 1]n

)
can be thought of as the injective tensor product of n copies of C([0, 1]), the corresponding
products of the Faber-Schauder bases in C([0, 1]) form a basis of C

(
[0, 1]n

)
[33].

THEOREM 4.2. The space C([0, 1]n) admits a Schauder basis consisting of multivariate
fractal functions.

Proof. Let L : C([0, 1]n) → C([0, 1]n) be a bounded linear operator and the scaling
function α ∈ C([0, 1]n) be such that ‖α‖∞ < min{1, ‖L‖−1}. With these assumptions, from
the previous proposition, it follows that the fractal operator Fα∆,L is a topological isomorphism.
Since a topological isomorphism preserves Schauder bases, it follows that if (fm)m∈N is a
Schauder basis of C([0, 1]n), then

(
(fm)α∆,L

)
m∈N is also a Schauder basis.
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4.2. Perturbed fractal approximation classes. Let X = (x1, . . . , xn) ∈ Rn and
d = (d1, . . . , dn) be an n-tuple with nonnegative integer components. Let us use the no-
tation

Xd = xd11 . . . xdnn , |d| = d1 + · · ·+ dn.

Then

p(X) =
∑
|d|≤m

cdX
d,

where cd ∈ R are given constants, is called a polynomial in n variables of degree less than or
equal to m. Let

Pm,n =
{
p : p(X) =

∑
|d|≤m

cdX
d, cd ∈ R

}
.

We write Pm,n
(∏n

k=1 Ik
)

if the variable X is restricted to the domain
∏n
k=1 Ik ⊂ Rn.

Observe that Pm,n is a finite-dimensional subspace of C
(∏n

k=1 Ik
)

and dim(Pm,n) =
(
n+m
m

)
.

We shall denote the space of all n-variate polynomials with real coefficients by Pn, and by
Pn
(∏n

k=1 Ik
)

if the variable X is restricted to the domain
∏n
k=1 Ik ⊂ Rn.

Let ∆, L, and α be fixed as in the construction of the fractal operator Fα∆,L. Furthermore,
we assume that L is a bounded linear operator so that the corresponding fractal operator
Fα∆,L : C

(∏n
k=1 Ik

)
→ C

(∏n
k=1 Ik

)
is also a linear bounded operator. Consider the image

of the subspace Pm,n
(∏n

k=1 Ik
)

under the fractal operator Fα∆,L:

Pαm,n
( n∏
k=1

Ik
)

:= Fα∆,L
(
Pm,n

( n∏
k=1

Ik
))
.

The members of Pαm,n(
∏n
k=1 Ik) are called the n-variate fractal polynomials of degree less

than or equal to m. Similarly, the elements of the space

Pαn (

n∏
k=1

Ik) := Fα∆,L
(
Pn
( n∏
k=1

Ik
))

are referred to as the n-variate fractal polynomials. That is,
DEFINITION 4.3. A function f ∈ C

(∏n
k=1 Ik

)
is called an n-variate fractal polynomial

if there exists an n-variate polynomial p ∈ Pn
(∏n

k=1 Ik
)

such that f = Fα∆,L(p).
The following result serves as a fractal counterpart to the multivariate polynomial approx-

imation theorem.
THEOREM 4.4. Let f ∈ C(

∏n
k=1 Ik) and ε > 0.

1. Assume that a set ∆ that determines a partition of the n-dimensional hyperrect-
angle

∏n
k=1 Ik and an admissible bounded linear operator L : C(

∏n
k=1 Ik) →

C(
∏n
k=1 Ik) in the construction of the fractal operator Fα∆,L are fixed. Then there

exist a non-null scale function α = α(ε) and a corresponding n-variate fractal
polynomial pα∆,L such that ‖f − pα∆,L‖∞ < ε.

2. Assume that a set ∆ that determines a partition of the n-dimensional hyperrectangle∏n
k=1 Ik and a non-null scale function α in the construction of the fractal operator
Fα∆,L are fixed. Then there exist an admissible bounded linear operator L and a
corresponding n-variate fractal polynomial pα∆,L such that ‖f − pα∆,L‖∞ < ε.
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In particular, the set of all n-variate fractal polynomials with non-null scale vector is
dense in C(

∏n
k=1 Ik) with respect to the ‖.‖∞-norm and hence with respect to any Lp-norm

‖.‖p, for 1 ≤ p <∞.
Proof. Let f ∈ C(

∏n
k=1 Ik) and ε > 0. By the Stone-Weierstrass theorem there exists a

multivariate polynomial p in n-variables such that

‖f − p‖∞ <
ε

2
.

Now, by virtue of Proposition 3.4,

‖f − pα∆,L‖∞ = ‖f − p+ p− pα∆,L‖∞ ≤ ‖f − p‖∞ + ‖p− pα∆,L‖∞

≤ ε

2
+
‖α‖∞

1− ‖α‖∞
‖p− L(p)‖∞.

