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Introduction

Quantum dots (QDs) are nanocrystals made of 
semiconductor materials and belong to engi­
neered nanoparticles (ENPs). Because of their 
unique optical properties, QDs are increasing­
ly used as high-contrast and photostable dyes 
in both medicine and environmental research. 
Amongst others, QDs are used as fluorescent 
marker substances in medical cell biology, for ex­
ample, to make certain cell types visible in tis­
sues.1 They are also used in environmental sam­
ples to be able to draw general conclusions about 
the fate of ENPs in wastewater.2 Since many first-
generation QDs still contain heavy metals such 
as cadmium or lead, their use in the medical field 
is currently subject to strict laboratory conditions 
and for ex situ diagnostics only, and not for direct 
use on patients.3,4 In environmental research, 
too, QDs are currently only used under labora­
tory conditions. In the future, heavy metal-free 
QD types could then be used as fluorescent trac­
ers in field studies. Because of their mobility and 
interaction with complex media (e.g. soil, water, 
plants), it is possible to study the general environ­
mental behaviour and fate of ENPs in the environ­
ment in more detail.5,6,7,8,9 In medicine and for bi­
ological applications, QDs must be water-loving 
(hydrophilic), biocompatible, and functionalisable 
with biomolecules and/or drugs; however, the de­
velopment of QDs without heavy metals and the 
development of efficient strategies for surface 
functionalisation (e.g. with specific antibodies for 
cancer diagnostics) remains a major challenge. 

This dossier provides an overview of the specific 
properties, surface modifications, and the fields of 
application of QDs in medicine and environmen­
tal research.

Properties and specifics 
of quantum dots
QDs are nanocrystals with a core-shell architec­
ture. Their size varies depending on the materi­
al composition and manufacturing method (syn­
thesis). They have a core diameter of 1 to 10 na­
nometres (nm). These ENPs usually consist of 
one or more layers of inorganic semiconductors 
such as indium phosphide (InP), gallium nitride 
(GaN), cadmium selenide (CdSe) or cadmium 
telluride (CdTe), to which organic ligands are 
bound. These ligands serve to increase the so-
called colloidal stability and act as “anchor struc­
tures” for further surface functionalisation. Using 
suitable surface modification, the environmental 
behaviour of QDs can be “tailored” depending on 
the area of application.10 Depending on the orig­
inal material, particle size, particle size distribu­
tion (dispersity), and surface modification, QDs 
have specific characteristics that can be optical­
ly detected. Such detection is done through flu­
orescence, as QDs emit a specific wavelength 
in the visible light spectrum or the near-infrared 
range after excitation with light. The fluorescence 
of individual QDs is similar to the uniqueness of 
a “fingerprint”. Their characteristic narrow emis­
sion spectrum and their large “Stokes shift” (i.e. 
a separation of the absorption and emission 
spectrum), both of which are size-dependent and 
therefore tunable to each other over the reaction 
time of the particles during their synthesis, ena­
ble these unique optical properties. Using fluo­
rescence microscopy, QDs can specifically be 
detected in complex media, such as environmen­
tal or tissue samples, because of their luminosi­
ty or unique fluorescence properties (the “finger­
print”). 

Because QDs are also photochemically robust 
(photostable), they facilitate better localisation 
and tracking of complex biological processes 
than would be possible with conventional organ­
ic dyes. This makes QDs a good addition to cur­
rently used organic dyes.11 The simple yet bright 
luminous properties are another advantage of 
QD technology, and clearly distinguish QDs from 
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organic dyes. Currently used organic dyes often 
exhibit a photo-induced chemical degradation, 
i.e. photobleaching (an undesirable effect for 
traceability), which occurs especially with pro­
longed exposure to high light intensities. As a re­
sult, the instability of organic dyes hinders time-
lapse imaging and therefore also the tracking of 
complex biological processes. QDs, on the other 
hand, remain photostable and therefore detect­
able over a comparatively longer period of time. 
However, they, too, can only withstand a certain 
photon density before losing their optically active 
properties before disintegrating. Long and inten­
sive exposure to light can therefore cause the 
QD’s metallic particle core to disintegrate, releas­
ing toxic metals (in ionic form).12 To anticipate 
possible toxic effects to humans and the environ­
ment, research on non-toxic carbon-based QDs 
is already being conducted, amongst others.13

The optical properties of organic dyes can be 
fine-tuned. The majority of common fluorophores, 
such as rhodamines or cyanines, are resonance 
dyes that are well characterised and often used. 
However, as a result of their unfavourable “Stokes 
shift”, their lifetime is often very short (a few min­
utes) because of the occurring bleaching effects. 
Consequently, they are not suitable for long-term 
studies under the fluorescence microscope. The 
“Stokes shift” of QDs, however, requires broad­
band excitation (for comparison, see Figure 1).

