![]() |
![]() |
ETNA - Electronic Transactions on Numerical Analysis
|
![]() |
Verlag der Österreichischen Akademie der Wissenschaften Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at |
![]() |
|
DATUM, UNTERSCHRIFT / DATE, SIGNATURE
BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
|
ETNA - Electronic Transactions on Numerical Analysis, pp. 41-63, 2018/04/19
Solving the linear elasticity and Stokes equations by an optimal domain decomposition method derived algebraically involves the use of non-standard interface conditions. The one-level domain decomposition preconditioners are based on the solution of local problems. This has the undesired consequence that the results are not scalable, which means that the number of iterations needed to reach convergence increases with the number of subdomains. This is the reason why in this work we introduce, and test numerically, two-level preconditioners. Such preconditioners use a coarse space in their construction. We consider the nearly incompressible elasticity problems and Stokes equations, and discretise them by using two finite element methods, namely, the hybrid discontinuous Galerkin and Taylor-Hood discretisations.
Keywords: Stokes problem, nearly incompressible elasticity, Taylor-Hood, hybrid discontinuous Galerkin methods, domain decomposition, coarse space, optimized restricted additive Schwarz methods