Bearing the above inequality in mind, one can either (i) fix an admissible bounded linear
operator L such that Lp 6= p and choose a scale function α 6= 0 such that

‖α‖∞ <
ε/2

ε/2 + ‖p− L(p)‖∞
,

or (ii) fix a scaling function α 6= 0 satisfying ‖α‖∞ < 1 and choose an admissible bounded
linear operator L : C(

∏n
k=1 Ik)→ C(

∏n
k=1 Ik), L(p) 6= p, such that

‖p− L(p)‖∞ ≤
ε(1− ‖α‖∞)

2‖α‖∞
.

Then, with any of the above mentioned choice of parameters, we have

‖α‖∞
1− ‖α‖∞

‖p− L(p)‖∞ <
ε

2
,

and consequently, ‖f − pα∆,L‖∞ < ε, establishing the claim.
In fact, we have the following result:
THEOREM 4.5. Let L be an admissible bounded linear operator and consider a fixed

scaling function α such that ‖α‖∞ < min{1, ‖L‖−1}. Then the space of all n-variate fractal
polynomials Pαn (

∏n
k=1 Ik) is dense in C(

∏n
k=1 Ik).

Proof. Recall that Pαn (
∏n
k=1 Ik) := Fα∆,L

(
Pn
(∏n

k=1 Ik
))

. By Proposition 4.1, it
follows that the fractal operator Fα∆,L is a topological isomorphism so that for any function
g ∈ C(

∏n
k=1 Ik), there exists f ∈ C(

∏n
k=1 Ik) with g = Fα∆,L(f). By the density of

Pn(
∏n
k=1 Ik) in C(

∏n
k=1 Ik), there exists a sequence (pm)m∈N of n-variate polynomials in

Pn(
∏n
k=1 Ik) such that f = limm→∞ pm. By the continuity of the fractal operator it follows

that g = limm→∞(pm)α∆,L, where (pm)α∆,L = Fα∆,L(pm).
Let ∆, α, and L be as prescribed in the definition of the fractal operator Fα∆,L, and further

assume that L is linear. Let us recall that with these assumptions, the fractal operator Fα∆,L is
linear.

THEOREM 4.6. Let ∆, α, and L be as prescribed in the definition of the fractal operator
Fα∆,L, and further assume that L is linear. Given any f ∈ C(

∏n
k=1 Ik), there exists a best

approximant pα∆,L to f from the space Pαm,n
(∏n

k=1 Ik
)
, that is, there exists pα∆,L, an n-variate

fractal polynomial of degree less than or equal to m, such that

‖f − pα∆,L‖∞ = inf
{
‖f − qα∆,L‖∞ : qα∆,L ∈ Pαm,n

( n∏
k=1

Ik
)}
.
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Proof. As an immediate consequence of the finite dimensionality of Pm,n
(∏n

k=1 Ik
)

and
hence that of Pαm,n

(∏n
k=1 Ik

)
:= Fα∆,L

(
Pm,n

(∏n
k=1 Ik

))
, the existence of a best approxi-

mant from Pαm,n
(∏n

k=1 Ik
)

to each f ∈ C(
∏n
k=1 Ik) follows.

THEOREM 4.7. For each f ∈ C(
∏n
k=1 Ik), the set A

Pαm,n

(∏n
k=1 Ik

)(f) of all best

approximants to f from Pαm,n
(∏n

k=1 Ik
)

is a closed convex set. The associated metric
projection, that is, the set-valued map Ψ

Pαm,n

(∏n
k=1 Ik

) : C(
∏n
k=1 Ik) → Pαm,n

(∏n
k=1 Ik

)
that maps each f ∈ C(

∏n
k=1 Ik) to the set of best approximants A

Pαm,n

(∏n
k=1 Ik

)(f) is upper

semi-continuous, closed, and locally bounded.
Proof. The proof follows exactly as for the univariate counterpart of this theorem (see

[37, Theorem 2.4]) and hence is omitted.
REMARK 4.8. Note that the space of all n-variate fractal polynomials Pαn (

∏n
k=1 Ik) is

equal to the union
⋃
m∈N P

α
m,n

(∏n
k=1 Ik

)
. As mentioned in the previous theorem,

Pαm,n
(∏n

k=1 Ik
)

is finite dimensional and hence closed. This immediately implies that
Pαn (

∏n
k=1 Ik) is an Fσ-set. For the space Pαm,n

(∏n
k=1 Ik

)
, being a proper subspace of

C
(∏n

k=1 Ik
)
, we have Pαm,n

(∏n
k=1 Ik

)0
=
(
Pαm,n

(∏n
k=1 Ik

))0

= ∅. Consequently,

Pαn (
∏n
k=1 Ik) is of first category in C

(∏n
k=1 Ik

)
and hence topologically “small”.

Let us introduce the following notation for the fractal minimax error:

E
(
f ;Pαm,n(

n∏
k=1

Ik)
)

= dist
(
f, Pαm,n(

n∏
k=1

Ik)
)

:= inf
{
‖f − pα∆,L‖∞ : pα∆,L ∈ Pαm,n(

n∏
k=1

Ik)
}
.

