![]() |
![]() |
ETNA - Electronic Transactions on Numerical Analysis
|
![]() |
Verlag der Österreichischen Akademie der Wissenschaften Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at |
![]() |
|
DATUM, UNTERSCHRIFT / DATE, SIGNATURE
BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
|
ETNA - Electronic Transactions on Numerical Analysis, pp. 230-248, 2020/05/25
The aim of this paper is to provide a mathematical and numerical analysis for a FEM-BEM coupling approximation of a magnetically nonlinear eddy current formulation by using FEM only on the conducting domain, and by imposing the integral conditions on its boundary. The nonlinear relationship between flux density and the magnetic field intensity is given by a physical parameter called magnetic reluctivity, which is assumed to depend on the Euclidean norm of the magnetic induction in the conducting domain. We use the nonlinear monotone operator theory for parabolic equations to show that the continuous formulation obtained for the coupling is a well-posed problem. Furthermore, we use Nédélec edge elements, standard nodal finite elements, and a backward-Euler time scheme, to obtain a fully discrete formulation and to prove quasi-optimal error estimates.
Keywords: Time-dependent electromagnetic, eddy current model, nonlinear problems, boundary element method, finite element method