Ronny Ramlau, Lothar Reichel (Hg.)


ETNA - Electronic Transactions on Numerical Analysis






ISBN 978-3-7001-8258-0
Online Edition

  Research Article
Open access


Electronic Transactions on Numerical Analysis (ETNA) is an electronic journal for the publication of significant new developments in numerical analysis and scientific computing. Papers of the highest quality that deal with the analysis of algorithms for the solution of continuous models and numerical linear algebra are appropriate for ETNA, as are papers of similar quality that discuss implementation and performance of such algorithms. New algorithms for current or new computer architectures are appropriate provided that they are numerically sound. However, the focus of the publication should be on the algorithm rather than on the architecture. The journal is published by the Kent State University Library in conjunction with the Institute of Computational Mathematics at Kent State University, and in cooperation with the Johann Radon Institute for Computational and Applied Mathematics of the Austrian Academy of Sciences (RICAM). Reviews of all ETNA papers appear in Mathematical Reviews and Zentralblatt für Mathematik. Reference information for ETNA papers also appears in the expanded Science Citation Index. ETNA is registered with the Library of Congress and has ISSN 1068-9613.

Verlag der Österreichischen Akademie der Wissenschaften
Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400
https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at

Bestellung/Order


ETNA - Electronic Transactions on Numerical Analysis



ISBN 978-3-7001-8258-0
Online Edition



Send or fax to your local bookseller or to:

Verlag der Österreichischen Akademie der Wissenschaften
Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2,
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400
https://verlag.oeaw.ac.at, e-mail: bestellung.verlag@oeaw.ac.at
UID-Nr.: ATU 16251605, FN 71839x Handelsgericht Wien, DVR: 0096385

Bitte senden Sie mir
Please send me
 
Exemplar(e) der genannten Publikation
copy(ies) of the publication overleaf


NAME


ADRESSE / ADDRESS


ORT / CITY


LAND / COUNTRY


ZAHLUNGSMETHODE / METHOD OF PAYMENT
    Visa     Euro / Master     American Express


NUMMER

Ablaufdatum / Expiry date:  

    I will send a cheque           Vorausrechnung / Send me a proforma invoice
 
DATUM, UNTERSCHRIFT / DATE, SIGNATURE

BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
X
BibTEX-Export:

X
EndNote/Zotero-Export:

X
RIS-Export:

X 
Researchgate-Export (COinS)

Permanent QR-Code

doi:10.1553/etna_vol49s182



doi:10.1553/etna_vol49s182



Thema: natural
Ronny Ramlau, Lothar Reichel (Hg.)


ETNA - Electronic Transactions on Numerical Analysis






ISBN 978-3-7001-8258-0
Online Edition

  Research Article
Open access


Yingxiang Xu
PDF Icon  The influence of domain truncation on the performance of optimized Schwarz methods ()
S.  182 - 209
doi:10.1553/etna_vol49s182

Open access

Verlag der Österreichischen Akademie der Wissenschaften


doi:10.1553/etna_vol49s182
Abstract:
Optimized Schwarz methods enhance convergence using optimized transmission conditions between subdomains. The optimization is usually performed for a model problem on an unbounded domain and two subdomains represented by half spaces. The influence of the domain decomposition geometry on the convergence and the optimized parameters is thus lost in the process, and it is not even theoretically clear if the results published for the unbounded domain still hold in concrete applications where the domains are bounded. We prove here rigorously for a two-subdomain decomposition that the asymptotic performance of optimized Schwarz methods derived from an unbounded domain analysis still holds in the case of a bounded domain, but the constants in the best choice of parameters and convergence rate estimates are influenced by the domain truncation. We obtain accurate estimates for this influence and show theoretically that the domain truncation has more remarkable influence for the slowly converging optimized Schwarz methods than for those converging fast. When the subdomain size is very small, our new optimized parameters lead to much faster algorithms than those obtained from an unbounded domain analysis. We illustrate our theoretical results with numerical experiments.

Keywords:  optimized Schwarz methods, domain decomposition methods, transmission conditions, influence of domain truncation
  2018/10/11 11:34:58
Object Identifier:  0xc1aa5572 0x0039f7d2
.

Electronic Transactions on Numerical Analysis (ETNA) is an electronic journal for the publication of significant new developments in numerical analysis and scientific computing. Papers of the highest quality that deal with the analysis of algorithms for the solution of continuous models and numerical linear algebra are appropriate for ETNA, as are papers of similar quality that discuss implementation and performance of such algorithms. New algorithms for current or new computer architectures are appropriate provided that they are numerically sound. However, the focus of the publication should be on the algorithm rather than on the architecture. The journal is published by the Kent State University Library in conjunction with the Institute of Computational Mathematics at Kent State University, and in cooperation with the Johann Radon Institute for Computational and Applied Mathematics of the Austrian Academy of Sciences (RICAM). Reviews of all ETNA papers appear in Mathematical Reviews and Zentralblatt für Mathematik. Reference information for ETNA papers also appears in the expanded Science Citation Index. ETNA is registered with the Library of Congress and has ISSN 1068-9613.



Verlag der Österreichischen Akademie der Wissenschaften
Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400
https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at