![]() |
![]() |
ETNA - Electronic Transactions on Numerical Analysis
|
![]() |
Verlag der Österreichischen Akademie der Wissenschaften Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at |
![]() |
|
DATUM, UNTERSCHRIFT / DATE, SIGNATURE
BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
|
ETNA - Electronic Transactions on Numerical Analysis, pp. 274-314, 2019/09/10
In this paper, we consider a modified Levenberg-Marquardt method for solving an ill-posed inverse problem where the forward mapping is not Gâteaux differentiable. By relaxing the standard assumptions for the classical smooth setting, we derive asymptotic stability estimates which are then used to prove convergence of the proposed method. This method can be applied to an inverse source problem for a non-smooth semilinear elliptic PDE where a Bouligand subdifferential can be used in place of the non-existing Fréchet derivative, and we show that the corresponding Bouligand-Levenberg-Marquardt iteration is an iterative regularization scheme. Numerical examples illustrate the advantage over the corresponding Bouligand-Landweber iteration.
Keywords: inverse problem, iterative regularization, Levenberg-Marquardt method, non-smooth equation