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A COMPUTATIONAL FRAMEWORK FOR EDGE-PRESERVING
REGULARIZATION IN DYNAMIC INVERSE PROBLEMS∗
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Abstract. We devise efficient methods for dynamic inverse problems, where both the quantities of interest and
the forward operator (measurement process) may change in time. Our goal is to solve for all the quantities of interest
simultaneously. We consider large-scale ill-posed problems made more challenging by their dynamic nature and,
possibly, by the limited amount of available data per measurement step. To alleviate these difficulties, we apply a
unified class of regularization methods that enforce simultaneous regularization in space and time (such as edge
enhancement at each time instant and proximity at consecutive time instants) and achieve this with low computational
cost and enhanced accuracy. More precisely, we develop iterative methods based on a majorization-minimization
(MM) strategy with quadratic tangent majorant, which allows the resulting least-squares problem with a total variation
regularization term to be solved with a generalized Krylov subspace (GKS) method; the regularization parameter can
be determined automatically and efficiently at each iteration. Numerical examples from a wide range of applications,
such as limited-angle computerized tomography (CT), space-time image deblurring, and photoacoustic tomography
(PAT), illustrate the effectiveness of the described approaches.
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1. Introduction. In the classical setting, inverse problems are commonly formulated
as static, where the underlying parameters that define the problem do not change during the
measurement process. There exists a very rich literature and many numerical methods for
this setting; see [27, 37, 43, 55, 64] and the references therein. Dynamic inverse problems,
where time-dependent information needs to be recovered from time-dependent data, have
recently gained considerable attention because of new developments in science and engineer-
ing applications. Important examples include dynamical impedance tomography [61, 62],
process tomography [68], undersampled dynamic X-ray tomography [15], and passive seismic
tomography [67, 73], to mention a few. A common objective is to improve the reconstruction
of non-stationary objects using time-dependent projection measurements. For instance, the
movement of objects during a CT scan leads to artifacts in the stationary reconstruction, even
if the change in time is small. More specifically, in the imaging of organs like the heart and
lungs, small changes in shape due to the heartbeat or breathing can significantly affect the
quality of the reconstructed solution. In [1, 8, 50], approaches for reconstructing a static image
from dynamic data are discussed. In [15], the authors discuss the reconstruction of dynamic
data in space and time. Computationally feasible methods in the Bayesian framework for
dynamic inverse problems are presented in [23], and the quantification of the uncertainties
is discussed in [60]. In this work, we are interested in similar scenarios where the target
of interest changes in space and time; our approach is not limited to any specific motion of
the objects during the measurement process. Furthermore, we seek to preserve the edges of
the desired solution. Edge-preserving reconstruction is a technique to smooth images while
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preserving edges, which has been employed in many fundamental applications in image pro-
cessing such as artifact removal [71], denoising [36, 59, 65], image segmentation [24, 39], and
feature selection [72]. The proposed methods rely on total variation (TV)-type regularization.
While there has been considerable work on edge-preserving methods, only a few contributions
address edge-preserving methods for dynamic inverse problems. These have been developed
mostly in recent years, highlighting the need for better methods to handle advances in science
and technology. See the Related work paragraph of Section 1.2 for comparisons with other
work.

1.1. Background on dynamic inverse problems. First, we define some notation. Let
U(t) ∈ Rnv×nh be the 2D (matrix) representation of an image with nv rows and nh columns
obtained at time instance t = 1, 2, . . . , nt. Let u(t) be the column vector obtained by a
lexicographical ordering of the two-dimensional U(t), that is, u(t) = vec(U(t)) ∈ Rns , with
vec being the operation that vectorizes a matrix by stacking its columns and ns = nvnh.
Then, let U =

[
u(1), . . . ,u(nt)

]
∈ Rns×nt be such that u = vec(U) ∈ Rn and n = nsnt. A

pictorial representation of these quantities is displayed in Figure 1.1.

.
.
.

.

FIGURE 1.1. Images U(t) to be reconstructed with pixels i, j in red (left), and their corresponding vectorization
u(t), which are the columns of the matrix U where the pixels i, j are now in the same row (right).

We are interested in solving inverse problems in space and time with an unknown tar-
get of interest. The goal is to recover from the available measurements d(t) ∈ Rmt , for
t = 1, 2, . . . , nt, the images u(t) ∈ Rns , whose entries represent pixels in the image. Since we
focus on imaging applications, we use the term ‘pixels’ (rather than ‘parameters’) throughout
the paper. Given the number of time points nt, m =

∑nt

t=1mt is the total number of available
measurements. We consider the number of pixels, ns, to be fixed for all time points. Dynamic
problems may also involve reconstructing a sequence of images with varying numbers of
pixels (e.g., in image registration), but we do not consider that setting in this paper. For
completeness, we define static and dynamic inverse problems in the context of this paper.

Dynamic inverse problems. In a dynamic inverse problem, both the images of interest and
the measurement process are known to change in time. Therefore, combining prior information
at different time instances enhances the reconstruction and recovery of dynamic information
about the objects of interest. More specifically, we have the measurement equation

(1.1) d = Fu + e,

where we consider two cases for the forward operator F ∈ Rm×n:
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(a) Time-dependent: Here F is a block-diagonal matrix of the form

(1.2) F =

A(1)

. . .
A(nt)

 ,
where the blocks A(t) may change in time t = 1, . . . , nt.

(b) Time-independent: Here A(t) = A, for t = 1, . . . , nt, (that is, the blocks A(t) are the
same in time) so that F simplifies to F = Int ⊗A, with ⊗ being the Kronecker product.

The vector d = vec([d(1), . . . ,d(nt)]) ∈ Rm represents measured data that are contaminated
by an unknown error (or noise) e ∈ Rm that may stem from measurement errors. We assume
that the noise vector follows a multivariate normal (or Gaussian) distribution with mean zero
and covariance Γ, i.e., e ∼ N (0,Γ). The inverse problem involves recovering the pixels u
from the data d. That is, we seek to solve the general regularized problem

(1.3) udynamic = arg min
u∈Rn

J (u) := F(u) + λR(u),

where the functionalF(u) is a data-misfit term that takes the form 1
2‖Fu−d‖2

Γ−1 andR(u) is
a regularization term that can take different forms; several instances ofR(u) will be discussed
in Section 3. Throughout this paper, λ > 0 is an appropriate regularization parameter that
determines a balance between the data-misfit and the regularization termR(u).

Static inverse problems. By contrast, in a static inverse problem, the information from
each time step t is used to reconstruct the unknown images u(t), t = 1, 2, . . . , nt. We assume
that the measurement noise at each time step is independent of other time steps so that the
overall noise covariance matrix Γ = BlockDiag(Γ1, . . . ,Γnt) is a block-diagonal matrix,
where Γt is the noise covariance matrix at step t. We then solve the sequence of optimization
problems

(1.4) u
(t)
static = arg min

u∈Rns

1

2
‖A(t)u− d(t)‖2

Γ−1
t

+ λR(u), t = 1, 2, . . . , nt,

independently to obtain the solution to the static inverse problem.
Challenges. The considered inverse problems are typically ill-conditioned. Moreover,

when solving dynamic inverse problems, the unknown has n = nsnt pixels, which can be
orders of magnitude higher than those for large-scale static inverse problems. Therefore, a
clear challenge is the large scale of the considered problems. Furthermore, another challenge in
dynamic inverse problems may stem from the limited information available per time instance
during the measurement process.

This paper focuses on developing efficient regularization approaches for dynamic inverse
problems that promote edge-preservation in the reconstructed images by incorporating specific
representations of the prior information. Namely, we propose a combination of spatial
and temporal prior information representations that allow for recovering piecewise constant
solutions. We adopt efficient numerical methods that can enforce these representations.

1.2. Overview of the main contributions. This paper presents a unified computational
framework for edge-preserving regularization in dynamic inverse problems. For each regu-
larization term, we write down the corresponding optimization problem for reconstructing
the desired solution, whose objective functions are convex but non-differentiable. To rem-
edy the non-differentiability, we consider a smoothed functional instead, and we derive an
iterative reweighted least-squares (IRLS) approach [7] for each optimization problem using
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the majorization-minimization (MM) technique [41]. To efficiently solve the sequence of
least-squares problems and define the regularization parameter, we use a generalized Krylov
subspace (GKS) method [48], resulting in a so-called MM-GKS method. This unified approach
has the following noteworthy features:

1. flexibility: the ability to choose between many different edge-preserving regulariza-
tion techniques, each with its different strengths and weaknesses, but using the same
MM-GKS solver;

2. efficiency: in contrast to inner-outer iteration schemes typical of IRLS methods
applied to large-scale problems, the approach in this paper solves the optimization
problem using a single generalized Krylov subspace, thus making judicious use of
the forward/adjoint operator which can be expensive in many applications;

3. automated: the approach uses heuristics to automatically select regularization param-
eters in the projected space associated with the generalized Krylov subspace while
solving the inverse problem;

4. practicality: our approach is capable of reconstructing over 1.9 million pixels in
fewer than 100 MM-GKS iterations and is demonstrated to be effective on a variety of
test problems with simulated and real data arising from space-time image deblurring,
photoacoustic tomography (PAT), and limited angle computerized tomography (CT).