For QDs to interact with certain cellular target 
structures, biomarkers must be applied to the QD 
surface. For instance, it is possible to bind known 
antibodies or interacting peptides to the surface 
of a QD to detect specific cancer cells and make 
them visible under the microscope by fluores­
cence detection. Surface chemistry to bind such 
markers is an established procedure i.e. “bio­
conjugation”.14 Nevertheless, such conjugation 
can also result in undesirable changes in the fluo
rescence properties. Functionalisation based on 
thiol or hydrogen sulphide compounds could im­
prove QDs without changing the original struc­
ture of the marker molecules. QDs are therefore 
a promising addition to organic dyes where tar­
geted marking of cells and their detection through 
imaging methods (cell targeting) is concerned. 
Specific cell targeting is also the prerequisite 
for targeted drug delivery to certain cell struc­
tures.14

Medical and biological 
applications

Biocompatibility is essential for all biomedical ap­
plications of QDs (see Figure 2 on the next page), 
and coating materials (also called capping lay-
ers or coating) can modify the surface properties 
of QDs to give them dispersity, colloidal stability, 
photostability, and thus also biocompatibility.

Figuratively, QDs can be seen as a “molecular 
lantern”, for example to make biochemical pro­
cesses visible through fluorescence microscopy. 
This concept is an extremely interesting appli­
cation of QDs in medicine and also in environ­
mental analysis. In both contexts, however, the 
affinity of a QD to the target analyte is the funda­
mental prerequisite. Especially for QDs, very spe­
cific applications in diagnostic imaging are now 
available. Nevertheless, luminescence (photolu-
minescence quantum yield) is always a compro­
mise between particle size, chemical composi­
tion, and the chosen dispersion media e.g. aque­
ous solutions, all of which affect the fluorescence 
properties.

As already mentioned, QDs can also be conju­
gated with specific peptides, antibodies, and oth­
er small molecules. These target a specific cell 
type, a specific cell structure or a specific tissue1 
and make observation with the help of imaging 
techniques, such as fluorescence microscopy, 
possible. Current and future biological and med­
ical QD applications thus include the use of QDs 
as diagnostic and therapeutic tools, e.g. as fluo­
rescent markers for cells, as contrast agents in 
deep tissue and tumour imaging, in biosensing 
or photodynamic therapy, and for targeted drug 
delivery.

Figure 1:  
Absorption and fluorescence spectrum of 
quantum dots (QDs) and fluorescein, an organic 
dye.15 The arrows in red and orange show the 
possible excitation wavelengths for QDs and the 
organic dye, respectively. The unique absorption 
properties of QDs make it possible to excite QDs 
at a suitable wavelength at which, for example, 
autofluorescent substances such as proteins are 
not or only slightly excited to better suppress the 
fluorescent background.
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Diagnostics using imaging techniques that use 
fluorescence is an essential and widely used 
method in biomedicine. QDs can thus be used 
as fluorescent markers in bioimaging, as has 
been demonstrated in tests on mice.16 Experi­
ments in cell cultures have also shown that sur­
face-modified QDs can be used for the specific 
detection and visualisation of tumour cells.17 Suc­
cessful application of QDs for tumour biomarker 
detection and tumour cell imaging has great po­
tential for use in early cancer detection as well 
as tumour removal because of possible accurate 
visual tracking.1 QDs can also be excellent mark­
ers for analysis in immunohistochemistry and im­
munocytochemistry when using epifluorescence 
microscopy or confocal microscopy, for example 
to support diagnostics in biopsy samples (ex vi-
vo) in histology.18 In diagnostics, QDs can be 
used either as carriers for the immobilisation of 
biological recognition elements or as markers for 
the generation, transmission, and amplification of 
signals; and even with small sample quantities, 
when compared with organic dyes, their unique 
optical properties offer a measurable signal.19,20

QDs also show great promise as therapeutic 
agents for cancer treatment, for instance in the 

context of photodynamic therapy (PDT). Here, 
QDs act as figurative antennae to absorb light 
and transfer the energy via energy transfer to the 
closely linked photosensitiser to then initiate the 
production of reactive oxygen species (ROS), 
which in turn are to specifically damage cancer 
cells. Photothermal therapy (PTT) is a new tech­
nique in cancer treatment in which QDs, follow­
ing laser irradiation, can efficiently convert light 
energy into heat to inhibit tumour growth.21 Initial 
tests on mice show suitability for the specific re­
moval of tumours.22 Because of their unique prop­
erties, QDs can also play multiple roles in the de­
velopment of drug delivery systems: they can 
serve as a means to monitor the administration 
of the drug or act as a carrier (so-called “nano­
carrier”) that transports the drug to the target site 
to control the dosage of the drug in the target or­
gan.23 In the future, QDs may also play a role in 
so-called “point-of-care” diagnostics.25,24 Mean­
while, the idea of personalised medicine has ad­
vanced from research stage into current therapy: 
with the help of adapted dosages, to the point of 
individually adapted combinations of substances, 
it is now possible to respond to a patient’s spe­
cific allergies, medical history, and their current 
clinical situation in the sense of “point-of-care”.