The next theorem attempts to provide a Jackson-type estimate for the approximation with
multivariate fractal polynomials.

THEOREM 4.9. Let L : C(
∏n
k=1 Ik) → C(

∏n
k=1 Ik) be an admissible bounded linear

operator. Then, for any f ∈ C(
∏n
k=1 Ik), we have

E
(
f ;Pαm,n(

n∏
k=1

Ik)
)
≤ 5

4

n∑
k=1

ωk(f ;
1

m
) +
‖α‖∞(1 + ‖L‖)

1− ‖α‖∞
‖f‖∞,

where the modulus of continuity of f ∈ C(
∏n
k=1 Ik) along the k-th variable is defined by

ωk(f ; ε) = sup
(x1,x2...,xn)∈

∏n
k=1 Ik

{
|f(x1, . . . , xk, . . . , xn)− f(x1, . . . , x

′
k, . . . , xn)| :

ak ≤ x′k ≤ bk, |xk − x′k| ≤ ε
}
.

Proof. Consider the multivariate Bernstein polynomials associated with f ∈ C(
∏n
k=1 Ik)

defined by

Bm(f ;x1, x2, . . . , xn) =

m∑
l1=0

· · ·
m∑
ln=0

f
(
x1,0 +

l1(x1,N1 − x1,0)

m
, . . . ,

xn,0 +
ln(xn,Nn − xn,0)

m

) n∏
k=1

blk,m(xk),

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

642 K. K. PANDEY AND P. VISWANATHAN

where blk,m(xk) = 1
(xk,Nk−xk,0)m

(
m
lk

)
(xk − xk,0)lk(xk,Nk − xk)m−lk , k = 1, . . . , n. We

have

E
(
f ;Pαm,n(

n∏
k=1

Ik)
)

= dist
(
f, Pαm,n(

n∏
k=1

Ik)
)
≤ ‖f − (Bm(f))α∆,L‖∞

≤ ‖f −Bm(f)‖∞ + ‖Bm(f)− (Bm(f))α∆,L‖∞

≤ ‖f −Bm(f)‖∞ +
‖α‖∞

1− ‖α‖∞
‖Bm(f)− L(Bm(f))‖∞.

Since we have [32, Theorem 3.1]

‖f −Bm(f)‖∞ ≤
5

4

n∑
k=1

ωk(f ;
1

m
)

and ‖Bm‖ = 1, the assertion follows.
REMARK 4.10. Let us recall item 2. of Remark 3.5. Suppose that the scale function α

and the partition ∆ in the construction of the α-fractal interpolation functions corresponding
to f are fixed. Assume that (Lm)m∈N is a sequence of admissible operators that is strongly
convergent to the identity operator, that is, ‖Lm(f) − f‖∞ → 0 as m → ∞ for each
f ∈ C(

∏n
k=1 Ik). Then ‖fα∆,Lm − f‖∞ → 0 as m→∞. Consequently, the corresponding

sequence of fractal operators
(
Fα∆,Lm

)
m∈N is strongly convergent to the identity operator.

The Bernstein operator being one of the most attractive approximation operators, in place
of (Lm)m∈N, one may consider the sequence of multivariate Bernstein (linear) operators
(Bm)m∈N for a hyperrectangle in Rn. This provides a sequence of multivariate α-fractal
functions

(
fα∆,Bm

)
m∈N and correspondingly a sequence of fractal operators

(
Fα∆,Bm

)
m∈N

called the Bernstein fractal operators; the univariate counterpart to which is studied, for
instance, in [35]. As indicated earlier, in particular, we have

∥∥Fα∆,Bm(f)− f
∥∥
∞ → 0 as m→∞, ∀f ∈ C(

n∏
k=1

Ik).

REMARK 4.11. Similar to the class of multivariate fractal polynomials, we can define
fractal versions of multivariate trigonometric polynomials and rational functions using the
fractal operator Fα∆,L, specifically, the bounded linear fractal operator Fα∆,L, for convenience.

4.3. Multivariate fractal Müntz theorem. We shall give a fractal version of the mul-
tivariate Müntz theorem. Let us start with some preliminary notation and definitions; for a
detailed exposure the reader can consult [29]. Consider the n-dimensional hypercube [0, 1]n.
Following [29], let us introduce a few sets of powers involving n-variables x1, x2, . . . , xn.
For brevity, first let us consider n = 3. For the variables x1, x2, and x3, B(3)

1 is a set which is
the null set or contains some of the three sequences {xai1 }, {x

bi
2 }, {x

ci
3 }, where ai, bi, ci ∈ R

for i ∈ N. The set B(3)
2 is a null set or includes some of the three double sequences {xdi1 x

ej
2 },

{xfi2 x
gj
3 }, {x

hi
3 x

kj
1 }, where di, ej , . . . , kj are real numbers for i, j ∈ N. Similarly, B(3)

3 is
the null set or {xli1 x

mj
2 xnk3 }, where li,mj , nk are in R for i, j, k ∈ N. Assume that each

sequence (ai), (bj), . . . , (nk) is positive and strictly monotonic increasing. Define the family
B(3) = B

(3)
1 ∪ B(3)

2 ∪ B(3)
3 . Similarly, in the general case, one can introduce the sets B(n)

1 ,
B

(n)
2 , . . . , B

(n)
n , and B(n) = B

(n)
1 ∪B(n)

2 ∪ · · · ∪B(n)
n .
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DEFINITION 4.12. For the set B(n) above,M = {1} ∪ B(n) is called a Müntz set, and
the linear span of the Müntz set is said to be a Müntz space. Elements in the Müntz space are
called multivariate Müntz polynomials.