In this paper, we illustrate our framework with six different regularization terms, based
on TV, for combining spatio-temporal information. For each regularization technique, we
provide a motivation and an interpretation using tensor notation, which is useful for further
generalization and extensions. Our framework is applicable beyond dynamic inverse problems
and extends to other problem settings requiring solution techniques that combine limited
information from different sources to improve the quality of the resulting reconstruction and
recover dynamic information from different channels such as multichannel imaging [44] and
electroencephalographic current density reconstruction [34].

Related work. A review of dynamic inverse problems with temporal information is
given in [38]. We limit our discussion to a few related references. First, we discuss the
use of TV regularization for solving dynamic inverse problems. An approach similar to our
anisotropic space-time TV (Section 3.1) was discussed in [20] for image restoration. The
reference [63], while it did not consider dynamic problems, used a TV technique similar to
3D joint anisotropic space-time TV (Section 3.3). An important point here is that, while in
related works specific regularization methods are used for dynamic inverse problems, our
approach treats these regularization techniques in a unified framework, using the same solver
and the same technique to estimate the regularization parameter, which can be applied to
ill-posed inverse problems in general. Beyond TV, some works consider edge-preserving
reconstructions in dynamic inverse problems. The approach in [15, 52] is to use optical flow
for jointly reconstructing the image and estimating object motion. In [10], a 3D shearlet-based
approach is used for dynamic inverse problems in two spatial dimensions with time as the
third dimension.

Overview of the paper. This paper is organized as follows. In Section 2, we present some
background material, including additional notation, a survey of well-established regularization
terms, and an iterative method used to solve the inverse problem with an MM strategy. In
Section 3, we discuss six different methods for edge-preserving regularization in dynamic
inverse problems, write a unifying framework, and derive, by using an MM approach, an
IRLS method for solving the resulting optimization problem. Some alternative approaches
and extensions that fit within our framework are presented in Section 4. In Section 5, we
describe iterative methods based on generalized Krylov subspaces to efficiently solve the
resulting optimization problem and define the regularization parameter at each iteration. In
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Section 6, we present numerical examples that demonstrate the performance of the proposed
regularization terms and the MM solvers. Finally, some conclusions, remarks, and future
directions are presented in Section 7.

2. Background. In this section, we review known facts about tensors, regularization
terms such as (discrete) isotropic and anisotropic TV, and the MM approach for solving
optimization problems.

2.1. Tensor notation. The use of tensor notation is very convenient for describing
dynamic images. A tensor X is a multi-dimensional array (also called n-way or n-mode
array) whose entries are scalars. A tensor’s order refers to the number of ways or modes. For
instance, vectors are tensors of order one, and matrices are tensors of order two. More details
on tensors can be found in [47].

In this work, we primarily focus on 3rd-order tensors X ∈ Rn1×n2×n3 with entries xi,j,k.
Fibers are higher-order analogs of matrix rows and columns. A (tubal) fiber of a third-order
tensor is a vector that is obtained by fixing two of the indices of the tensor X . We define
X :,j,k, X i,:,k, and X i,j,: to be mode-1, mode-2, and mode-3 fibers, respectively. We implicitly
assume that once a mode fiber has been extracted, it is reshaped as a column vector. Slices
are two-dimensional sections of a tensor that are obtained by fixing one of the indices. We
define X i,:,:,X :,j,:, and X :,:,k to be horizontal, lateral, and frontal slices, respectively. As
before, when a slice is extracted, we implicitly assume it is a matrix. The mode-j unfolding
or matricization of a tensor X is obtained by arranging the mode-j fibers to be the columns
of a resulting matrix. We denote these by X(1) ∈ Rn1×(n2n3),X(2) ∈ Rn2×(n1n3), and
X(3) ∈ Rn3×(n1n2).

Another important concept here is the mode-j product that defines the operation of multi-
plying a tensor X ∈ Rn1×n2×n3 by a matrix Lj ∈ Rr×nj , for j = 1, 2, 3, given in the follow-
ing definition. We write Y = X ×j Lj in terms of the mode unfoldings as Y(j) = LjX(j).
For distinct modes in a series of multiplications, the order of the multiplication is irrelevant.

We will also need to use norms for tensors, which we define entrywise. That is, for
q ∈ [1,∞), we define

‖X‖q =

 n1∑
i=1

n2∑
j=1

n3∑
k=1

|xi,j,k|q
1/q

.

A tensor representation of the dynamic inverse problem solution described in Section 1.1
is obtained by defining the multi-dimensional array U ∈ Rnv×nh×nt , with its frontal slices
taken to be 2D representations of the image u(t). That is, we let

(2.1) U :,:,t = mat(u(t)) ∈ Rnv×nh , t = 1, . . . , nt .

Furthermore, u(t) are the mode-3 fibers and U = UT
(3) is the transposed mode-3 unfolding.

2.2. Regularization terms based on the first derivative operator. When the desired
solution is known to be piecewise constant, TV regularization is a popular choice. It allows
the solution to have discontinuities by preserving edges and discouraging oscillations [18, 19,
35, 51, 59]. TV regularization enforces sparse gradient representations for the solution.

Let

(2.2) Ld = αd


1 −1

1 −1
. . . . . .

1 −1

 ∈ R(nd−1)×nd and Ind
∈ Rnd×nd
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be a rescaled finite difference discretization of the first-derivative operator with αd > 0 and
the identity matrix of order nd, respectively. Operators of this kind are known to damp fast
oscillatory components of a vector u(t); see, for instance, a discussion in [26]. In defining
some of the operators below, we will augment the matrix Ld with one zero row (at the bottom)
and denote it by L̄d. The matrices Ld and L̄d are used to obtain discretizations of the first
derivatives in the d-direction, with d = v (vertical direction), d = h (horizontal direction), and
d = t (time direction). For simplicity, in the following, we let αd = 1, but different values can
be used in practice: a value αd 6= 1 can be treated as a regularization parameter that must be
estimated as part of the inversion process.

Considering only the spatial derivatives for now, these have the form

vec(LvU
(t)) = (Inh

⊗ Lv)u
(t) ∈ R(nv−1)nh ,

vec(U(t)LTh ) = (Lh ⊗ Inv )u(t) ∈ R(nh−1)nv ,
t = 1, . . . , nt .

When time is considered, we have

vec(ULTt ) = (Lt ⊗ Ins)u ∈ R(nt−1)ns .

By letting nt = 1 (i.e., n = ns) for now, so that u = u(1) = vec(U(1)), we define the
anisotropic TV (TVaniso) as

TVaniso(u) =

(nv−1)∑
k=1

nh∑
`=1

∣∣∣∣(LvU
(1)
)
k,`

∣∣∣∣+

(nh−1)∑
k=1

nv∑
`=1

∣∣∣∣(U(1)LTh

)
k,`

∣∣∣∣
= ‖(Inh

⊗ Lv)u‖1 + ‖(Lh ⊗ Inv )u‖1 = ‖Lsu‖1 ,(2.3)

where

Ls =

[
Inh
⊗ Lv

Lh ⊗ Inv

]
.

Assuming for simplicity that nh = nv , we define the isotropic TV (TViso) as

TViso(u) =

nv∑
k=1

nh∑
`=1

√
(L̄vU(1))2k,` + (U(1)(L̄h)T )2k,`

=

nvnh∑
`=1

√
((Inh

⊗ L̄v)u)2` + ((L̄h ⊗ Inv
)u)2`

=
∥∥[(Inh

⊗ L̄v)u, (L̄h ⊗ Inv
)u
]∥∥

2,1
,

where ‖·‖2,1 denotes the norm defined as ‖Y‖2,1 =
∑my

i=1 ‖Yi,:‖2 for a matrix Y ∈ Rmy×ny .

2.3. A majorization-minimization method. In this section, we provide an overview of
the majorization-minimization technique for approximating the solution of (1.3) by solving a
sequence of optimization problems; see [42, 49] for more details on the MM methods used.
Suppose we want to minimize an objective function J (u). We shall need the following
definition of a quadratic tangent majorant.

DEFINITION 2.1 ([41]). Let y ∈ Rn be fixed. The functional Q(·; y) : Rn → R is said
to be a quadratic tangent majorant for J (x) at x = y ∈ Rn if it satisfies the following
conditions:

1. Q(x; y) is quadratic in x,
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2. Q(y; y) = J (y),
3. 5xQ(y; y) = 5xJ (y),
4. Q(x; y) ≥ J (x) ∀x ∈ Rn.

The MM methods considered in this paper establish an iterative scheme whereby, starting
from a given approximation of utrue, a quadratic tangent majorant functional for J (u) at
the approximation of utrue computed at the previous iteration is defined and approximately
minimized to get the next approximation of utrue. In other words, after the approximation
u(k) has been computed at the kth iteration of the MM scheme, the (k + 1)st approximate
solution is computed as

(2.4) u(k+1) = arg min
u∈Rn

Q(u; u(k)), k = 0, 1, . . .

At the first iteration, one may take u(0) = 0. The convergence of the MM approach with
quadratic tangent majorants was established in [41], which we also use in this paper.

