![]() |
![]() |
ITA Nanotrust Dossiers
|
![]() |
epub.oeaw – Institutionelles Repositorium der Österreichischen Akademie der Wissenschaften epub.oeaw – Institutional Repository of the Austrian Academy of Sciences
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 http://epub.oeaw.ac.at, e-mail: epub@oeaw.ac.at |
![]() |
|
DATUM, UNTERSCHRIFT / DATE, SIGNATURE
BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
|
ITA Nanotrust Dossiers, pp. , 2020/08/03
This dossier explores bio-inspired and biomimetic nanomaterials, differentiating between bio-inspired or biomimetic nanotechnology and bio-nanotechnology. Following a clarification of these terms, the basics of bio-inspired and biomimetic nanomaterials are then presented. Subsequently, a systematic classification of synthetic methods of bio-inspired and biomimetic nanomaterials is demonstrated. This classification is based on the method of manufacturing and not on the functionality of the materials. This enables a more coherent correlation with security aspects, which are yet to be defined in many cases. Due to the great variety, a categorization according to material properties or material compositions is not considered practical.In addition to chemical properties and behavior, physical parameters such as size, structure and surface quality also play an important role in the categorization. In summary, it can be said that bio-inspired and biomimetic nanomaterials represent important base materials as so-called functional advanced materials in research, development and industry – provided that the material development is accompanied by a corresponding safety and sustainability-oriented technology assessment.