DEFINITION 4.13. The image pα∆,L of a multivariate Müntz polynomial p under the
fractal operator Fα∆,L is called a multivariate fractal Müntz polynomial.

THEOREM 4.14 ([29, Proposition 1]). The Müntz set {1} ∪ B(n) is fundamental in
C([0, 1]n) if and only if

1. B(n)
i consists of all possible i-tuple sequences involving i variables of x1, x2, . . . ,

xn, of the form defined above.

2. In each i-tuple sequence of the previous item, for example, {xλ
1
j(1)

1 , . . . , x
λij(i)
i }, the

exponents are such that
∑∞
j(l)=1

1
λl
j(l)

=∞ for each l = 1, . . . , i, i ∈ Σn.

THEOREM 4.15. Let ∆ be a fixed partition of the hypercube [0, 1]n and the Müntz
setM = {1} ∪ B(n) be such that the two conditions of the previous theorem are satisfied.
Suppose that (αm)m∈N is a sequence of non-zero scaling functions in C(

∏n
k=1 Ik) such that

‖αm‖∞ < 1 for all m ∈ N and αm → 0 as m → ∞. Then the family of fractal Müntz
polynomials {Fαm∆,L(M)}m∈N, where L is a fixed bounded linear admissible operator, is
fundamental in C(

∏n
k=1 Ik).

Proof. Let f ∈ C(
∏n
k=1 Ik) and ε > 0 be given. By the previous theorem, there exists a

Müntz polynomial p ∈ span(M) such that

‖f − p‖∞ <
ε

2
.

Since αm → 0 as m → ∞, one can choose a nonzero scale function αk such that
‖αk‖∞ <

ε

ε+ 2‖p− L(p)‖∞
. Bearing (3.6) in mind, the triangle inequality yields

‖f − pα
k

∆,L‖∞ ≤ ‖f − p‖∞ + ‖p− pα
k

∆,L‖∞

<
ε

2
+
‖αk‖∞

1− ‖αk‖∞
‖p− L(p)‖∞ < ε.

Since L is linear, pα
k

∆,L ∈ span
(
Fαk∆,L(M)

)
, completing the proof.

REMARK 4.16. The above theorem provides a fractal Müntz polynomial pα∆,L ap-
proximating a given multivariate continuous function up to a desired accuracy, keeping the
bounded linear operator L fixed. There may be instances where one desires to keep the
scale function fixed. In this regard, let us note that the family of fractal Müntz polynomi-
als {Fα∆,Bm(M)}m∈N, where Bm is the multivariate Bernstein operator, is fundamental in
C(
∏n
k=1 Ik).
REMARK 4.17. As the fractal approximants do not possess closed form expressions

but enjoys implicit self-referential equations, the standard methods for convergence analy-
sis/approximation error bounds such as a Taylor series analysis, the Cauchy remainder form,
and the Peano kernel theorem may not easily be adapted. A look back at the arguments regard-
ing error bounds should convince the reader that essentially we used the triangle inequality
and known error bounds with classical approximants; see also [28]. These error bounds are
not claimed to be sharp, and obtaining optimal error bounds has so far eluded us.

4.4. Some constrained approximation aspects. In this section, we provide some con-
ditions on the scaling function α and the base function b such that the fractal functions fα∆,b
can be constrained with respect to the germ function f ∈ C

(∏n
k=1 Ik

)
. To this end, we begin

with the following notation.
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1. Let X = (x1, x2, . . . , xn) ∈
∏n
k=1 Ik,

m∗ = inf
X∈

∏n
k=1 Ik

b(X), M∗ = sup
X∈

∏n
k=1 Ik

b(X).

2. For (i1, . . . , in) ∈
∏n
k=1 ΣNk , let

mi1...in = inf
X∈

∏n
k=1 Ik

f
(
ui1...in(X)

)
, Mi1...in = sup

X∈
∏n
k=1 Ik

f
(
ui1...in(X)

)
.

