![]() |
![]() |
ETNA - Electronic Transactions on Numerical Analysis
|
![]() |
Verlag der Österreichischen Akademie der Wissenschaften Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at |
![]() |
|
DATUM, UNTERSCHRIFT / DATE, SIGNATURE
BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
|
ETNA - Electronic Transactions on Numerical Analysis, pp. 571-575, 2020/10/06
In a recent paper [Electron. Trans. Numer. Anal, 52 (2020), pp. 358–369], we analyzed Muller's famous recurrence, where, for particular initial values, the iteration over real numbers converges to a repellent fixed point, whereas finite precision arithmetic produces a different result, the attracting fixed point. We gave necessary and sufficient conditions for such recurrences to produce only nonzero iterates. In the above-mentioned paper, an example was given where only finitely many terms of the recurrence over R are well defined, but floating-point evaluation indicates convergence to the attracting fixed point. The input data of that example, however, are not representable in binary floating-point, and the question was posed whether such examples exist with binary representable data. This note answers that question in the affirmative.
Keywords: recurrences, rounding errors, IEEE-754, exactly representable data, bfloat, half precision (binary16), single precision (binary32), double precision (binary64)