![]() |
![]() |
IBA Publikation
|
![]() |
epub.oeaw – Institutionelles Repositorium der Österreichischen Akademie der Wissenschaften epub.oeaw – Institutional Repository of the Austrian Academy of Sciences
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 http://epub.oeaw.ac.at, e-mail: epub@oeaw.ac.at |
![]() |
|
DATUM, UNTERSCHRIFT / DATE, SIGNATURE
BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
|
IBA Publikation, pp. 1018-1023, 2009/02/03
The prospective clinical use of multipotent mesenchymal stromal stem cells (MSC) holds enormous promise for the treatment of a large number of degenerative and age-related diseases. However, the challenges and risks for cell-based therapies are multifaceted. The risks for patients receiving stem cells, which have been expanded in vitro in the presence of xenogenic compounds, can hardly be anticipated and methods for the culture and manipulation of “safe” MSC ex vivo are being investigated. During in vitro expansion, stem cells experience a long replicative history and are thus subject to damage from intracellular and extracellular influences. While murine MSC are prone to cellular transformation in culture, human MSC do not transform. One reason for this striking difference is that during long-term culture, human MSC finally become replicatively senescent. In consequence, this greatly restricts their proliferation and differentiation efficiency. It however also limits the yield of sufficient numbers of cells needed for therapy. Another issue is to eliminate contamination of expanding cells with serumbound pathogenic agents in order to reduce the risks for infection. A recent technical advancement, which applies human serum platelet lysates as an alternative source for growth factors and essential supplements, allows the unimpaired proliferation of MSC in the absence of animal sera. Here, we present an update regarding cellular senescence of MSC and recent insights concerning potential risks associated with their clinical use.
Keywords: mesenchymal stem cells, aging, senescence, biosafety, cell-based therapy