3. Dynamic edge-preserving regularization. We propose a unified framework with six
main methods for edge-preserving reconstruction applied to dynamic inverse problems with
a spatial and time component. For each technique, we motivate the kind of regularization,
and using an MM approach, we derive an IRLS method for solving the resulting optimization
problem. To save on space, we provide a detailed derivation for one of the terms (AnisoTV)
and leave the other derivations in Appendix A. We also provide an interpretation for the
regularization term using tensor notation.

3.1. Anisotropic space-time total variation (AnisoTV). In this first technique, we use
the summation of the anisotropic TV of the images at each time step as a regularizer as well
as regularization for temporal information. Let Ls be as in (2.3). The anisotropic TV terms
‖Lsu(t)‖1, t = 1, . . . , nt, ensure that the discrete spatial gradients of the images are sparse
at each time instant. In addition, to incorporate temporal information, assuming that the
images do not change considerably from one time instant to the next, we also want to penalize
the difference between any two consecutive images; we do so by considering the 1-norm
differences ‖u(t+1) − u(t)‖1, for t = 1, . . . , nt − 1. These two requirements can be imposed
using the following regularization term

(3.1)

R1(u) =

nt∑
t=1

‖Lsu(t)‖1 +

nt−1∑
t=1

‖u(t+1) − u(t)‖1

= ‖(Int
⊗ Ls)u‖1 + ‖(Lt ⊗ Ins

)u‖1

= ‖D1u‖1, where D1 =

[
Int
⊗ Ls

Lt ⊗ Ins

]
=

Int
⊗ Inh

⊗ Lv
Int ⊗ Lh ⊗ Inv

Lt ⊗ Inh
⊗ Inv

 .
Alternatively, recalling the tensor representation U of u in (2.1), we can write

R1(u) = ‖U ×1 Lv‖1 + ‖U ×2 Lh‖1 + ‖U ×3 Lt‖1.

The optimization problem and the MM approach. With the regularization term defined as
in (3.1), the optimization problem that we seek to solve takes the form

(3.2) min
u∈Rn

J1(u) := F(u) + λR1(u), where λ > 0 .

We now derive an MM approach for solving this optimization problem by solving a
sequence of simpler optimization problems whose closed-form solutions exist. We do this in
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detail here since the other regularization terms we propose have similar derivations. At the kth
iteration of the MM method, let u(k) be the current iterate. Since the regularization term is
nondifferentiable, we first majorize it as

(3.3) R1(u) ≤
∑
`

√
(D1u)2` + ε2 =: R1ε(u),

whereR1ε is the smoothed regularization term. Similarly, we define the smoothed objective
function J1ε, by replacingR1(u) withR1ε(u) in (3.2).

To obtain a quadratic tangent majorant, we use the elementary inequality [49, Equa-
tion (1.5)]

(3.4)
√
u ≤
√
v +

1

2
√
v

(u− v),

for u, v > 0, which is an equality if u = v. By applying (3.4) to each term in the sum (3.3),
with u = (D1u)2` + ε2 and v = (D1u(k))

2
` + ε2, we obtain that

R1(u) ≤
∑
`

1

2
√

(D1u(k))
2
` + ε2

(D1u)2` + c̃1 =
1

2
‖M(k)

1 u‖22 + c̃1,

where c̃1 is a constant independent of u (but dependent on u(k),D1, and ε) and M
(k)
1 is the

weighting matrix

(3.5) M
(k)
1 := W

(k)
1 D1, with W

(k)
1 = diag((D1u(k))

2 + ε2)−1/4).

Note that all operations in the expressions on the right-hand sides, including squaring, are
performed entry-wise.

We can now define the quadratic tangent majorant Q1(u; u(k)) for the objective function
J1ε(u) as

Q1(u; u(k)) := F(u) +
λ

2
‖M(k)

1 u‖22 + c1,

where c1 = λc̃1.
Thus, as described in Section 2.3, we state the IRLS approach for solving the optimization

problem (3.2): given an initial guess u(0), we solve the sequence of optimization problems

(3.6) u(k+1) = arg min
u∈Rn

Q1(u; u(k)), k = 0, 1, 2, . . . ,

to obtain the next iterate u(k+1). Namely, this can be interpreted as an IRLS approach for the
smooth approximation J1ε since, at each iteration, it replaces the regularization termR1ε(u)
by an iteratively reweighted `2-regularization term.

3.2. Total variation in space and Tikhonov in time (TVplusTikhonov). In this tech-
nique, we consider anisotropic TV in space and assume that the target of interest has small
changes in time. Then, we define a new regularization term as

(3.7)
R2(u) :=

nt∑
t=1

‖Lsu(t)‖1 +

nt−1∑
t=1

‖u(t+1) − u(t)‖22

= ‖(Int ⊗ Ls)u‖1 + ‖(Lt ⊗ Ins)u‖22.
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In tensor notation, similar toR1(u), we can succinctly write

R2(u) = ‖U ×1 Lv‖1 + ‖U ×2 Lh‖1 + ‖U ×3 Lt‖22.

Note that, when compared with R1(u), R2(u) requires the difference between the images
at consecutive time steps to be small. In contrast,R1(u) additionally promotes the sparsity
of the difference. Details about how to apply the MM method to minimize the functional
J2(u) := F(u) + λR2(u) are provided in Appendix A.1.

3.3. 3D joint anisotropic space-time total variation (Aniso3DTV). To explain this
approach, it is easier to consider the tensor notation directly. We define the tensor Y in which
the finite difference tensor is applied simultaneously across all three modes

Y = U ×1 Lv ×2 Lh ×3 Lt.

We can write the 3D anisotropic TV norm as the vectorized 1-norm of this tensor. That is

R3(u) = ‖Y‖1 =

nv∑
v=1

nh∑
h=1

nt∑
t=1

|yv,h,t|.

This is in contrast toR1(u) in (3.1), which computes the sum of the tensor 1-norms in which
only one derivative is applied per summand.

To derive an equivalent representation using matrix notation, consider the mode-1 un-
folding of the tensor Y , Y(1) = LvU(1)(L

T
t ⊗ LTh ). Let y = vec(Y(1)) and u = vec(U(1))

denote the vectorizations of the mode-1 unfoldings of Y and U , respectively, which are related
through the formula

y = D3u, with D3 = (Lt ⊗ Lh ⊗ Lv), so that R3(u) := ‖D3u‖1.

Details about how to apply the MM method to minimize the functional J3(u):=F(u)+λR3(u)
are provided in Appendix A.2.

3.4. 3D joint isotropic space-time total variation (Iso3DTV). In this next approach,
we apply isotropic TV in all three directions, i.e., two spatial and one temporal direction. We
first introduce the variables

z̄v(u) :=(Int ⊗ Inh
⊗ L̄v)u ,

z̄h(u) :=(Int ⊗ L̄h ⊗ Inv )u ,

z̄t(u) :=(L̄t ⊗ Inh
⊗ Inv )u .

(3.8)

Recall that L̄d, d = v, h, t is obtained by augmenting Ld with a row of zeros. Then, we can
compactly write the following regularization term

R4(u) :=

nvnhnt∑
`=1

√
(z̄v(u))2` + (z̄h(u))2` + (z̄t(u))2`

= ‖ [z̄v(u), z̄h(u), z̄t(u)] ‖2,1.

To devise a tensor formulation forR4(u), first consider the following tensors

Zv = U ×1 L̄v, Zh = U ×2 L̄h, Zt = U ×3 L̄t,

and their mode-3 unfoldings (Zv)(3), (Zh)(3), (Zt)(3), respectively. Define a new tensor
Y ∈ Rns×nt×3 such that

Y :,:,1 = (Zv)
T
(3), Y :,:,2 = (Zh)T(3), Y :,:,3 = (Zt)

T
(3).
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Then,R4(u) is the sum of the 2-norms of the mode-3 fibers of Y , that is,

R4(u) =

ns∑
i=1

nt∑
j=1

‖Yi,j,:‖2 .

To interpret this representation, the frontal slices of the tensor Y are the collection of gradient
images at all time instances, and the derivatives are taken one direction at a time. The
regularization operatorR4(u) is the sum of two norms of its tubal fibers. Details about how
to apply the MM method to minimize the functional J4(u) := F(u) + λR4(u) are provided
in Appendix A.3.

3.5. Isotropic in space, anisotropic in time total variation (IsoTV). This method can
be considered a variation of the AnisoTV method presented in Section 3.1, where only the
spatial anisotropic TV is replaced by the spatial isotropic TV. Namely, using the notation
in (3.8), we consider the regularization term

R5(u) =

nvnhnt∑
`=1

√
(z̄v(u))2` + (z̄h(u))2` +

nt−1∑
t=1

‖u(t+1) − u(t)‖1

= ‖ [z̄v(u), z̄h(u)] ‖2,1 + ‖(Lt ⊗ Ins)u‖1.

The associated tensor formulation reads similar to the ones presented in Sections 3.1 and 3.4,
namely,

R5(u) =

ns∑
i=1

nt∑
j=1

‖Yi,j,:‖2 + ‖U ×3 Lt‖1,

where Y ∈ Rns×nt×2 is such that Y :,:,1 = (Zv)
T
(3), and Y :,:,2 = (Zh)T(3). Details about how

to apply the MM method to minimize the functional J5(u) := F(u) + λR5(u) are provided
in Appendix A.4.