THEOREM 4.18. Let f ∈ C(
∏n
k=1 Ik) be such that 0 ≤ f(X) ≤ M for all

X ∈
∏n
k=1 Ik. Suppose that ∆ is a partition of the hyperrectangle

∏n
k=1 Ik and

b ∈ C(
∏n
k=1 Ik) satisfies the condition in (3.1). Then the multivariate α-fractal function

fα∆,b satisfies 0 ≤ fα∆,b(x) ≤ M for all X ∈
∏n
k=1 Ik, provided the scale function is so

chosen that

max
{
− mi1...in

M −m∗
,−M −Mi1...in

M∗

}
≤ α(ui1...in(X)) ≤ max

{mi1...in

M∗
,
M −Mi1...in

M −m∗

}
,

for all X ∈
∏n
k=1 Ik and (i1, . . . , in) ∈

∏n
k=1 ΣNk . In case M∗ = 0, the terms containing

M∗ in the denominator can be dropped out in the above inequality. In particular, these
constraints ensure that the fractal counterpart fα∆,b is nonnegative if the germ function f is so.

Proof. Recall from (3.4) that

fα∆,b
(
ui1...in(X)

)
= α(ui1...in(X))fα∆,b(X) + qi1...in(X),

for all X ∈
∏n
k=1 Ik and (i1, i2, . . . , in) ∈

∏n
k=1 ΣNk , where

qi1...in(X) = f(ui1...in(X))− α(ui1...in(X))b(X).

For brevity, let

Fi1...in(X, y) = α(ui1...in(X))y + qi1...in(X).

Since f is a nonnegative function and b satisfies (3.1), we have M∗ ≥ 0. Note that the hyper-
rectangle

∏n
k=1 Ik is a finite union of transformed copies of itself, namely,∏n

k=1 Ik =
⋃

(i1,i2,...,in)∈
∏n
k=1 ΣNk

ui1i2,...in
(∏n

k=1 Ik
)
. Furthermore, the self-referential

function fα∆,b is constructed iteratively by using the above functional equation, and it inter-
polates the germ function f at points in ∆. Consequently, to prove 0 ≤ fα(X) ≤ M , for
all X ∈

∏n
k=1 Ik, it is sufficient to show that 0 ≤ Fi1...in(X, y) ≤ M for all (X, y) ∈(∏n

k=1 Ik

)
× [0,M ] and (i1, . . . , in) ∈

∏n
k=1 ΣNk . We shall deal with it by considering the

following two cases:
Case I. 0 ≤ α(X) < 1.

Let (X, y) ∈ (
∏n
k=1 Ik)× [0,M ]. We have

qi1...in(X) ≤ α(ui1...in(X))y + qi1...in(X) ≤ α(ui1...in(X))M + qi1...in(X).

Thus, 0 ≤ Fi1...in(X, y) ≤ M holds if for all X ∈
∏n
k=1 Ik the following conditions are

satisfied:

1. f(ui1...in(X))− α(ui1...in(X))b(X) ≥ 0.
2. f(ui1...in(X))− α(ui1...in(X))b(X) ≤M

(
1− α(ui1...in(X))

)
.
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We have, f(ui1...in(X)) ≥ mi1...in and b(X) ≤M∗. Choosing a continuous scale function
α :
∏n
k=1 Ik → (−1, 1) such that α(ui1...in(X)) ≤ mi1...in

M∗ , we get

f(ui1...in(X))− α(ui1...in(X))b(X) ≥ mi1...in − α(ui1...in(X))b(X)

≥ mi1...in −
mi1...in

M∗
M∗ = 0.

Also note that ifM∗ = 0,we have f(ui1...in(X))−α(ui1...in(X))b(X) ≥ 0 for any choice of
the scale function. On lines similar to the above, bearing in mind that
f(ui1...in(X)) ≤ Mi1...in and b(X) ≥ m∗, the selection of a scale function satisfying
α(ui1...in(X)) ≤ M−Mi1...in

M−m∗ provides

f(ui1...in(X))− α(ui1...in(X))b(X) ≤M(1− α(ui1...in(X))).

Therefore, by choosing a continuous function α :
∏n
k=1 Ik → (−1, 1) satisfying the restraint

α(ui1...in(X)) ≤ min
{mi1...in

M∗ ,
M−Mi1...in

M−m∗

}
, we get the desired inequality

0 ≤ Fi1...in(X, y) ≤M.
Case II. −1 < α(X) ≤ 0.

On lines similar to the first case, we get 0 ≤ Fi1...in(X, y) ≤ M, provided the inequality
max

{
− mi1...in

M−m∗
,−M−Mi1...in

M∗

}
≤ α(ui1...in(X)) holds. This completes the proof.

REMARK 4.19. Let f ∈ C(
∏n
k=1 Ik) be such that m ≤ f(X) ≤ 0 for all

X ∈
∏n
k=1 Ik. As in the previous theorem, we can construct a fractal perturbation fα∆,b

satisfying m ≤ fα∆,b(X) ≤ 0 for all X ∈
∏n
k=1 Ik. To achieve this, we apply the previous

theorem to the function f̂ = −f and the associated base function b̂ = −b. By choosing a
continuous scale function α :

∏n
k=1 Ik → R such that

max
{
− Mi1...in

m−M∗
,−m−mi1...in

m∗

}
≤ α(ui1...in(X)) ≤ max

{Mi1...in

m∗
,
m−mi1...in

m−M∗

}
,

for all X ∈
∏n
k=1 Ik, we can ensure that m ≤ fα(X) ≤ 0 for all X ∈

∏n
k=1 Ik. The next

theorem provides one-sided approximations of a given multivariate real-valued continuous
function by fractal functions.