Health effects
The unique properties of QDs make them useful 
for a variety of applications. Nevertheless, most 
QDs consist of compounds with heavy metals, 
such as CdSe, CdTe or PbS, where the effect of 
the particles after uptake into the organism can 
be toxic. For example, QDs can be taken up in­
to the cytoplasm via endocytosis.1 Their pres­
ence in the cell results in the production of reac­
tive oxygen, which in turn can induce oxidative 
stress and thus be harmful.28 Although this prop­
erty is utilised in photodynamic therapy (PDT) to 
specifically damage cancer cells, the possibility 
that other cells in the body may also be damaged 
cannot be ignored. Similarly, QDs can penetrate 
cell membranes and thus have a possible growth-
inhibiting effect on the cell or on the organism, 
as they influence the cell cycle.29 Because of 
their small size, QDs could be used to cross bi­
ological barriers, such as the blood-brain barri­
er, and deliver drugs with precision to the central 
nervous system. Although this application has 
great potential, it is currently still the subject of 
intensive research because of great uncertain­
ties concerning toxicity and long-term effects.

Figure 2:  
QD application areas in biomedicine and 
environmental research, including possible 
detection methods.2,26,27 QDs can be used, for 
example, as biosensors to detect heavy metals or 
low-molecular substances, as their fluorescence 
changes through interaction with the analyte. 
During this process, the so-called Förster 
resonance energy transfer (FRET) takes place, 
in which QDs represent the donor, which in turn 
release energy to the acceptor.
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Toxicity is therefore an essential factor that lim­
its clinical application of QDs in vivo or in patients. 
Currently, intensive research is being conducted 
to develop heavy metal-free or pure carbon-based 
QDs. Silicon-based QDs, for example, are a 
promising alternative to heavy metal-based QDs, 
as they show no signs of toxicity in animal stud­
ies, even several months after treatment.14 Even 
though silicon is biocompatible, it is not biode­
gradable. As a result, it tends to accumulate in 
organs and has potentially harmful effects that 
can also emerge at a much later stage. Howev­
er, long-term studies in primates have so far 
shown no adverse effects, this indicates that such 
QDs are safe for humans and could therefore be 
approved for clinical use in the near future.14 At 
present, intensive research is also being con­
ducted on graphene quantum dots (GQDs), 
which have gained attention in biomedicine in 
terms of the “safe and sustainable by design” 
(SSbD) concept thanks to their higher biocom­
patibility and low cytotoxicity, when compared 
with other QDs.30

Environmentally 
relevant applications
Because of their unique properties, QDs qualify 
as detectable and clearly identifiable so-called 
“nanotracers”, which are used to closely investi­
gate the final fate of ENPs in the environment 
through fluorescence analyses.2,31 The idea of 
such QD-based nanotracers is to be able to draw 
fundamental conclusions about the general en­
vironmental behaviour of ENPs (e.g. aggrega­
tion, sedimentation, particle–particle interactions) 
in the course of laboratory investigations, since 
fluorescent QDs, unlike many conventional ENPs 
such as silicon dioxide or titanium dioxide, can 
be clearly traced in complex environmental me­
dia. Using surface modification, the QDs can be 
encapsulated in silicon dioxide or titanium diox­
ide nanoparticles to better track conventional and 
“hard-to-detect” ENPs.32

QD-based nanotracers can be clearly distin­
guished from naturally occurring nanomaterials 
because of their spectroscopic “fingerprint”, and 
they can also be observed over a longer period 
because of their photostability. By tracking QDs 
using imaging techniques, it is possible to gain 
insights into how nanoparticles behave in envi­
ronmental samples over long periods of time. Flu­
orescence spectroscopy can also be used to 
draw conclusions about interactions with natu­
ral, organic substances such as proteins, fulvic 
or humic acids, whereby such potential transfor­
mation processes, in turn, play a decisive role 
where mobility as well as toxicity of nanoparti­
cles is concerned.5,33

Environmental  
impact
Despite the anticipated increase in industrial pro­
duction and associated increased release into 
the environment, there is still comparatively little 
information on possible release into the environ­
ment (e.g. through landfill of QD waste from the 
semiconductor industry). If QDs are released in­
to the environment unintentionally, toxicity effects 
such as the release of toxic metal components 
of QDs can occur, which in turn can lead to dam­
age of microorganisms.34 In addition to the tox­
icity to individual cells or organisms, QDs also 
have the potential to bioaccumulate. Because of 
their chemical stability (persistence), they can 
thus also accumulate in higher organisms and 
reach higher levels of the food chain via trophic 
transfer. This poses not only a potential danger 
to the organisms themselves, but also to the food 
chain.34 Current knowledge indicates that heavy 
metal-based QDs accumulate in and have eco­
toxic effects on microorganisms, aquatic inverte­
brates, and vertebrates in fresh and seawater; 
the risk to the environment, however, is highly 
dependent on the physicochemical properties, 
environmental conditions, concentration, and, 
above all, exposure time (dose).34
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