3.6. Group sparsity (GS). Group sparsity allows to promote sparsity when reconstruct-
ing a vector of unknown pixels that are naturally partitioned in subsets; see [4]. In our
applications, there are several possible ways to define groups. For example, we can natu-
rally group the variables corresponding to pixels at each time instant, i.e., {u(t)}nt

t=1. To
enforce piecewise constant structures in space and time, we adopt the following approach. Let
n′s = (nv − 1)nh + (nh− 1)nv be the total number of pixels in the gradient images. Consider
the groups defined by the vectors

z` =
[
(Lsu

(1))`, . . . , (Lsu
(nt))`

]
=
(
Int ⊗ eT` Ls

)
u ∈ Rnt , ` = 1, . . . , n′s.

Alternatively, define the matrix Z whose columns represent the vectorized gradient images at
different time t as

(3.9)
Z = [Lsu

(1), . . . ,Lsu
(nt)] = LsU ∈ Rn

′
s×vt ,

z = vec(Z) = (Int ⊗ Ls)u .

Note that z` are the rows of Z. These are also illustrated in Figure 3.1. The regularization
term corresponding to group sparsity can then be expressed as a mixture of norms

R6(u) :=

n′s∑
`=1

‖z`‖2 =

n′s∑
`=1

(
nt∑
t=1

(Lsu
(t))2`

)1/2

= ‖LsU‖2,1.
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FIGURE 3.1. The vector of spatial derivatives Lsu(t) contains the partial derivatives with respect to the vertical
(u(t)

v ) and horizontal (u(t)
h ) directions for each image. These vectors are the columns of the matrix Z depicted here.

We compute the 2-norm of each row z` of Z and add them.

In other words, the regularization term behaves like a 1-norm for the vector [‖z1‖2 · · · ‖zn′s‖2].
This regularization term induces sparsity on the vector of 2-norms of z`, ` = 1, . . . , n′s,
encouraging ‖z`‖2 (and, in turn, each vector z`) to be zero. On the one hand, by using this
regularization, we are ensuring that the sparsity in the gradient images is being shared across
time instances. On the other hand, this regularization formulation does not enforce sparsity
across the groups, i.e., across the vectors z`.

To devise a tensor formulation, let U be the tensor of images, and let X = U ×1 Lv and
Y = U ×2 Lh be the tensors obtained by taking the gradient in the vertical and horizontal
directions. Then,R6(u) is the sum of 2-norms of the mode-3 fibers of X and Y . That is,

R6(u) =

(nv−1)∑
i=1

nh∑
j=1

‖X i,j,:‖2 +

(nh−1)∑
i=1

nv∑
j=1

‖Yi,j,:‖2.

Note also that, following (3.9), Z = [X(3),Y(3)]
T . Details about how to apply the MM

method to minimize the functional J6(u) := F(u) + λR6(u) are provided in Appendix A.5.

3.7. Summary of the proposed approaches. In this section, we have presented six
different regularization terms for promoting edge-preserving reconstructions in dynamic
inverse problems. Here we show that they can be treated in a unified fashion, providing a
succinct summary of all the proposed methods. For each regularization term, we solve an
optimization problem of the form

(3.10) min
u∈Rn

Jjε(u) := F(u) + λRjε(u), λ > 0, j = 1, . . . , 6,

whereRjε(u) is a smoothed regularization term depending on the method used and F(u) is a
term that measures the data-misfit. For each optimization problem, we have derived an MM
approach that (partially) solves a sequence of IRLS problems. That is, given an initial guess
u(0), at step k we (partially) solve the optimization problem

(3.11) u(k+1) = arg min
u∈Rn

1

2
‖Fu− d‖2Γ−1 +

λ

2
‖M(k)

j u‖22, k = 0, 1 . . .

The matrix M
(k)
j takes different forms depending on the regularization technique used.
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Table 3.1 summarizes some details about the proposed regularization terms and points
to the formulas defining the reweighting matrices appearing within M

(k)
j in the MM step.

In Section 5, we discuss iterative methods to efficiently solve the sequence of least-squares
problems (3.11) and select the regularization parameter λ.

TABLE 3.1
The six different methods introduced in Section 3, the associated regularization terms, and the weighting

matrices for the MM step. The index j runs from 1 to 6. The vectors z̄d(u), d = v, h, t, are defined in (3.8).

Method j Rj(u) MM weights
AnisoTV 1 ‖(Int

⊗ Ls)u‖1 + ‖(Lt ⊗ Ins
)u‖1 (3.5)

TVplusTikhonov 2 ‖(Int
⊗ Ls)u‖1 + ‖(Lt ⊗ Ins

)u‖22 (A.3)
Aniso3DTV 3 ‖(Lt ⊗ Lh ⊗ Lv)u‖1 (A.4)

Iso3DTV 4 ‖ [z̄v(u), z̄h(u), z̄t(u)] ‖2,1 (A.5)
IsoTV 5 ‖ [z̄v(u), z̄h(u)] ‖2,1 + ‖(Lt ⊗ Ins)u‖1 (A.6)

GS 6 ‖LsU‖2,1 (A.7)

4. Extensions and alternative approaches. In Section 3, we presented a variety of
regularization methods that use different forms of TV and sparsity-enforcing regularization
to obtain solutions methods that enhance edge representation. In this section, we summarize
some alternative approaches that can be used, still within the MM framework, to enforce
edge-preserving reconstructions.

Beyond the `1- and `2-norms. One way to interpret the anisotropic TV is that it enforces
sparsity in the gradient images. A natural measure of the sparsity of a vector is the `0-“norm”,
which counts the number of nonzero entries. However, solving minimization problems that
involve the `0-term is known to be NP-hard; hence to remedy this difficulty, one approximates
the `0-“norm” by `1-convex relaxation. Several nonconvex penalties with 0 < q < 1 have
been used alternatively to `1; see [21, 70]. The methods we discuss in Section 3 can be
generalized using `q-regularization. For example, the regularization term (3.1) in Section 3.1
can be generalized by choosingRq1(u) = 1

q‖D1u‖qq , for 0 < q ≤ 2. Similarly, the GS method
(Section 3.6) can be expressed using general mixed `p-`q “norms” instead of `2-`1.

Beyond the gradient operator. One can build appropriate sparsity transforms using and
combining operators other than the first-order finite difference operator Ld defined in (2.2),
where d = v, h, t. A first simple extension replaces Ld by a discretization of the second-order
derivative operator, which can still assist in preserving edges [2, 57]. Moreover, one can
replace the operator Ld implicitly appearing in any of the regularizers defined in Section 3
by a wavelet transform; see [25, 54] and references therein for more details and properties
of different classes of wavelets. Similar to wavelets, framelet representations of images
are orthogonal basis transformations that form a dictionary of minimum size that initially
decomposes the images into transformed coefficients; see [16]. Finally, several variations are
also possible when specifically considering the GS regularizer proposed in Section 3.6. For
instance, one can consider ‘overlapping groups’ and also replace Ls with other operators, such
as the ones mentioned above. It is well-known that, beyond dynamic inverse problems, sparse
representations can improve pattern recognition, feature extraction, compression, multi-task
regression, and noise reduction; see, for example, [3, 46].

Beyond one single regularization parameter. Specifically for dynamic inverse problems,
it may be meaningful to adapt the regularization parameters based on the dynamics. For
instance, one can define dedicated regularization parameters for different domains (spatial
or temporal). Within the framework presented in Section 3, this can be achieved by setting,
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in addition or as an alternative to λ, appropriate values for the parameters αd in (2.2). For
instance, [40] considers a scenario where the regularization parameters are different for the
spatial and temporal domains. Although there is a rich literature on methods to estimate a
single regularization parameter, finding multiple regularization parameters is challenging and
an active area of research; see, e.g., [6, 30, 31].

5. Iterative methods for IRLS problems and parameter choice. In this section, we
describe a numerical method to solve the optimization problems arising from the approaches
described in Section 3.

Towards the end of this section, we describe how a suitable value for the regularization
parameter λ(k) can be determined. To compute the iterate u(k+1) as in (3.11), we set the
gradient of Qj(u; u(k)) to zero, which leads to the regularized normal equations (or general
Tikhonov problem)

(5.1)
(
FTΓ−1F + λ(k)(M

(k)
j )TM

(k)
j

)
u(k+1) = FTΓ−1d.

The system (5.1) has a unique solution if the null spaces of FTΓ−1F and (M
(k)
j )TM

(k)
j

or, equivalently, the null spaces of FTF and DT
j Dj , only intersect at 0, j = 1, . . . , 6 (for

convenience, we have defined D2 = D1).
Therefore, for the methods 1–3 (AnisoTV, TVplusTikhonov, and Aniso3DTV), this

matches the assumptions of [41, Theorem 5], and as a consequence, the sequence {u(k)}
converges to a global minimizer of Jjε(u) for each method (see [41, Corollary 6]). For the
methods 4–6 (Iso3DTV, IsoTV, and GS), it may be possible to extend the analysis from that
paper; however, we do not pursue it here.

Since solving (5.1) for large-scale matrices F and M(k) may be computationally de-
manding or even prohibitive, we search for a solution to (5.1) in a low-dimensional subspace
(namely, a generalized Krylov space) and solve a much smaller projected problem. If the
approximate solution is unsatisfactory, then we extend the search space with the (normalized)
residual and consider the next problem in the sequence (3.11) so that, for each k, only one
projected problem is solved, as detailed below. This leads to the Generalized Krylov subspace
(GKS) process [41, 48]. A summary of the resulting algorithm adapted to the problems
described in this paper is sketched in Algorithm 1 below, together with a few explanations.

