![]() |
![]() |
IBA Publikation
|
![]() |
epub.oeaw – Institutionelles Repositorium der Österreichischen Akademie der Wissenschaften epub.oeaw – Institutional Repository of the Austrian Academy of Sciences
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 http://epub.oeaw.ac.at, e-mail: epub@oeaw.ac.at |
![]() |
|
DATUM, UNTERSCHRIFT / DATE, SIGNATURE
BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
|
IBA Publikation, pp. 295-306, 2012/07/09
The potential of mesenchymal stem cells (MSCs) to regenerate damaged tissue is well documented, as this specialized progenitor cell type exhibits superior cellular properties, and would allow medical as well as ethical limitations to be overcome. By now, MSCs have been successfully introduced in manifold experimental approaches within the newly defined realm of Regenerative Medicine. Advanced methods for in vitro cell expansion, defined induction of distinct differentiation processes, 3-dimensional culture on specific scaffold material, and tissue engineering approaches have been designed, and many clinical trials not only have been launched, but recently could be completed. To date, most of the MSC-based therapeutic approaches have been executed to address bone, cartilage, or heart regeneration; further, prominent studies have shown the efficacy of ex vivo expanded and infused MSCs to countervail graft-versus-host disease. Yet more fields of application emerge in which MSCs unfold beneficial effects, and presently, therapies that effectively ameliorate nonhealing conditions after tendon or spinal cord injury are, courtesy of scientific research, forging ahead to the clinical trial stage.
Keywords: MSCs differentiation-potential tendon-injury spinal-cord-injury regeneration tissue-engineering scaffolds