THEOREM 4.20. Let f ∈ C(
∏n
k=1 Ik). Assume that the scale function α and the base

function b are chosen such that α(X) ≥ 0 and b(X) ≥ f(X) for all X ∈
∏n
k=1 Ik. Then

fα∆,b(X) ≤ f(X) for all X ∈
∏n
k=1 Ik.

Proof. Note that

fα∆,b
(
ui1...in(X)

)
− f

(
ui1...in(X)

)
= α(ui1...in(X))

(
fα∆,b(X)− b(X)

)
= α(ui1...in(X))

(
fα∆,b(X)− f(X)

)
+ α(ui1...in(X))

(
f(X)− b(X)

)
.

Using the assumptions on the scale function α and the base function b, the proof can be
completed on lines similar to the above theorem. See also [40, Theorem 3.18] for the bivariate
analogue of this result.

REMARK 4.21. If α(X) ≥ 0 and b(X) ≤ f(X) for all X ∈
∏n
k=1 Ik in the previous

theorem, then fα(X) ≥ f(X) for all X ∈
∏n
k=1 Ik.

EXAMPLE 4.22. Consider the square, [−1, 1]× [−1, 1] ⊂ R2. Let

∆ = {−1,−0.5, 0, 0.5, 1} × {−1,−0.5, 0, 0.5, 1}

be a mesh partition of the square and f(x, y) = x2y2 be the seed function displayed in
Figure 4.1(a). Let us take two base functions satisfying the matching conditions prescribed in
Theorem 2.1 but are otherwise arbitrary:
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1. b1(x, y) =
(

sin(πx) + cos(πy2 ) + 1
)
f(x, y).

2. b2(x, y) = f(sin(πx2 ), sin(πy2 )).

As in the previous example, it is easy to see that the above choices of b satisfy the conditions
sought in (3.1).

(a) f(x, y) = x2y2. (b) fα∆,b with scaling function α(x, y) = 0.9 and
b = b1.

(c) fα∆,b with scaling function α(x, y) = 0.2 and
b = b1.

(d) fα∆,b with scaling function α(x, y) =
exy

3
and

b = b1.

(e) fα∆,b with scaling function α(x, y) = 0.9 and
b = b2.

(f) fα∆,b with scaling function α(x, y) =
1

16
and

b = b2.

FIG. 4.1. Fractal functions corresponding to the seed function f(x, y) = x2y2 associated with different
choices of scaling functions and base functions.

Figures 4.1(b)–4.1(d) display the surfaces corresponding to the fractal perturbations of
f with the base function b1 and the scaling function α : [−1,−1]× [−1, 1]→ (−1, 1) given

by α(x, y) = 0.9, α(x, y) = 0.2, and α(x, y) =
exy

3
, respectively. Figures 4.1(e)–4.1(f)

provide the graphs of the fractal functions of f associated with the base function b2 and

the scaling function α(x, y) = 0.9 and α(x, y) =
1

16
, respectively. It can be seen easily

that 0 ≤ f(x, y) ≤ 1 for all (x, y) ∈ [−1, 1] × [−1, 1]. In particular, f(x, y) is nonnegative
on [−1, 1] × [−1, 1]. However, the fractal counterparts fα∆,b, in general, may not preserve
the nonnegativity of f ; see, for instance, Figures 4.1(b)–4.1(e). In view of Theorem 4.18,
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we see that the fractal perturbation of f associated with b = b2 and α(x, y) =
1

16
satisfies

0 ≤ fα∆,b(x, y) ≤ 1 for all (x, y) ∈ [−1, 1]× [−1, 1]. As indicated by Figures 4.1(a)–4.1(f),
the properties such as fractal dimensions and smoothness of the fractal perturbation of a given
function depend on the selection of the parameters-base function and scaling function. These
additional parameters may find applications to tackle problems combined with optimization
and approximation. The optimal selection of α and b depends on the modeling problem at
hand, and we leave it open.

Appendix A. Proof of Theorem 2.1. This appendix is devoted to the detailed proof of
Theorem 2.1.

Proof. For convenience of the reader, we shall divide the proof into several steps.
Step I: Considering an appropriate function space and the Read-Bajraktarević operator.

Let C
(∏n

k=1 Ik
)

denote the Banach space of all real-valued continuous functions defined on
the n-dimensional hyperrectangle

∏n
k=1 Ik endowed with the uniform norm. The subset

C∗
( n∏
k=1

Ik
)

=
{
g ∈ C

( n∏
k=1

Ik
)

: g(x1,j1 , x2,j2 , . . . , xn,jn) = yj1j2...jn :

(j1, j2, . . . , jn) ∈
n∏
k=1

∂ΣNk,0

}

is a closed (and hence a complete) metric subspace of C
(∏n

k=1 Ik
)

with the uniform metric.
Consider the so-called Read-Bajraktarević (RB) operator (see also [1])

T : C∗(
n∏
k=1

Ik)→ C∗(
n∏
k=1

Ik)

defined by

(A.1)
(Tg)(x1, x2, . . . , xn)

= Fi1i2...in

(
u−1

1,i1
(x1), . . . , u−1

n,in
(xn), g

(
u−1

1,i1
(x1), . . . , u−1

n,in
(xn)

))
,

for all (x1, x2, . . . , xn) ∈
∏n
k=1 Ik,ik and (i1, . . . , in) ∈

∏n
k=1 ΣNk .