At the kth iteration of Algorithm 1, given a c-dimensional (c � n) search space
Vc = range(Vc), where Vc ∈ Rn×c has orthonormal columns, we compute an approximate
solution to (5.1) by first computing the thin QR-decompositions Γ−1/2FVc = Q

(k)
F R

(k)
F

and M
(k)
j Vc = Q

(k)
M R

(k)
M (line 7) and by then substituting u = Vcy in (5.1), leading to the

small minimization problem in line 9: its solution can be computed at a low cost, giving the
approximate solution u(k+1) = Vcy(k+1) (line 10). The residual associated with (5.1) can be
computed as

(5.2) r(k+1) = FTΓ−1(FVcy(k+1) − d) + λ(k)(M
(k)
j )TM

(k)
j Vcy(k+1).

If the stopping criteria (discussed in Section 6) are not satisfied, then we use the normalized
residual to expand the search space, i.e., range(Vc+1) = range([Vc, r(k+1)/‖r(k+1)‖2]),
as prescribed in lines 11–12 (note that while in exact arithmetic r(k+1) ⊥ Vc, in practice,
for numerical stability, we first explicitly orthogonalize the new residual against Vc). We
then compute W

(k+1)
j and M

(k+1)
j and continue the iterations, solving for u(k+2). As Γ is

fixed, the thin QR-decomposition Γ−1/2FVc = Q
(k)
F R

(k)
F can be updated efficiently when

an additional column is appended to Vc (line 7). To compute a small initial search space
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Algorithm 1 MM-GKS for dynamic inverse problems.

1: Input:

Matrix F ∈ Rm×n, noise-corrupted data d ∈ Rm, Γ ∈ Rm×m, Ds ∈ Rr×n

with s = 1, 2, . . . , 6.
Dimension ` of the initial approximation subspace, parameters ε > 0,
stopping criterion tolerance.

2: Generate the initial subspace basis: V` ∈ Rn×` such that VT
` V` = I.

3:
Compute Γ−1/2FV` and MsV`, and the QR factorization Γ−1/2FV` = QFRF;

Compute u(0) = V` argminy∈R`

∥∥∥RFy − (QF)
TΓ−1/2d

∥∥∥2
2

4: for k = 0, 1, 2, . . . until a stopping criterion is satisfied
5: Let c = `+ k.
6: Compute W

(k)
s as in Table 3.1, using u = u(k); compute the corresponding M

(k)
s .

7: Update Γ−1/2FVc = Q
(k)
F R

(k)
F and compute M

(k)
s Vc = Q

(k)
M R

(k)
M .

8: Determine the λ(k) by GCV; see [13, Section 3.2] for details.

9: Compute y(k+1)=argminy∈Rc

∥∥∥∥∥
[

R
(k)
F

(λ(k))1/2R
(k)
M

]
y −

[
(Q

(k)
F )TΓ−1/2d

0

]∥∥∥∥∥
2

2

.

10: Compute u(k+1) = Vcy(k+1).
11: Compute the residual

r(k+1) = FTΓ−1(FVcy(k+1) − d) + λ(k)(M(k)
s )TM(k)

s Vcy(k+1).

12: Reorthogonalize: r(k+1) = r(k+1) −VcV
T
c r(k+1).

13: Enlarge the solution subspace with vnew =
r(k+1)

‖r(k+1)‖2
, Vc+1 = [Vc,vnew].

14: end for

and the initial approximation u(0), the GKS algorithm is generally started by running a few,
say `, steps of a Golub-Kahan bidiagonalization applied to Γ−1/2F and Γ−1/2d (line 2).
We emphasize again that, at each iteration index k, an approximation of u(k+1) in (3.10) is
obtained by solving a single projected problem of dimension k + `.

To select the regularization parameter at the kth iteration (line 8), we work on the projected
problem appearing in line 9 (solely involving small quantities). In particular, to efficiently apply
generalized cross validation (GCV), we compute the generalized singular value decomposition
of the c× c matrix pair (R

(k)
F ,R

(k)
M ).

Alternative well-established approaches based on the L-curve or the discrepancy principle
(DP) [17] or the unbiased predictive risk estimator (UPRE) [58], can be applied.

Computational cost of Algorithm 1. Let TF and TFT denote the cost of evaluating a
matrix-vector product with F and its transpose FT , respectively; this cost depends on the
forward operator used in the application. Similarly, let TM and TMT denote the cost of
computing matrix-vector products with M

(k)
s and its transpose (M

(k)
s )T , respectively; these

costs depends on the specific regularization approach that is used, but they are generally
small compared to TF and TFT , since M

(k)
s is typically very sparse. At the kth iteration

of Algorithm 1, two QR factorizations need to be computed: one for Γ−1/2FVc and one
for M

(k)
s Vc. The cost of this is O((m+ n)c2); however, this can be mitigated for the term

Γ−1/2FVc by updating the QR factorization rather than recomputing it from scratch. We
cannot do that for the second term M

(k)
s Vc since the entire matrix changes at each iteration.

There is an additional cost of O(c3) at each iteration to estimate the regularization parameter
and a cost of O(nc) to reorthogonalize and produce an estimate of the solution. The total cost
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per iteration is therefore

Cost = TF + TFT + TM + TMT +O((m+ n)c2 + c3) flops.

This analysis assumes that the initial basis V` is available; when ` is small, as is the case in our
experiments, this cost is negligible compared to the cost of the GKS approach. Algorithm 1 is
computationally efficient when TF and TFT are large compared to the cost of orthogonalization.
The computational cost due to orthogonalization may be large when the number of iterations is
high. Nevertheless, as we show in the numerical experiments (Table 6.3 for the dynamic PAT
in Section 6), our solver is much faster than other approaches we consider. Alternatively, for
large-scale problems with high memory requirements, a recently proposed restarted MMGKS
can be used [14].

Developing even more efficient methods for large-scale dynamic inverse problems is an
important topic for future study. Several possibilities can be explored, including using fixed
quadratic majorant [41] and randomized sketching-based techniques [5].

6. Numerical experiments. In this section, we provide numerical examples from three
different dynamic inverse problems. Our goal is two-fold: to show that using dynamic
information can be advantageous in reconstructions and to compare the different spatio-
temporal regularization methods proposed in this paper. In addition, we provide comparisons
with several solvers such as ADMM and variations of MM, demonstrating the computational
efficiency of our approach.

Discussion on the choice of numerical examples. Our first example considers a synthetic
space-time image deblurring where images change in time, but the blurring operator is fixed
for all the time instances. In this example, the true solution is available, which allows a
comparison between the proposed methods.

The second example is a problem from dynamic photoacoustic tomography (PAT), in
which there are few measurements per time step (since information is collected from limited
angles) but many time steps yielding many measurements overall. This is the largest test
problem we consider, with over 1.9 million unknowns, in which the forward operator A(t)

changes at each time step. In this example, we compare a few of the regularization methods for
dynamic inverse problems against the static inverse problem. Furthermore, we also compare
the solvers adopted in this paper with other MM solvers and a state-of-the-art method, i.e.,
ADMM. The final example concerns real data arising from limited angle CT where the target
of interest is a sequence of “emoji images”. For this example, the true solution is unavailable,
and we only provide a qualitative assessment. Still, this example clearly illustrates the impact
of incorporating temporal information in the reconstruction process.

Quality measures and stopping criteria. To assess the quality of the reconstructed solution,
we compute the Relative Reconstruction Errors (RREs) obtained using the `2-error norms.
That is, for some recovered u(k) at the kth iteration, the RRE is defined as follows:

RRE := RRE(u(k),utrue) =
||u(k) − utrue||2
||utrue||2

.

In addition to the RRE, in some examples, we report the Peak Signal to Noise Ratio (PSNR)
(from MATLAB) and the Structural SIMilarity index (SSIM) between u(k) and utrue to
measure the quality of the computed approximate solutions. For the definition of the SSIM,
we refer to [66] for details. Briefly, the SSIM measures how well the overall structure of the
image is recovered; the higher the index, the better the reconstruction. The highest achievable
value is 1.
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The iterations are terminated as soon as the maximum number of iterations is reached or
one of the following criteria is satisfied

(6.1) (i)
‖u(k) − u(k−1)‖2
‖u(k−1)‖2

≤ tol1 , (ii)
‖r(k+1)‖2
‖r(1)‖2

≤ tol2 ,

with tol1 = 9 × 10−4 and tol2 = 10−5. Criteria (i) and (ii) monitor the relative change of
two consecutive iterations and the relative reduction in the residual (5.2), respectively. We
also experimented with two other stopping criteria: the discrepancy principle and the relative
change in the regularization parameter, which are not reported in our numerical results. For
consistency, in all the numerical examples, we set ` = 5, that is, we run five iterations of
the Golub-Kahan bidiagonalization algorithm to generate an initial subspace. We choose the
smoothing parameter ε = 10−3. In the synthetic data examples (Examples 1 and 2), we perturb
the measurements with white Gaussian noise, i.e., the noise vector e appearing in (1.1) has
mean zero and a rescaled identity covariance matrix; we refer to the ratio σ = ‖e‖2/‖Fu‖2 as
the noise level.

