![]() |
![]() |
ETNA - Electronic Transactions on Numerical Analysis
|
![]() |
Verlag der Österreichischen Akademie der Wissenschaften Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at |
![]() |
|
DATUM, UNTERSCHRIFT / DATE, SIGNATURE
BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
|
ETNA - Electronic Transactions on Numerical Analysis, pp. 1-27, 2020/01/29
This work is concerned with the computation of $\\ell^p$-eigenvalues and eigenvectors of square tensors with $d$ modes.In the first part we propose two possible shifted variants of the popular (higher-order) power method, and, when the tensor is entry-wisenonnegative with a possibly reducible pattern and $p$ is strictly larger than the number of modes, we prove convergence of both schemes to thePerron $\\ell^p$-eigenvector and to the maximal corresponding $\\ell^p$-eigenvalue of the tensor.Then, in the second part, motivated by the slow rate of convergence that the proposed methods achieve for certain real-world tensors when$p\\approx d$, the number of modes, we introduce an extrapolation framework based on the simplified topological $\varepsilon$-algorithm to efficientlyaccelerate the shifted power sequences.Numerical results for synthetic and real world problems show the improvements gained by the introduction of the shifting parameter and the efficiency of the acceleration technique.
Keywords: $\ell^p$-eigenvalues, tensors, shifted higher-order power method, extrapolation methods, Shanks transformations, ε-algorithms