Step II: Proving that T is well-defined.
Let g ∈ C∗(

∏n
k=1 Ik). For simplicity, let us consider X = (x1, . . . , xr, . . . , xs, . . . , xn) ∈∏n

k=1 Ik,ik such that xr ∈ Ir,ir ∩ Ir,ir+1 and xs ∈ Is,is ∩ Is,is+1 for some r, s ∈ Σn and
(ir, is) ∈ int ΣNr,0 × int ΣNs,0. This is possible if and only if xr = xr,ir and xs = xs,is .
Without loss of generality we assume that r < s and deal with the following four possible
cases.

i) Case 1. Treating xr = xr,ir as a point in Ir,ir and xs = xs,is as a point in Is,is , we
have

T (g)(X) = Fi1...ir...is...in

(
u−1

1,i1
(x1), . . . , u−1

r,ir
(xr,ir ), . . . , u

−1
s,is

(xs,is), . . . , u
−1
n,in

(xn),

g
(
u−1

1,i1
(x1), . . . , u−1

n,in
(xn)

))
.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

648 K. K. PANDEY AND P. VISWANATHAN

ii) Case 2. Consider xr = xr,ir as a point in Ir,ir+1 and xs = xs,is as a point in Is,is .
Bearing (2.2) and (2.6) in mind, one gets

T (g)(X) = Fi1...ir+1...is...in

(
u−1

1,i1
(x1), . . . u−1

r,ir+1(xr,ir ), . . . , u
−1
s,is

(xs,is), . . . , u
−1
n,in

(xn),

g
(
u−1

1,i1
(x1), . . . , u−1

n,in
(xn)

))
= Fi1...ir...is...in

(
u−1

1,i1
(x1), . . . , u−1

r,ir
(xr,ir ), . . . , u

−1
s,is

(xs,is), . . . , u
−1
n,in

(xn),

g
(
u−1

1,i1
(x1), . . . , u−1

n,in
(xn)

))
.

iii) Case 3. Considering xr = xr,ir as an element in Ir,ir and xs = xs,is as an element
in Is,is+1, similar to the previous case we have

T (g)(X) = Fi1...ir...is+1...in

(
u−1

1,i1
(x1), . . . , u−1

r,ir
(xr,ir ), . . . , u

−1
s,is+1(xs,is), . . . , u

−1
n,in

(xn),

g
(
u−1

1,i1
(x1), . . . , u−1

n,in
(xn)

))
= Fi1...ir...is...in

(
u−1

1,i1
(x1), . . . , u−1

r,ir
(xr,ir ), . . . , u

−1
s,is

(xs,is), . . . , u
−1
n,in

(xn),

g
(
u−1

1,i1
(x1), . . . , u−1

n,in
(xn)

))
.

iv) Case 4. Finally, let us view xr = xr,ir as a point in Ir,ir+1 and xs = xs,is as a
point in Is,is+1. Using (2.2) and (2.6) we obtain

T (g)(X)

= Fi1...ir+1...is+1...in

(
u−1

1,i1
(x1), . . . , u−1

r,ir+1(xr,ir ), . . . , u
−1
s,is+1(xs,is), . . . , u

−1
n,in

(xn),

g
(
u−1

1,i1
(x1), . . . , u−1

n,in
(xn)

))
= Fi1...ir...is+1...in

(
u−1

1,i1
(x1), . . . , u−1

r,ir
(xr,ir ), . . . , u

−1
s,is+1(xs,is+1), . . . , u−1

n,in
(xn),

g
(
u−1

1,i1
(x1), . . . , u−1

n,in
(xn)

))
= Fi1...ir...is...in

(
u−1

1,i1
(x1), . . . , u−1

r,ir
(xr,ir ), . . . , u

−1
s,is

(xs,is)m. . . , u−1
n,in

(xn),

g
(
u−1

1,i1
(x1), . . . , u−1

n,in
(xn)

))
.

We see that the value of T (g)(X) is determined univocally in all the four cases. Similarly, all
other possibilities can be worked out to conclude that T (g) is well defined on the boundary of
the hyperrectangle

∏n
k=1 Ik,ik . Furthermore, T (g) is continuous on

∏n
k=1 Ik.