All the timing results were run on a Mac Mini (M1, 2020) with 16 GB RAM running
MacOS Big Sur and MATLAB 2021a.

Example 1: space-time image deblurring. The goal here is to reconstruct a sequence
of approximations of desired images from a sequence of blurry and noisy images. A sample
of the true images is shown in the first row of Figure 6.2. The simulated available data are
obtained by blurring eight images of size 128× 128 with a Gaussian point spread function
with a medium blur using [28]. We consider all the operators A = A(t) ∈ R16,384×16,384,
t = 1, 2, . . . , 8 to be the same, so that F = I8 ⊗A ∈ R131,072×131,072.

The blurred images are perturbed with white Gaussian noise of level σ = 0.01 and are
shown in the second row of Figure 6.2. We solve (3.10), where the index j = 1, 2, . . . , 6
corresponds to (all the) methods listed in Table 3.1. Some quantitative results are displayed in
Figure 6.1.

(a) (b)

FIGURE 6.1. Space-time image deblurring test problem: a) RRE computed for the dynamic problem at the
iteration when the stopping criteria are first satisfied for each time step. b) History of RRE (all time steps together)
for 150 iterations. The methods considered here are AnisoTV, TVplusTikhonov, IsoTV, Aniso3DTV, Iso3DTV, and GS.
The solid diamond markers highlight the iteration satisfying the stopping criteria.

Figure 6.1(a) displays the RRE at each of the eight time points for each method. The RRE
is computed at the iteration k when the stopping criteria (6.1) are first satisfied; the number of
iterations k and the regularization parameter λ(k) that was chosen are displayed in Table 6.1;
note that we estimate the corresponding regularization parameter at each MM-GKS iteration.
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In Figure 6.1(b), we display the RRE versus the number of iterations for all the methods
when each method is allowed to run for 150 iterations without considering any other stopping
criteria. Solid diamond markers over the lines in Figure 6.1(a) indicate the iteration and the
value of the RRE (for each time slice) when the stopping criteria are satisfied. In contrast,
each line in Figure 6.1(b) gives the RRE for each method for all images together, that is, the
error in u(k).

We observe that AnisoTV and GS outperform the other methods for this example in
terms of RRE. Moreover, as illustrated in Figure 6.1, for the methods IsoTV1, Iso3DTV, and
TVplusTikhonov, we observe an increase of the RRE in the early iterations, but if the method
is let to run enough iterations, then the RRE values start to stabilize (for all methods except for
IsoTV). Reconstructions with AnisoTV at time steps t = 1, 4, 5, 6, 7 are displayed in the third
row of Figure 6.2.

TABLE 6.1
Space-time image deblurring example: the number of iterations when a stopping criterion is satisfied for the

first time and the corresponding regularization parameters for the considered methods.

Method AnisoTV TVplusTikhonov IsoTV Aniso3DTV Iso3DTV GS
Iterations k 89 138 150∗ 69 80 63
λ(k) 0.163 0.126 0.295 0.007 0.168 0.114

FIGURE 6.2. Space-time image deblurring test problem: the first row represents a sample of true images at
time steps t = 1, 4, 5, 6, 7. The second row shows the respective blurred any noisy images with medium blur and
Gaussian noise of level σ = 0.01. The third row shows the reconstructed images u(t), t = 1, 4, 5, 6, 7 obtained by
AnisoTV when the stopping criteria are satisfied.

1IsoTV stopped by the maximum number of iterations (150) for this example, but we highlight that when we
slightly increase the tolerance of the stopping criteria, we observed convergence within 150 iterations.
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Example 2: dynamic photoacoustic tomography (PAT). As a second example, we
consider a dynamic instance of PAT, which is a hybrid imaging modality that combines the
rich contrast of optical imaging with the high resolution of ultrasound imaging; dynamical
PAT models were already considered in [22, 23, 52]. Specifically, the forward operator F is
time-dependent and has the block-diagonal structure (1.2). The operators A(t) are computed
by using the PRspherical function from [28], for the projection angles t, t + 30,. . . ,
t + 241, t = 1, 2, . . . , nt. We add white Gaussian noise of level σ = 0.01 to the available
measurements.

FIGURE 6.3. Dynamic PAT test problem: first row, from left to right: true images at time steps t = 1, 10, 20, 30.
Second row, from left to right: sample of sinograms at time steps t = 1, 10, 20, 30 and the full sinogram.

(a) (b)

FIGURE 6.4. Dynamic PAT test problem: a) RRE computed at the iteration (reported in Table 6.2) when the
stopping criteria are first satisfied, for each time step. b) SSIM computed at the iteration when the stopping criteria
are first satisfied, for each time step. The methods considered here are AnisoTV (right-pointing triangle line), Iso3DTV
(dotted line), and GS (left-pointing triangle line).

In a first instance, we consider images U(t), t = 1, 2, . . . , 30 of size 256 × 256 where
each image represents a superposition of six circular objects that are in motion. This implies
that the total number of unknowns is n = 256× 256× 30 = 1, 966, 080, leading to a severely
underdetermined inverse problem. For each angle there are 362 measurements, resulting in a
total of m = 97, 740 observations. A sample of true images at time instances t = 1, 10, 20, 30
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is shown in the first row of Figure 6.3, and the corresponding noisy sinograms d(t) ∈ R3,258

along with the full sinogram (obtained by concatenating all 30 available sinograms together)
are shown in the second row of Figure 6.3. We carry out the following numerical experiments:
(a) Solve the large-scale dynamic inverse problem (3.10) with j = 1, 4, 6. More specifically,

we choose AnisoTV from the anisotropic-type methods, Iso3DTV from the isotropic-type
methods, and GS.

(b) Solve the static inverse problem (1.4) with the regularization term

R(u) = ‖Lsu(t)‖1 at t = 1, 2, . . . , 30,

accounting for spatial regularization only. Throughout this paper, we solve the static
inverse problem (1.4) by the MM-GKS algorithm where the regularization parameter is
adapted at each iteration and all the stopping criteria are set the same as for solving the
dynamic inverse problem (3.10).
We compute the RRE(u(k),utrue) as well as the SSIM for both experimental setups as

described in (a) and (b) above, and we report the results in Figure 6.4 when the stopping
criteria (6.1) are satisfied for the first time. The number of iterations k and the corresponding
regularization parameter λ(k) are reported in Table 6.2. GS outperforms all the methods in
this experimental setup, followed by AnisoTV, as illustrated in Figure 6.5 by both the RRE
and SSIM quality measures. Notice here that Iso3DTV is the least accurate method among the
ones we propose; however, it still outperforms the static approach.

In Figure 6.5, we report the reconstructions at times steps t = 1, 10, 20, 30 from left
to right, respectively (exact images are reported in Figure 6.3). Different rows correspond
to reconstructions with different methods. The first row shows the reconstructions obtained
by solving the static inverse problem (1.4), where we observe that even though the method
is able to provide the locations of the inclusions, the detailed information of the inclusions
is missing. The second row shows the reconstructions with Iso3DTV, where certainly the
artifacts around the circular inclusions are present and the background appears perturbed as
well. Improved reconstructions are observed in the third and the fourth rows of Figure 6.5,
obtained by AnisoTV and GS, respectively.

TABLE 6.2
Dynamic PAT test problem: the number of iterations k when the stopping criteria is satisfied for the first time

and the corresponding regularization parameter λ(k) at those iterations for AnisoTV, Iso3DTV, and GS.

Method AnisoTV Iso3DTV GS
Iterations k 84 81 91
λ(k) 0.0073 0.0073 0.0073

Comparing different solvers. We consider 30 images of size 128× 128 to compare the
new solvers with other solvers based on the IRLS (or, equivalently, MM) strategies (2.4)
and primal-dual-type methods such as ADMM. For simplicity, during the comparison, we
only display results for the AnisoTV regularization term (3.1); the other regularizers listed in
Table 3.1 provide very similar results in terms of accuracy and computational time.

Specifically, we consider the so-called
(c) MM-LSQR method: In this approach, we use LSQR [56] to solve the sequence of

least-squares problems (3.6), written in the augmented form. We allow for 30 MM
iterations and limit the number of inner iterations to a maximum of 100 or stop if
the tolerance of 10−5 is achieved for the solution obtained by LSQR. We select the
best (i.e., the one that produces the smallest RRE) regularization parameter out of 15
candidate values.
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FIGURE 6.5. Dynamic PAT test problem: panels in the first row show the reconstructions by solving the static
inverse problem, panels in the second, third, and fourth rows show reconstructions with AnisoTV, Iso3DTV, and GS at
time steps t = 1, 10, 20, 30 from left to right, respectively.

(d) Inner-outer reweighting scheme: We follow the inner-outer approach introduced
in [29], where the authors present an IRLS approach that uses an adaptive diagonal
weighting matrix that shares some common features with spatial anisotropic TV
involving the discrete spatial gradient operator Ls (2.3) and a projection-based
iterative method developed in [45] to solve the corresponding sequence of general-
form Tikhonov problems. We extended this approach to spatio-temporal TV by
considering the spatio-temporal first-derivative operator D1 (3.1) rather than Ls.
We set a maximum number of outer iterations to 30 and limit the number of inner
iterations to 60 and consider two different methods for estimating the regularization
parameter at each inner iteration: the discrepancy principle and the L-curve. We call
this approach IRN-aTV.

