Ronny Ramlau, Lothar Reichel (Hg.)


ETNA - Electronic Transactions on Numerical Analysis






ISBN 978-3-7001-8258-0
Online Edition

  Research Article
Open access


Electronic Transactions on Numerical Analysis (ETNA) is an electronic journal for the publication of significant new developments in numerical analysis and scientific computing. Papers of the highest quality that deal with the analysis of algorithms for the solution of continuous models and numerical linear algebra are appropriate for ETNA, as are papers of similar quality that discuss implementation and performance of such algorithms. New algorithms for current or new computer architectures are appropriate provided that they are numerically sound. However, the focus of the publication should be on the algorithm rather than on the architecture. The journal is published by the Kent State University Library in conjunction with the Institute of Computational Mathematics at Kent State University, and in cooperation with the Johann Radon Institute for Computational and Applied Mathematics of the Austrian Academy of Sciences (RICAM). Reviews of all ETNA papers appear in Mathematical Reviews and Zentralblatt für Mathematik. Reference information for ETNA papers also appears in the expanded Science Citation Index. ETNA is registered with the Library of Congress and has ISSN 1068-9613.

Verlag der Österreichischen Akademie der Wissenschaften
Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400
https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at

Bestellung/Order


ETNA - Electronic Transactions on Numerical Analysis



ISBN 978-3-7001-8258-0
Online Edition



Send or fax to your local bookseller or to:

Verlag der Österreichischen Akademie der Wissenschaften
Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2,
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400
https://verlag.oeaw.ac.at, e-mail: bestellung.verlag@oeaw.ac.at
UID-Nr.: ATU 16251605, FN 71839x Handelsgericht Wien, DVR: 0096385

Bitte senden Sie mir
Please send me
 
Exemplar(e) der genannten Publikation
copy(ies) of the publication overleaf


NAME


ADRESSE / ADDRESS


ORT / CITY


LAND / COUNTRY


ZAHLUNGSMETHODE / METHOD OF PAYMENT
    Visa     Euro / Master     American Express


NUMMER

Ablaufdatum / Expiry date:  

    I will send a cheque           Vorausrechnung / Send me a proforma invoice
 
DATUM, UNTERSCHRIFT / DATE, SIGNATURE

BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
X
BibTEX-Export:

X
EndNote/Zotero-Export:

X
RIS-Export:

X 
Researchgate-Export (COinS)

Permanent QR-Code

doi:10.1553/etna_vol49s103



doi:10.1553/etna_vol49s103



Thema: natural
Ronny Ramlau, Lothar Reichel (Hg.)


ETNA - Electronic Transactions on Numerical Analysis






ISBN 978-3-7001-8258-0
Online Edition

  Research Article
Open access


Hsuan-Hao Wang, Yi-Su Lo, Feng-Tai Hwang, Feng-Nan Hwang
S.  103 - 125
doi:10.1553/etna_vol49s103

Open access

Verlag der Österreichischen Akademie der Wissenschaften


doi:10.1553/etna_vol49s103
Abstract:
The objectives of this work are to study and to apply the full-space quasi-Lagrange-Newton-Krylov (FQLNK) algorithm for solving trajectory optimization problems arising from aerospace industrial applications. As its name suggests, in this algorithm we first convert the constrained optimization problem into an unconstrained one by introducing the augmented Lagrangian parameters. The next step is to find the optimal candidate solution by solving the Karush-Kuhn-Tucker (KKT) system with a Newton-Krylov method. To reduce the computational cost of constructing the KKT system, we employ the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula to build an approximation of the (1,1) subblock of the KKT matrix, which is the most expensive part of the overall computation. The BFGS-based FQLNK algorithm exhibits a superior speedup compared to some of the alternatives. We demonstrate our FQLNK algorithm to be a practical approach for designing an optimal trajectory of a launch vehicle in space missions.

Keywords:  launch vehicle mission, trajectory optimization, KKT system, BFGS, Lagrange-Newton-Krylov solver
  2018/05/29 11:20:29
Document Date:  2018/05/29 11:09:00
Object Identifier:  0xc1aa5572 0x0038d252
.

Electronic Transactions on Numerical Analysis (ETNA) is an electronic journal for the publication of significant new developments in numerical analysis and scientific computing. Papers of the highest quality that deal with the analysis of algorithms for the solution of continuous models and numerical linear algebra are appropriate for ETNA, as are papers of similar quality that discuss implementation and performance of such algorithms. New algorithms for current or new computer architectures are appropriate provided that they are numerically sound. However, the focus of the publication should be on the algorithm rather than on the architecture. The journal is published by the Kent State University Library in conjunction with the Institute of Computational Mathematics at Kent State University, and in cooperation with the Johann Radon Institute for Computational and Applied Mathematics of the Austrian Academy of Sciences (RICAM). Reviews of all ETNA papers appear in Mathematical Reviews and Zentralblatt für Mathematik. Reference information for ETNA papers also appears in the expanded Science Citation Index. ETNA is registered with the Library of Congress and has ISSN 1068-9613.



Verlag der Österreichischen Akademie der Wissenschaften
Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400
https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at