![]() |
![]() |
IBA Publikation
|
![]() |
epub.oeaw – Institutionelles Repositorium der Österreichischen Akademie der Wissenschaften epub.oeaw – Institutional Repository of the Austrian Academy of Sciences
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 http://epub.oeaw.ac.at, e-mail: epub@oeaw.ac.at |
![]() |
|
DATUM, UNTERSCHRIFT / DATE, SIGNATURE
BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
|
IBA Publikation, pp. 165-172, 2009/11/05
APCs operate frequently under oxidative stress induced by aging, tissue damage, pathogens, or inflammatory responses. Phagocytic cells produce peroxides and free-radical species that facilitate pathogen clearance and can in the case of APCs, also lead to oxidative modifications of antigenic proteins and peptides. Little information is available presently about the consequences of such modifications on the immune response. To model oxidative modification of an immunodominant antigenic peptide, we oxidized the methionine residue of the human CMV pp65495–503 (NLVPMVATV) peptide. Such modifications of an antigenic peptide can affect MHC binding or TCR recognition. Using binding and dissociation assays, we demonstrate that oxidative modification of the CMVpp65495–503 peptide leads to a decreased binding of the pMHC complex to the TCR, whereas binding of the peptide to the MHC class I molecule is not impaired. Additionally, we show that CD8+ T cells have a decreased proliferation and IFN-𝛾 production when stimulated with oxidized CMVpp65495–503 peptide. Spectratyping the antigen-binding site of the TCR of responding T cells demonstrates that the CMVpp65495–503 and the CMVoxpp65495–503 peptides preferentially stimulate BV8 T cells. Sequencing of this dominant BV family reveals a highly conserved CDR3 amino acid motif, independent of the mode of stimulation, demonstrating the recruitment of the same T cell clonotypes. Our results suggest that oxidative modification of antigenic peptides may affect T cell responses severely by binding T cell clones with different affinity. This may lead to an altered immune response against infectious agents as well as against tumor or autoantigens under oxidative stress conditions.