(e) ADMM: We consider here a primal-dual solver for (1.3) such as the Alternating
Direction Method of Multipliers (ADMM) [9].
When ADMM is employed to solve the minimization problem (1.3) with a regu-
larization term (for instanceR1(u)) and a fixed regularization parameter, the main
computational cost at its kth iteration is sourced from solving a linear system of
equations of the form

(6.2) (FTF + ωDT
1 D1)u = FTd + DT

1 µk + ωDT
1 ck ,

where µk is the current Lagrange multiplier, ck is a current auxiliary variable, and
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ω > 0 is a penalty parameter for the Lagrangian. This is followed by the application
of a proximal operator. We follow the approach in [33], but it is adapted to our setup.
We let the maximum number of iterations of ADMM be 150 (the same maximum
number of iterations as in AnisoTV). We solve the linear system (6.2) using LSQR
for which we stop the iterations when the tolerance 10−5 or the maximum number of
iterations 100 is reached. The regularization parameter is selected after searching for
a regularization parameter that minimizes the RRE over 15 candidate runs.

We are somewhat limited in the solvers we can compare the methods in (a) against; this is
because, while many methods are applicable to standard-form Tikhonov regularization, far
fewer methods are applicable to general-form Tikhonov regularization (which is needed to
solve (2.4)), which are further limited by the requirement that the regularization parameter λ
should be ideally estimated during the reconstruction process.

In Table 6.3 we list the RRE, PSNR, the number of iterations, and the CPU time (in hours)
for the anisotropic-TV-like methods described in (a), (c), (d), and (e).

TABLE 6.3
Dynamic PAT test problem: comparison of different solvers in terms of RRE, PSNR, Iterations (number of

outer iterations), either MM or ADMM) and CPU time. CPU time includes the effort to find the best regularization
parameter (over 15 candidate runs) for MM-LSQR and ADMM.

MM-GKS IRN-aTV (DP) IRN-aTV (L-curve) MM-LSQR ADMM
RRE 0.096 0.0712 0.082 0.1879 0.087

PSNR 36.1 38.7 37.5 30.3 37.1
Iterations 85 30 30 30 99

CPU time (hours) 0.17 4.42 1.99 2.49 3.71

We make the following observations:
1. We clearly see that MM-LSQR is not competitive either in run time or the reconstruc-

tion error. Incrementing the number of inner and outer iterations will likely reduce
the RRE, but it will increase the computational cost further.

2. The IRN-aTV methods have slightly lower RRE but considerably higher run times
than MM-GKS. We did not investigate how to effectively stop the inner and outer
iterations and used the implementation in IR Tools.

3. The ADMM yields a relatively low reconstruction error. For each regularization
parameter value, the algorithm is fairly efficient and takes∼ 0.25 hours, but computed
over 15 candidate runs it takes 3.71 hours. Note that the time to run ADMM for one
(known) regularization parameter is still ∼ 50% more expensive than MM-GKS.

To explain these observations, we note that the MM-GKS approach is more efficient
for a comparable accuracy because, unlike the other three methods, 1) it is not an inner-
outer method and 2) the regularization parameter is determined automatically at a negligible
computational cost. More precisely, at each iteration, MM-GKS only increments the current
basis for the solution by one vector to approximately solve each reweighted least-squares
problem in the sequence (2.4) rather than computing a new basis from scratch. In contrast,
the IRN-aTV method technically involves three levels of iterations: the outermost iterations
update the weights needed for edge-preserving regularization, while the inner iterations used
to solve the resulting general-form Tikhonov problem involve themselves an inner set of LSQR
iterations [45].

Furthermore, MM-GKS is able to estimate the regularization parameter during the recon-
struction (unlike MM-LSQR and ADMM), avoiding the need for a repeated inner-outer loop
over all candidate regularization parameters. This numerical experiment highlights why the
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MM-GKS approach is efficient in this context despite the potentially large orthogonalization
cost.

We further remark that although MM-GKS is competitive with other methods we consider,
the number of basis vectors that need to be stored in MM-GKS grows with the number of
iterations. In large-scale problems (as in the current example), memory capacity can be easily
reached, and we may not be able to run enough MM-GKS iterations to converge. A remedy
to memory limitations was restarting, introduced in [14]. Other efficient strategies include
recycling the subspace, which is a subject of future research.

Example 3: dynamic X-Ray Tomography-3D Emoji Data. In this example, we test our
methods for real data of an “emoji” phantom measured at the University of
Helsinki [53]. The forward operator and the data can be obtained from the file
DataDynamic_128x30.mat. The available data represents nt = 33 time steps of a series
of the X-ray sinogram of emojis made of small ceramic stones obtained by shining 217 projec-
tions from na = 30 angles. The inverse problem involves reconstructing a sequence of images
U(t), t = 1, 2, . . . , 33, of size nh × nv, where nh = nv = 128, from low-dose observations
measured from a limited number of angles na. These images represent the dynamic sequence
of emojis varying from an expressionless face with closed eyes and a straight mouth to a face
with smiling eyes and mouth, where the outermost circular shape does not change. As a result,
the unknown images are collected in u =

[
(u(1))T , (u(2))T , . . . , (u(33))T

]T ∈ R540,672.
See the first row of Figure 6.6 for a sample of 4 images at time steps t = 6, 14, 20, 26. The
low-dose available observations can be modeled by the measurement matrix F which describes
the forward model of the Radon transform that represents line integrals. In this case, we have
a block matrix F as in (1.2) with 33 blocks. Although the ground truth is not available, we can
qualitatively compare the visual results.

We visualize the reconstructions from different numbers of angles na = 10 and na = 30,
highlighting the effect of the number of the projection angles and also the visual differences
in the reconstruction when static sub-problems (1.4) are solved independently and when the
dynamic inverse problem (3.10) is solved. For each case, in Table 6.4, we report the number
of iterations that the method took to converge and the regularization parameter at that iteration.

Case 1: considering na = 10 projection angles. First, we limit the number of angles
na to 10 from the dataset DataDynamic_128x30.mat. In this way we generate under-
determined problems A(t)u(t) + e(t) = d(t), t = 1, 2, . . . , 33 where A(t) ∈ R2,170×16,384.
Therefore F ∈ R71,610×540,672 and the measurement vector d ∈ R71,610 contains the mea-
sured sinograms d(t) ∈ R2,170 obtained from 217 projections around 10 equidistant angles.

Figure 6.6 displays some reconstructions (see also the supplementary materials2 for
an animation). Looking at the second row of images, it is evident that a limited number
of projection angles per time step results in poor reconstructions when solving the static
inverse problem, where the important details (features of the face) are missing. Solving the
dynamic inverse problem results in an enhanced quality of the reconstruction. In particular, by
considering the new regularization terms in AnisoTV (third row) and IsoTV3D (fourth row),
we are able to reconstruct the edges clearly and have fewer artifacts overall.

Case 2: considering na = 30 projection angles. In this second case, we consider
the full number of angles in the dataset DataDynamic_128x30.mat, i.e., na = 30 to
highlight the importance of the number of projection angles. Here A(t) ∈ R6,510×16,384

and the measured sinograms are obtained from 217 projections with 30 angles each, that
is, d(t) ∈ R6,510. Hence F ∈ R214,830×540,672 and d ∈ R214,830. The reconstructions
of the static problems (1.4) are displayed in the second row of Figure 6.7. The third and

2https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol58/addition/p486.php
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FIGURE 6.6. Reconstruction results for the emoji test problem with na = 10. The rows represent (from top to
bottom): the original images, the reconstructions when images are considered independently, the reconstructions by
AnisoTV, the reconstructions by Iso3DTV, at time steps t = 2, 10, 18, 31 (from left to right).

the fourth rows display the reconstruction by AnisoTV and Iso3DTV at the time instances
t = 6, 14, 20, 26 from left to right, respectively. The first remark is that similar to the case
na = 10, the reconstructions obtained using the dynamic inverse problem are qualitatively
better than that of the static inverse problem. In addition, we observe that increasing the
number of projection angles from 10 to 30 helps in removing the background artifacts and
better preserving the edges.

We remark that other methods such as TVplusTikhonov, IsoTV, and Aniso3DTV produce
reconstructions of similar quality to AnisoTV and Iso3DTV, and, therefore, we do not report
them here. In contrast to the other test problems that we presented above, where GS was one
of the most accurate methods, it (qualitatively) appears to be the least accurate one in this
example. This observation allows us to highlight one of the goals of this paper, which is to
present a variety of regularization methods without advocating for one over the other, since
the performance of the methods we describe is application-dependent.

Nonnegativity constraints. In many applications, such as medical imaging and astronomi-
cal imaging, the pixels of the desired solution are nonnegative [12, 11, 32], that is, the exact
solution of (1.3) is known to live in the closed and convex set

Ω0 = {u ∈ Rn : (u)` ≥ 0, ` = 1, 2, . . . , n}.