Let (i1, i2, . . . , in) ∈
∏n
k=1 ΣNk,0. Choose (j1, j2, . . . , jn) ∈

∏n
k=1 ∂ΣNk,0 such that

(i1, i2, . . . , in) = (τ(i1, j1), τ(i2, j2), . . . , τ(in, jn)). By definition of τ , we have

(x1,j1 , x2,j2 , . . . , xn,jn) =
(
u−1

1,i1
(x1,i1), u−1

2,i2
(x2,i2), . . . , u−1

n,in
(xn,in)

)
.
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Thus,

T (g)(x1,i1 , . . . , xn,in) = Fi1i2...in

(
u−1

1,i1
(x1,i1), u−1

2,i2
(x2,i2), . . . , u−1

n,in
(xn,in),

g
(
u−1

1,i1
(x1,i1), u−1

2,i2
(x2,i2), . . . , u−1

n,in
(xn,in)

))
= Fi1i2...in

(
x1,j1 , x2,j2 , . . . , xn,jn , g

(
x1,j1 , x2,j2 , . . . , xn,jn

))
= Fi1i2...in

(
x1,j1 , x2,j2 , . . . , xn,jn , yj1j2...jn

)
= yτ(i1,j1)τ(i2,j2)...τ(in,jn)

= yi1i2...in ,

showing that T (g) interpolates the data in ∆ for all g ∈ C∗(
∏n
k=1 Ik). In particular, T maps

C∗(
∏n
k=1 Ik) into C∗(

∏n
k=1 Ik).

Step III: Proving that T is a contraction.
Let g, h ∈ C∗(

∏n
k=1 Ik) and X = (x1,i1 , . . . , xn,in) ∈

∏n
k=1 Ik,ik . Using (2.4) and (A.1) we

have ∣∣T (g)(X)− T (h)(X)
∣∣

=
∣∣∣Fi1i2...in(u−1

1,i1
(x1), . . . , u−1

n,in
(xn), g

(
u−1

1,i1
(x1), . . . , u−1

n,in
(xn)

))
− Fi1i2...in

(
u−1

1,i1
(x1), . . . , u−1

n,in
(xn), h

(
u−1

1,i1
(x1), . . . , u−1

n,in
(xn)

))∣∣∣
≤ αi1i2...in

∣∣∣g(u−1
1,i1

(x1), . . . , u−1
n,in

(xn)
)
− h
(
u−1

1,i1
(x1), . . . , u−1

n,in
(xn)

)∣∣∣
≤ ‖α‖∞‖g − h‖∞,

where ‖α‖∞ = max{αi1i2...in : (i1, i2, . . . , in) ∈
∏n
k=1 ΣNk}. Since the above inequality

holds for all X ∈
∏n
k=1 Ik, it follows that

‖T (g)− T (h)‖∞ ≤ ‖α‖∞‖g − h‖∞.

This yields that T is a contraction on C∗(
∏n
k=1 Ik).

Step IV: Proving existence by an application of the Banach fixed point theorem.
By the Banach fixed point theorem T has a unique fixed point. That is, there exists a unique
function f̃ ∈ C∗(

∏n
k=1 Ik) such that

f̃(x1, . . . , xn) =Fi1i2...in

(
u−1

1,i1
(x1), . . . , u−1

n,in
(xn), f̃

(
u−1

1,i1
(x1), . . . , u−1

n,in
(xn)

))
,

∀(x1, . . . , xn) ∈
n∏
k=1

Ik,ik and (i1, . . . , in) ∈
n∏
k=1

ΣNk .

Writing X = (x1, x2, . . . , xn),

u−1
i1,...in

(X) =
(
u−1

1,i1
(x1), . . . , u−1

n,in
(xn)

)
, and ui1,...in(X) =

(
u1,i1(x1), . . . , un,in(xn)

)
,

we have the self-referential equation

f̃(X) = Fi1i2...in
(
u−1
i1,...in

(X), f̃(u−1
i1,...in

(X))
)
,

∀X ∈
n∏
k=1

Ik,ik and (i1, . . . , in) ∈
n∏
k=1

ΣNk .
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Equivalently,

(A.2)

f̃
(
ui1,...in(X)

)
= Fi1i2...in

(
X, f̃(X)

)
,

∀X ∈
n∏
k=1

Ik and (i1, . . . , in) ∈
n∏
k=1

ΣNk .

Let G =
{

(X, f̃(X)) : X ∈
∏n
k=1 Ik

}
be the graph of f̃ . In view of (2.5) and (A.2),

⋃{
Wi1i2...in(G) : (i1, i2, . . . , in) ∈

n∏
k=1

ΣNk

}
=
⋃{

Wi1i2...in(X, f̃(X)) : X ∈
n∏
k=1

Ik, (i1, i2, . . . , in) ∈
n∏
k=1

ΣNk

}
=
⋃{(

ui1...in(X), Fi1i2...in(X, f̃(X))
)

: X ∈
n∏
k=1

Ik, (i1, i2, . . . , in) ∈
n∏
k=1

ΣNk

}
=
⋃{(

ui1...in(X), f̃(ui1,...,in(X))
)

: X ∈
∏n
k=1 Ik, (i1, i2, . . . , in) ∈

∏n
k=1 ΣNk

}
=
⋃{

(X, f(X)) : X ∈
n∏
k=1

Ik

}
= G,

completing the proof.
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