![]() |
![]() |
IBA Publikation
|
![]() |
epub.oeaw – Institutionelles Repositorium der Österreichischen Akademie der Wissenschaften epub.oeaw – Institutional Repository of the Austrian Academy of Sciences
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 http://epub.oeaw.ac.at, e-mail: epub@oeaw.ac.at |
![]() |
|
DATUM, UNTERSCHRIFT / DATE, SIGNATURE
BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
|
IBA Publikation, pp. 7022-21, 2008/09/05
A major goal in the field of aging research is to identify molecular mechanisms of aging at the cellular level, which are anticipated to form the basis for the development of age-associated dysfunctions and diseases in human beings. A major obstacle to reach this ambitious goal is the fact that genetic and molecular studies with human subjects are laborious and difficult. Recent progress in research into model organisms of aging has allowed to determine precise molecular mechanisms and genetic determinants of the aging process, which appear to be conserved in evolution and some of which apply to human aging as well. The consortium of the authors focuses on aging mechanisms at the cellular level, and exploits the potential of genetic analyses in lower eukaryotic model organisms for a better understanding of regulatory pathways implicated in aging processes. We have established a new database (GiSAO) which provides a unique resource for the analysis of genome-wide expression patterns as being regulated by senescence, apoptosis and oxidative stress in our model systems. This has led to the identification of candidate genes, which are being tested for their impact on lifespan regulation in yeast, the fruit fly Drosophila melanogaster and the nematode C.elegans. Data from the GiSAO database have also identified specific changes in gene expression occurring with aging in human T-cells, endothelial cells, mesenchymal stem cells and prostatic fibroblasts, which will allow us to address ageassociated changes in functional interactions between these various cell types.