In general, imposing nonnegativity helps mitigate the artifacts from limited angles. Here
we consider the optimization problems (3.10) subject to the constraint u ∈ Ω0. This is
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FIGURE 6.7. Reconstruction results for the emoji test problem with na = 30. The rows represent (from top to
bottom): the original images, the reconstructions when images are considered independently, the reconstructions by
AnisoTV, and the reconstructions by Iso3DTV, at time steps t = 2, 10, 18, 31 (from left to right).

TABLE 6.4
Dynamic X-Ray Tomography example: the number of iterations when the stopping criteria are satisfied for the

first time and the regularization parameters at those iterations for AnisoTV and Iso3DTV.

Method AnisoTV Iso3DTV

na = 10
Iterations k 115 63

λ(k) 0.515 0.7935

na = 30
Iterations k 86 94

λ(k) 0.796 1.109

heuristically implemented by projecting the solution u(k) onto Ω0 at each iteration. We
illustrate the effect of the nonnegativity constraint in Example 3 for Case 1, with the number
of projection angles taken to be na = 10 and with observations d(t), t = 1, 2, . . . , 33. The
reconstructed images at time steps t = 6, 14, 20, 26 are displayed in Figure 6.8. From visual
inspection, there are fewer artifacts around the edges when the nonnegativity constraint is
applied.

7. Conclusions and future directions. In this paper, we proposed a unified approach for
solving large-scale dynamic inverse problems and providing solutions with edge-preserving
and sparsity-promoting properties. The approaches we discussed here are grouped into
isotropic TV methods (which include IsoTV and Iso3DTV), anisotropic TV (which include
AnisoTV and an Aniso3DTV), and another set of methods based on the concept of group
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FIGURE 6.8. Reconstruction results for the emoji test problem with na = 10. The first row shows the
reconstructions with Iso3DTV for the unconstrained problem, and the second row shows the reconstructions with
nonnegativity Iso3DTV at time steps nt = 6, 14, 20, 26 respectively from left to right.

sparsity, GS. All the methods can be expressed in a unified framework using the MM technique,
where the resulting least-squares problem can be solved in a generalized Krylov subspace of a
relatively small dimension, and the regularization parameter can be estimated efficiently. Sev-
eral numerical examples, performed on both synthetic and real data, illustrate the performances
of the proposed methods in terms of the quality of the reconstructed solutions. Although we
propose a unified and generic framework that can be used to solve a wide range of dynamic
inverse problems, there are quite a few potential directions to investigate for future work (see
also Section 4). One direction of interest worth emphasizing is to further investigate the use of
multiple regularization parameters, for instance, regularization parameters for the temporal and
spatial domain or adapted regularization parameters for different channels. Another direction
includes alternative formulations along with their Bayesian interpretation and uncertainty
quantification. Moreover, it is known that tensor formulations preserve the structure of the data.
Hence we are interested in investigating efficient tensor-based regularization methods [63].
Some other applications of interest include video reconstruction, multi-channel X-ray spectral
tomography, and moving object detection.

Supplementary Material. The supplementary material accompanying this article is an
animation (MP4 format) illustrating the regularization of the dynamic problem in Example 3
and can be found at
https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol58/addition/p486.php.
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Appendix A. Optimization problems and MM approaches. In this appendix, we
provide the details of the MM approaches for the optimization problems corresponding to the
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regularization terms: TVplusTikhonov, Aniso3DTV, Iso3DTV, IsoTV, GS.

A.1. TVplusTikhonov. We solve the inverse problem (1.1) by solving the optimization
problem:

(A.1) min
u∈Rn

J2(u) := F(u) + λR2(u),

where λ > 0. To achieve this, we can apply the MM approach similar to Section 3.1. In
particular, we consider the smoothed versionR2ε(u) ofR2(u), where the smoothing is applied
only to the first term in (3.7); the corresponding smoothed objective function is denoted by
J2ε(u). To derive a quadratic tangent majorant for J2ε(u), we only need to majorize its first
term, so that we obtain

(A.2) Q2(u; u(k)) := F(u) +
λ

2
‖M(k)

2 u‖22 + c2,

where c2 is a constant independent of u, and the matrix M
(k)
2 is defined as

(A.3) M
(k)
2 :=

[
W

(k)
2

I

]
D1,

with D1 as in (3.1). The weighting matrix W
(k)
2 is defined as

W
(k)
2 = diag

(
(D1u(k))

2 + ε2
)−1/4

.

As in (3.6), to solve the optimization problem (A.1), we solve a sequence of reweighted
least-squares problems with the objective function Q2 defined in (A.2).

A.2. Aniso3DTV. The problem that we want to solve can be formulated as

min
u∈Rn

J3(u) := F(u) + λR3(u),

which can be tackled with the MM approach similar to the one described in Section 3.1. Again,
we consider the smoothed versionR3ε(u) ofR3(u); the corresponding smoothed objective
function is denoted by J3ε(u). We majorize J3ε(u) by the quadratic tangent majorant

Q3(u; u(k)) := F(u) +
λ

2
‖M(k)

3 u‖22 + c3,

where c3 is a constant independent of u and

(A.4) M
(k)
3 = W

(k)
3 D3, where W

(k)
3 = diag(((D3u(k))

2 + ε2)−1/4) .

A.3. Iso3DTV. We have the following problem

min
u∈Rn

J4(u) := F(u) + λR4(u).

We first consider, instead ofR4(u), the smoothed regularization term

R4ε(u) :=

nvnhnt∑
`=1

√
(z̄v(u))2` + (z̄h(u))2` + (z̄t(y))2` + ε2
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and the corresponding objective function J4ε(u). Following the derivation in [69], we devise
weights to be used in an MM approach to Iso3DTV. We can define the quadratic tangent
majorant Q4(u; u(k)) for the objective function J4ε(u) as

Q4(u; u(k)) := F(u) +
λ

2
‖M(k)

4 u‖22 + c4,

where c4 is a constant independent of u, and M
(k)
4 is the weighted matrix

(A.5) M
(k)
4 := W

(k)
4 D4, with D4 :=

Int ⊗ Inh
⊗ L̄v

Int ⊗ L̄h ⊗ Inv

L̄t ⊗ Inh
⊗ Inv

 ,
and

W
(k)
4 = I3 ⊗ diag

((
(z̄v(u(k)))

2 + (z̄h(u(k)))
2 + (z̄t(u(k)))

2 + ε2
)−1/4)

,

where (z̄d(u(k))) are the vectors z̄d(u) in (3.8), d = v, h, t, evaluated at u = u(k), i.e., at the
kth iteration. Finally, the matrix D4 is similar to D1 defined in (3.1), with the augmented
derivative matrices L̄d instead of Ld.

A.4. IsoTV. We have the following problem

min
u∈Rn

J5(u) = min
u∈Rn

F(u) + λR5(u).

We define a smoothed version ofR5(u), denoted byR5ε(u), where the smoothing is applied
separately to the first and second terms; the corresponding smoothed objective function is
denoted by J5ε(u). We can then define the quadratic tangent majorant Q5(u; u(k)) for the
objective function J5ε(u) as

Q5(u; u(k)) := F(u) +
λ

2
‖M(k)

5 u‖22 + c5.

The constant c5 independent of u, and M
(k)
5 is the weighted matrix

(A.6) M
(k)
5 := W

(k)
5 D5,

with

D5 :=

Int ⊗ Inh
⊗ L̄v

Int ⊗ L̄h ⊗ Inv

Lt ⊗ Inh
⊗ Inv

 and W
(k)
5 =

I2 ⊗ diag
(
ws

(k)

)
diag

(
wt

(k)

) ,
where

ws
(k) =

(
(z̄v(u(k)))

2 + (z̄h(u(k)))
2 + ε2

)−1/4
and wt

(k) =
(
(zt(u(k)))

2 + ε2
)−1/4

.

Here z̄d(u(k)) are again the vectors z̄d(u) in (3.8), d = v, h, evaluated at u = u(k), i.e., at
the kth iteration.
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A.5. GS. Corresponding to the regularization operatorR6, we can define the optimization
problem:

min
u∈Rn

J6(u) := F(u) + λR6(u),

where λ > 0. We can apply the MM approach similar to Section 3.1. We now seek a quadratic
tangent majorant for a smoothed version ofR6(u). To this end, let u(k) be the current iterate
(similarly, define z(k) = (Int

⊗ Ls)u(k)). Then, we have that

R6(u) ≤
n′s∑
`=1

√
‖z`‖22 + ε2 =: R6ε(u) ≤

n′s∑
`=1

‖z`‖22
2
√
‖(Int ⊗ eT` Ls)u(k)‖22 + ε2

+ c̃6,

where c̃6 is a constant independent of z` and u. The corresponding smoothed optimization
function is defined as J6ε(u). Let us define the weighting matrix W

(k)
6 of size n′s × n′s as

W
(k)
6 := diag

 1√
‖(Int

⊗ eT1 Ls)u(k)‖22 + ε2
, . . . ,

1√
‖(Int

⊗ eTn′sLs)u(k)‖22 + ε2

1/2

.

We can use this weighting matrix to define the quadratic tangent majorant

Q6(u; u(k)) := F(u) +
λ

2
‖M(k)

6 u‖22 + c6,

where c6 = λc̃6 and the matrix M
(k)
6 takes the form

(A.7) M
(k)
6 := (Int ⊗W

(k)
6 )D6, with D6 := (Int ⊗ Ls).
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